首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
25PCB congeners including dioxin-like compounds were analyzed at three sites of Manipur India to assess the level of polychlorinated biphenyls (PCBs) in air and soil. The ∑25PCBs were higher in urban air (average 2,454 pg/m3), followed by the mountain air (average 2,109 pg/m3) and rural air (average 1,756 pg/m3). PCB levels observed in urban air were higher compared to PCB levels reported in major Indian metropolitan cities especially along the coastal region and were comparable with the pristine sites of India and also with some pockets of China and Europe. The heavier congeners (tetra, penta, tri and hexa) were dominant in both air and soil samples and show significant correlation with the ambient temperature. Emission of PCB congeners was investigated from soil surface. The total organic carbon present in soil shows the significant correlation (r 2 = 0.8; p < 0.05) with the PCBs could indicate that the PCBs originated from the similar sources. Principal component analysis revealed that the sources of higher chlorinated PCB congeners are local emissions while long-range atmospheric transport process is responsible behind elevated levels of lower chlorinated PCBs. Total calculated toxic equivalent (TEQ) levels in soil (37.17–160.5 pg/g) were superior to reported TEQ level of agricultural soil in Delhi, India (0.01–105.40 pg/g). Back trajectory analysis showed that the observed high levels of PCB at Manipur may due to movement of air masses, mostly from the Northern and Southern India and to some extent from Myanmar.  相似文献   

2.
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are persistent organic pollutants (POPs) that are formed and released unintentionally from anthropogenic sources. The high persistence of PCDD/Fs results in the concentrations of these contaminants in environment decreasing only very slowly. Two transport pathways, air and water, carry PCDD/Fs into all regions of the world. Recently, more frequent extreme weather events, such as storms and floods, have been projected to occur as a result of global warming. Extreme weather events have a documented impact on the remobilization and subsequent bioavailability of POPs. In this study, three specific episodes, namely winter monsoon, southeast biomass burning and tropical cyclone (typhoon) events, which influence the environmental fate and transport of PCDD/Fs in Taiwan, were evaluated based on a climate change scenario. During the winter (northeast) monsoon period, the temperature and relative humidity observed in northern Taiwan decreases sharply. During this time, the quantity of PCDD/Fs adsorbed onto suspended particles, as observed at background sites, was found to increase from 300 ± 127 to 630 ± 115 pg I-TEQ g-TSP−1, which is even higher than that measured in Taipei City (438 ± 80 pg I-TEQ g-TSP−1). Hence, the winter monsoon not only brings cold air but also transports air pollutants and dust over long distances from mainland China to Taiwan. During the 2010 Southeast Asia biomass burning events (2010/3/22–3/28), the level of atmospheric PCDD/Fs were measured in central Taiwan (Mt. Lulin) and in the source region of northern Thailand (Chiang Mai); this revealed that the variations in atmospheric PCDD/F concentrations at these two sites followed a similar pattern. On 25 March 2010, the atmospheric PCDD/F concentration increased dramatically from 1.43 to 6.09 fg I-TEQ m−3 at Mt. Lulin and from 7.64 to 12.1 fg I-TEQ m−3 in northern Thailand. However, the atmospheric PCDD/F concentration decreased dramatically 1 day after the biomass burning event. Based on the measurements from a dated sediment core collected at a reservoir in northern Taiwan, the sharp increases in input fluxes of PCDD/Fs and mineral-derived elements levels in 1990 (20 ng I-TEQ m−2 year−1), 2001 (17 ng I-TEQ m−2 year−1), 2004 (16 ng I-TEQ m−2 year−1) and 2005 (15 ng I-TEQ m−2 year−1) seem to be a result of a deep turbid layer formed upstream due to landslides and/or mud flows during the typhoon season. This finding demonstrates the effect of typhoon events on the long-term remobilization of PCDD/Fs as well as supporting the hypothesis that such events would have the potential to remobilize pollutants that have been deposited previously.  相似文献   

3.
The low-temperature thermal treatment to degrade PCDD/Fs contained in fly ash was promoted by alcohol amines in a closed system. Three types of fly ash collected separately from municipal solid waste incinerator, medical waste incinerator and hazardous waste incinerator, were compared. Experimental design was used to investigate the homologue patterns of PCDD/Fs and distribution of the toxic congeners in fly ash from incinerator after thermal treatment promoted by alcohol amines. The effect of ethanolamine (MEA) on the hydrodechlorination reaction of polychlorinated aromatics pollutants on fly ash from solid waste incinerator was carried out, and the three ashes clearly showed different degradation potentials for PCDD/F during thermal treatment. Results from the present study indicate that (1) the concentration of alkaline species and metals strongly influenced the degradation of PCDD/F; (2) after addition of 8% MEA, the toxicity equivalent (TEQ) values of PCDD/Fs in fly ash were significantly lower than those obtained without MEA. 49%–71% of PCDD/Fs in TEQ was removed from different types of ash at 250℃ with 8% MEA; (3) the destruction and dechlorination are major mechanism for PCDD/Fs degradation.  相似文献   

4.
Open burning of scrap (bicycle, motorcycle, car and truck) tyres (OBST) was simulated in the laboratory to investigate their impact on the ambient air quality. The tyre samples were burnt in combustion chamber, and gaseous pollutants (CO, NO2 and SO2) emitted were quantified, while concentrations and elemental compositions of emitted total suspended particulates (TSP) were determined. Emission level of SO2 from all the tyre samples exceeded USEPA allowable (156.74 µg/m3) limit. CO due to car and truck tyres exceeded USEPA allowable (10,285.71 µg/m3) limit, while NO2 concentration was below the allowable limit (56.33 µg/m3) only in bicycle tyre. 25% of all the gaseous pollutants emitted are within the Air Quality Index range of 101–150. TSP concentrations from all the tyre samples were higher than the Federal Ministry of Environment standard (250 µg/m3) for ambient TSP. There is strong correlation (R) of 0.885, 0.949 and 0.802 among all the gaseous (CO/NO2, CO/SO2 and NO2/SO2) pollutants, respectively, while the highest (0.999) and lowest (0.079) positive correlations were observed between Mg and Mn as well as Cd and Zn, respectively. The results of this study show that OBST emits hazardous pollutants, which pose serious threat to human health and environment.  相似文献   

5.
Ambient air and coarse, fine and particulate-bound mercury (Hg(p)) pollutants were collected and analyzed from March 17 to May 22 and September 3, 2009 to March 5, 2010 at a highway traffic site located in Sha-Lu, central Taiwan. This study has the following objectives: (1) to measure the coarse and fine particulates concentrations and the particulate-bound mercury Hg(p) which was attached to these particulate; (2) to determine the average Hg(p) compositions in coarse and fine particulates and (3) to compare the Hg(p) concentrations and compositions particulate in this study to the those obtained in other studies. The results obtained in this study indicated that the average ambient air PM2.5, PM2.5–10 and PM10 were 18.79 ± 6.71, 11.22 ± 4.93 and 30.01 ± 10.27 μg/m3, respectively. The ranges of concentrations for Hg(p) in PM2.5 were from 0.0016 to 0.0557 ng/m3, from 0.0006 to 0.0364 ng/m3 in PM2.5–10 and from 0.0022 to 0.0862 ng/m3 in PM10. In addition, the highest particle-bound mercury compositions in PM2.5 were 16.85 ng/g and the lowest particle-bound mercury concentrations were 0.55 ng/g. The highest particle-bound mercury compositions in PM2.5–10 were 13.88 ng/g and the lowest particle-bound mercury in PM2.5–10 were 0.22 ng/g.  相似文献   

6.
The increasing emission of primary and gaseous precursors of secondarily formed atmospheric particulate matter due to continuing industrial development and urbanization are leading to an increased public awareness of environmental issues and human health risks in China. As part of a pilot study, 12-h integrated fine fraction particulate matter (PM2.5) filter samples were collected to chemically characterize and investigate the sources of ambient particulate matter in Guiyang City, Guizhou Province, southwestern China. Results showed that the 12-h integrated PM2.5 concentrations exhibited a daytime average of 51 ± 22 µg m?3 (mean ± standard deviation) with a range of 17–128 µg m?3 and a nighttime average of 55 ± 32 µg m?3 with a range of 4–186 µg m?3. The 24-h integrated PM2.5 concentrations varied from 15 to 157 µg m?3, with a mean value of 53 ± 25 µg m?3, which exceeded the 24-h PM2.5 standard of 35 µg m?3 set by USEPA, but was below the standard of 75 µg m?3, set by China Ministry of Environmental Protection. Energy-dispersive X-ray fluorescence spectrometry (XRF) was applied to determine PM2.5 chemical element concentrations. The order of concentrations of heavy metals in PM2.5 were iron (Fe) > zinc (Zn) > manganese (Mn) > lead (Pb) > arsenic (As) > chromium (Cr). The total concentration of 18 chemical elements was 13 ± 2 µg m?3, accounting for 25% in PM2.5, which is comparable to other major cities in China, but much higher than cities outside of China.  相似文献   

7.
Our understanding of how grain boundaries (GBs) can dramatically influence key mineral properties such as creep and diffusion depends on knowledge of their detailed atomic and electronic structures. For this purpose, we simulate different types of tilt GBs, (0l1)/[100], (1l0)/[001] and (012)/[100] modeled with stepped and non-stepped surfaces in Mg2SiO4 forsterite using a first-principles approach based on density functional theory. Our results suggest that several configurations arising from Mg-terminated planes with tilt angles ranging from 16° to 67° are energetically competitive over the entire pressure regime (0–17 GPa) studied. At the ambient pressure, the predicted important features of the boundaries include distorted bonds (Si–O and Mg–O distances changed by 1 and 4 %, respectively), coordination defects (four and fivefold Mg–O coordination), and void spaces (0.2–0.9 × 10?10 m3/m2). Also, the interface induces splitting of electronic states from the conduction band and kinks at the top of the valence band. These structural and electronic features continue to exist at higher pressures. The formation enthalpy and excess volume for each boundary configuration studied were shown to systematically increase and decrease, respectively, with pressure. The predicted energy range (0.8–1.7 J/m2 at zero pressure) widens by a factor of two at 17 GPa (1.1–2.8 J/m2). The presence of low-density and structurally distorted regions imply that these GBs can serve as primary impurity segregation sites, fast diffusion pathways, and electron-trapped regions, which all are relevant for mantle rheology.  相似文献   

8.
Atmospheric dust is considered to be the major cause of poor air quality due to its contribution to high particulate levels, but their interaction with the acidic gases helps in controlling the level of SO2 and NO2 through ambient neutralization reactions. In the present study, the interaction of acidic gases such as SO2 and NO2 with alkaline dust was investigated during October, 2013–July, 2014 at a site named as Babarpur located at the Trans-Yamuna region of Delhi. The concentration of SO2 ranged from 10 to 170 μg/m3 with an average of 36 μg/m3 while that of NO2 ranged from 15 to 54 μg/m3 with an average of 26?±?8 μg/m3. The results were observed to be well within the National Ambient Air Quality Standard (NAAQS) limits prescribed by the Central Pollution Control Board (CPCB). The average concentrations of SO2 during day and night time were recorded as 31?±?18 and 43?±?53 μg/m3 respectively while the mean concentrations of NO2 during day and night time were recorded as 26?±?7 and 27?±?12 μg/m3 respectively. A positive correlation between SO42? and NO3? was also observed indicating their secondary aerosol formation. In aerosol phase, average concentrations of SO42? during day and night time were 3.9?±?0.3 and 6.5?±?2.3 μg/m3 respectively while that of NO3? were 9.5?±?1.5 and 7.3?±?0.5 μg/m3 respectively. Molar ratios of Ca2+/SO42?, NH4+/SO42?, and NH4+/NO3? were observed as 8, 5, and 1.7 during daytime and 1.5, 0.4, and 0.8 during nighttime respectively. Such molar ratios confirmed high concentrations of sulphate (SO4)2? and low concentrations of nitrate (NO3?) during night time, thereby indicating different pathway of aerosol formation during day and night time. Surface morphology and elemental composition of aerosol samples showed various oval, globular, and platy shapes where the diameter varied from few nm to ~5 μm depending on their precursors. There were certain shapes like grossularite, irregular aggregate, grape-like, triangular, and flattened which indicate the crustal origin of aerosols and their possible role in SO2 and NO2 adsorption.  相似文献   

9.
Polychlorinated dibenzo-para-dioxins (PCDDs) and dibenzofurans (PCDFs) were measured in the tissues of the estuarine clamRangia cuneata at four sites in the Neches River that had been subjected to paper mill effluent and at two remote sites. One of the river samplings was taken before dioxin control measures and another 2 yr after the control measures began. Measurable concentrations of PCDD/Fs were present at all sites, but higher concentrations were present at the Neches River sites. Whole tissue concentrations of 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD) and all PCDD congeners for the two collections were not significantly different (p>0.05), but lipid-normalized concentrations for the two collections were significantly different (p<0.05). Highest concentrations of PCDDs at sites located 8 km and 16 km upriver from the paper mill effluent outfall indicated that the materials were transported upriver by saltwater intrusion and/or that nonpoint sources existed upriver. The presences of PCDD/Fs in clam tissues from the remote sites also indicated that other sources of these materials existed. Even under extreme physiological conditions (spent reproductive phase, low lipid contents, water temperature 10°C; ripe reproductive phase, high lipids, water temperature 32°C)Rangia cuneata was an effective biomonitor to determine the distribution of PCDD/Fs at specific sites. *** DIRECT SUPPORT *** A01BY069 00021  相似文献   

10.
This paper gives an account of the assessment and quantification of the water balance and the hydrogeological processes related to lake–groundwater interaction in the Pampa Plain by using hydrogeochemical, isotopic and flow numerical modeling techniques. La Salada is a permanent shallow lake, with an area of 5.8 km2, located on the SE of Buenos Aires Province. A total of 29 lake water samples and 15 groundwater samples were collected for both hydrochemical analysis and environmental stable isotope determination. Water table depths were measured in wells closed to the lake. Groundwater samples appear grouped on the Local Meteoric Water Line, suggesting a well-mixed system and that rainfall is the main recharge source to the aquifer. Water evaporation process within La Salada is also corroborated by its isotopic composition. The model that best adjusts to La Salada Lake hydrochemical processes includes evaporation from groundwater, calcite precipitation with CO2 release and cationic exchange. The annual water balance terms for the lake basin indicates for each hydrological component the following values: 1.16 E08 m3 rainfall, 8.15 E07 m3 evapotranspiration, 1.90 E06 m3 runoff, 1.55 E07 m3 groundwater recharge, 6.01 E06 m3 groundwater discharge to the lake, 9.54 E06 m3 groundwater discharge to the river, 5.00 E05 m3 urban extraction and 4.90 E06 m3 lake evaporation. Integrated analysis of hydrochemical and isotopic information helped to calibrate the groundwater flow model, to validate the conceptual model and to quantitatively assess the basin water balance.  相似文献   

11.
The 19th Common Wealth Games was organized at Delhi, India, during October 3 to 14, 2010, where more than 8,000 athletes from 71 Commonwealth Nations have participated. In order to give them better environment information for proper preparedness, mass concentrations of particulate matters below 10 microns (PM10) and 2.5 microns (PM2.5), black carbon (BC) particles and gaseous pollutants such as carbon monoxide (CO) and nitrogen oxide (NO) were monitored and displayed online for ten different locations around Delhi, including inside and outside the stadiums. This extensive information system for air quality has been set up for the period from September 24 to October 21, 2010, and data have been archived at 5-min interval for further research. During the study period, average concentration of PM10 and PM2.5 was observed to be 229.7 ± 85.5 and 112.1 ± 56.0 μg m?3, respectively, which is far in excess of the corresponding annual averages, stipulated by the national ambient air quality standards. Significant large and positive correlation (r = 0.93) between PM10 and PM2.5 implies that variations in PM10 mass are governed by the variations in PM2.5 mass. The mass concentrations of PM2.5 inside the stadium were found to be ~18 % lower than those outside; however, no large variations were observed in PM10. Mean concentrations of BC, CO and NO for the observation period were 10.9 μg m?3 (Min, 02 μg m?3; Max, 31 μg m?3), 1.83 ± 0.89 ppm (Min, 0.48 ppm; Max, 4.55 ppm) and 37.82 ppb (Min, 2.4 ppb; Max, 206.05 ppb), respectively. BC showed positive correlation (r = 0.73) with CO suggests unified source for both of them, mainly from combustion emissions. All the measured parameters, however, show a significant diurnal variation with enhanced peaks in the morning and late night hours and lower values during daytime.  相似文献   

12.
MgSiO3 akimotoite is stable relative to majorite-garnet under low-temperature geotherms within steeply or rapidly subducting slabs. Two compositions of Mg–akimotoite were synthesized under similar conditions: Z674 (containing about 550 ppm wt H2O) was synthesized at 22 GPa and 1,500 °C and SH1101 (nominally anhydrous) was synthesized at 22 GPa and 1,250 °C. Crystal structures of both samples differ significantly from previous studies to give slightly smaller Si sites and larger Mg sites. The bulk thermal expansion coefficients of Z674 are (153–839 K) of a 1 = 20(3) × 10?9 K?2 and a 0 = 17(2) × 10?6 K?1, with an average of α 0 = 27.1(6) × 10?6 K?1. Compressibility at ambient temperature of Z674 was measured up to 34.6 GPa at Sector 13 (GSECARS) at Advanced Photon Source Argonne National Laboratory. The second-order Birch–Murnaghan equation of state (BM2 EoS) fitting yields: V 0 = 263.7(2) Å3, K T0 = 217(3) GPa (K′ fixed at 4). The anisotropies of axial thermal expansivities and compressibilities are similar: α a  = 8.2(3) and α c  = 10.68(9) (10?6 K?1); β a  = 11.4(3) and β c  = 15.9(3) (10?4 GPa). Hydration increases both the bulk thermal expansivity and compressibility, but decreases the anisotropy of structural expansion and compression. Complementary Raman and Fourier transform infrared (FTIR) spectroscopy shows multiple structural hydration sites. Low-temperature and high-pressure FTIR spectroscopy (15–300 K and 0–28 GPa) confirms that the multiple sites are structurally unique, with zero-pressure intrinsic anharmonic mode parameters between ?1.02 × 10?5 and +1.7 × 10?5 K?1, indicating both weak hydrogen bonds (O–H···O) and strong OH bonding due to long O···O distances.  相似文献   

13.
The purpose of this paper was to perform the experimental and numerical analyses of PM10 and PM2.5 concentrations in Imam Khomeini (IKH) underground subway station in Tehran. The aim was to provide fundamental data in order to fulfill workers and passengers respiratory health necessities. Experimental measurements was done at three different locations (entrance, middle and exit) inside the platform and also outdoor ambient of the station. The Dust-Trak was applied to measure continuous PM2.5 and PM10 concentrations at a logging interval of 30 s. The measurements were recorded during rush hours (8:00 am–12:00 pm) for one week per each season from June 2015–June 2016.Moreover, computational fluid dynamic (CFD) simulation was done for the platform of the above station and the necessary boundary conditions were provided through field measurements. Those basic parameters which were considered for numerical analysis of particulate matters concentrations included air velocity, air pressure and turbulence. Furthermore, the piston effect caused by train movement inside the station provided natural ventilation in the platform. The results showed that seasonal measured PM2.5 and PM10 indoor concentrations had a variety range from 40–98 µg/m3 to 33–102 µg/m3, respectively, and were much higher than national indoor air quality standard levels. Meanwhile, PM2.5 and PM10 concentrations in the IKH underground subway station were approximately 2.5–2.9 times higher than those in outdoor ambient, respectively. Numerical simulation indicated that the predicted concentrations were underestimated by a factor of 8% in comparison with the measured ones.  相似文献   

14.
Seepage analysis of the upper reservoir of the Kurdistan Azad pumped storage dam with a volume of 3.8E+5 m3 is a key step for selection of the optimized sealing method. More than 60% of the Lugeon test results show very permeable behavior for the pit and abutments of the reservoir. In this study, regarding the permeability value of the reservoir abutments and pit obtained by means of Lugeon tests, seepage rate was computed using various analytical and numerical methods. Reservoir total seepage discharge was computed in steady-state regime by means of analytical and numerical methods (SEEP/W finite element software) as 1.14E+05 and 1.15E+05 m3/day, respectively. Distinct element method (UDEC software) showed variable behavior for the seepage flow. In the reservoir initial impounding stages, the amount of seepage was very high (1.70E+06 m3/day). Then, the seepage rate decreased gradually and reached to a constant value (1.12E+05 m3/day). For the reservoir 3D modeling, Seep3D commercial software was used and has shown water seepage discharge of about 1.18E+05 m3/day, means 3% of total reservoir volume. Based on the above-mentioned results and regarding behavior of seepage in the initial impounding stages, sealing element is necessary to prevent from seepage phenomenon. Clay blanket, concrete lining, asphaltic concrete, and geosynthetic are the proposed methods in a large water reservoir. After a feasibility study on various sealing methods, geomembrane was suggested as the best sealing method with the reasonable implementation cost.  相似文献   

15.
Size distribution of PM10 mass aerosols and its ionic characteristics were studied for 2 years from January 2006 to December 2007 at central Delhi by employing an 8-stage Andersen Cascade Impactor sampler. The mass of fine (PM2.5) and coarse (PM10?2.5) mode particles were integrated from particle mass determined in different stages. Average concentrations of mass PM10 and PM2.5 were observed to be 306 ± 182 and 136 ± 84 μg m?3, respectively, which are far in excess of annual averages stipulated by the Indian National Ambient Air Quality Standards (PM10: 60 μg m?3 and PM2.5: 40 μg m?3). The highest concentrations of PM10?2.5 (coarse) and PM2.5 (fine) were observed 505 ± 44 and 368 ± 61 μg m?3, respectively, during summer (June 2006) period, whereas the lower concentrations of PM10?2.5 (35 ± 9 μg m?3) and PM2.5 (29 ± 13 μg m?3) were observed during monsoon (September 2007). In summer, because of frequent dust storms, coarse particles are more dominant than fine particles during study period. However, during winter, the PM2.5 contribution became more pronounced as compared to summer probably due to enhanced emissions from anthropogenic activities, burning of biofuels/biomass and other human activities. A high ratio (0.58) of PM2.5/PM10 was observed during winter and low (0.24) during monsoon. A strong correlation between PM10 and PM2.5 (r 2 = 0.93) was observed, indicating that variation in PM10 mass is governed by the variation in PM2.5. Major cations (NH4 +, Na+, K+, Ca2+ and Mg2+) and anions (F?, Cl?, SO4 2? and NO3 ?) were analyzed along with pH. Average concentrations of SO4 2? and NO3 ? were observed to be 12.93 ± 0.98 and 10.33 ± 1.10 μg m?3, respectively. Significant correlation between SO4 2? and NO3 ? in PM1.0 was observed indicating the major sources of secondary aerosol which may be from thermal power plants located in the southeast and incomplete combustion by vehicular exhaust. A good correlation among secondary species (NH+, NO3 ? and SO4 2?) suggests that most of NH4 + is in the form of ammonium sulfate and ammonium nitrate in the atmosphere. During winter, the concentration of Ca2+ was also higher; it may be due to entrainment of roadside dust particles, traffic activities and low temperature. The molar ratio (1.39) between Cl? and Na+ was observed to be close to that of seawater (1.16). The presence of higher Cl? during winter is due to western disturbances and probably local emission of Cl? due to fabric bleaching activity in a number of export garment factories in the proximity of the sampling site.  相似文献   

16.
Modeling and simulation using GPS-X software for a packed bed up-flow anaerobic sludge blanket followed by a biological aerated filter were studied. Both treatment units were packed with a non-woven polyester fabric as a bio-bed. The system was operated at a hydraulic and organic loading rate of 9.65 m3/m2/d and 2.64 kg BOD5/m3/day. Verification of the experimental results and calibration of the model were carried out prior simulation and modeling. Variables under consideration were HLR, OLR, and surface area of the packing material. HLR and OLR are increased incrementally until the break through point has been achieved. The results obtained from modeling indicated that the treatment system has great potential to be used as an ideal and efficient option for high hydraulic and organic loading rates up to 19.29 m3/m2/d and 4.48 kg BOD5/m3/day. The model indicated that increasing the input HLR and OLR loads to the treatment system up to 50 % of the original values achieved removal efficiencies 98 % for TSS, 88 % for BOD5, and 85 % for COD. Moreover, increasing the HLR to four times the original value (38.59 m3/m2/d) reduced the efficiency of the treatment system to 50 % for COD and BOD5. However, the removal rates of TSS, TKN, and TP were not affected. Also, the modeling results indicated that increasing the surface area of the packing material increased the overall efficiency of the treatment system.  相似文献   

17.
The objective of the study is to investigate spatio-temporal variations of PM10, PM2.5, and PM1 concentrations at seven residential sites, located in the vicinity of opencast coal projects, Basundhara Garjanbahal Area (BGA), India. Meteorological parameters such as wind speed, wind direction, relative humidity, and temperature were collected simultaneously with PM concentrations. Mean concentrations of PM10 in the range 215 ± 169–526 ± 412 μg m?3, PM2.5 in the range of 91 ± 79–297 ± 107 μg m?3, PM1 in the range of 68 ± 60–247 ± 84 μg m?3 were obtained. Coarse fractions (PM2.5–10) varied from 27 to 58% whereas fine fractions (PM1–2.5 and PM1) varied in the range of 51–73%. PM2.5 concentration was 41–74% of PM10 concentration, PM1 concentration was 31–62% of PM10 concentration, and PM1 concentration was 73–83% of PM2.5 concentration. Role of meteorology on PM concentrations was assessed using correlation analysis. Linear relationships were established among PM concentrations using least square regression analysis. With the aid of principal component analysis, two components were drawn out of eight variables, which represent more than 75% of variance. The results indicated that major sources of air pollutants (PM10, PM2.5, PM1, CO, CO2) at the residential sites are road dust raised by vehicular movement, spillage of coal generated during transportation, spontaneous combustion of coal, and biomass burning in village area.  相似文献   

18.
Tibetan Plateau (TP) is the highest and most extensive plateau in the world and has been known as the roof of the world, and it is sensitive to climate change. The researches of CO2 fluxes (F C) in the TP region play a significant role in understanding regional and global carbon balance and climate change. Eddy covariance flux measurements were conducted at three sites of south-eastern TP comprising Dali (DL, cropland ecosystem), LinZhi (LZ, alpine meadow ecosystem) and Wenjiang (WJ, cropland ecosystem); amongst those DL and LZ are located in plateau region, while WJ is in plain region. Dynamics of F C and influences of vegetation, meteorological (air temperature, photosynthetically active radiation, soil temperature and soil water content) and terrain factors (altitude) were analysed on the basis of data taken during 2008. The results showed that, in the cool sub-season (March, April, October and December), carbon sink appeared even in December with fluxes of (?0.021 to ?0.05) mg CO2 m?2 s?1 and carbon source only in October (0.03 ± 0.0048) mg CO2 m?2 s?1 in DL and WJ site. In LZ site, carbon sink was observed in April: (?0.036 ± 0.0023) mg COm?2 s?1 and carbon sources in December and March (0.008–0.010 mg CO2 m?2 s?1). In the hot sub-season (May–August), carbon source was observed only in May with (0.011 ± 0.0022), (0.104 ± 0.0029) and (0.036 ± 0.0017) fluxes in LZ, DL and WJ site, respectively, while carbon sinks with (?0.021 ± 0.0041), (?0.213 ± 0.0007) and (?0.110 ± 0.0015) mg CO2 m?2 s?1 fluxes in LZ, DL, and WJ, respectively. Comparing with plain region (WJ), carbon sinks in plateau region (DL and LZ) lasted for a longer time, and the absorption sum was large and up to (–357.718 ± 0.0054) and (?371.111 ± 0.0039) g C m?2 year?1, respectively. The LZ site had the weakest carbon sink with (?178.547 ± 0.0070) g C m?2 year?1. Multivariate analysis of covariance showed that altitude (AL) as an independent factor explained 39.5 % of F C (P < 0.026). F C had a quadratic relationship with Normalized difference vegetation index (NDVI) (R 2 ranges from 0.485 to 0.640 for three sites), an exponential relationship with soil temperature at 5-cm depth (ST 5) at night time and a quadratic relationship with air temperature (T a) at day time. Path analysis indicated that photosynthetically active radiation (PAR), sensible heat fluxes (H) and other factors all had direct or indirect effects on F C in all of the three tested sites around the south-eastern TP.  相似文献   

19.
Enhanced oil recovery based on CO2 injection is expected to increase recovery from Croatian oil fields. Large quantities of CO2 are generated during hydrocarbon processing produced from gas and gas condensate fields situated in the north-western part of Croatia. First CO2 injection project will be implemented on the Ivani? Oil Field. Numerical modelling based on Upper Miocene sandstone core samples testing results have shown the decrease of oil viscosity during CO2 injection. Some of the characteristics of the testing samples are porosity 21.5–23.6 %, permeability 14–80 × 10?15 m2 and initial water saturation 28–38.5 %. Water alternating foam (WAF) and water alternating gas (WAG) simulations have provided satisfactory results. The WAF injection process has provided better results, but due to the process sensitivity and costs WAG is recommended for future application. During the pilot project 16 × 106 m3 CO2 and 5 × 104 m3 of water were injected. Additional amounts of hydrocarbons (4,440 m3 of oil and 2.26 × 106 m3 of gas) were produced which confirmed injection of CO2 as a successful tertiary oil recovery mechanism in Upper Miocene sandstone reservoirs in the Croatian part of the Pannonian Basin System.  相似文献   

20.
The aim of this research was to evaluate the efficiency of electrocoagulation (EC) for the removal of natural organic matter (NOM) by using iron (Fe) and aluminum (Al) electrodes. The effects of several operational parameters such as initial pH (3–10), time of electrolysis (5–30 min), initial concentration of organic matter (10–50 mg NOM/L), current density (0.25–1.25 mA/cm2), type of electrode material (n = 4, 2 sides × 11 cm × 10 cm, wall thickness = 2 mm, distance between each electrode = 5 mm), and type of connection of electrodes (bipolar and monopolar configurations) were explored for the removal of NOM from synthetic humic acid solution in a 2 L laboratory-scale EC cells (A s/V = 0.110 cm?1). The optimum conditions for the process were identified as pH = 3 and 7, electrolysis time = 20 and 10 min for Fe and Al electrodes, respectively. Using both electrodes at current density = 0.25 mA/cm2 and initial concentration of organic matter = 50 mg/L, a NOM removal efficiency of almost 100% could be achieved in the bipolar mode. Based on the optimum conditions, specific reactor electrical energy consumptions were 14.90 kWh/kg Al (or 0.092 kWh/m3) and 2.88 kWh/kg Fe (or 0.11 kWh/m3). Specific electrode consumptions were obtained to be 0.0062 and 0.0382 kg/m3, and operating costs of the EC system were preliminary estimated at 0.057 and 0.119 $/m3 for Al and Fe electrodes, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号