首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 752 毫秒
1.
The deposits of subaqueous sediment gravity flows can show evidence for abrupt and/or progressive changes in flow behaviour making them hard to ascribe to a single flow type (e.g. turbidity currents, debris flows). Those showing evidence for transformation from poorly cohesive and essentially turbulent flows to increasingly cohesive deposition with suppressed turbulence ‘at a point’ are particularly common. They are here grouped as hybrid sediment gravity flow deposits and are recognised as key components in the lateral and distal reaches of many deep-water fan and basin plain sheet systems. Hybrid event beds contain up to five internal divisions: argillaceous and commonly mud clast-bearing sandstones (linked debrite, H3) overlie either banded sandstones (transitional flow deposits, H2) and/or structureless sandstones (high-density turbidity currents, H1), recording longitudinal and/or lateral heterogeneity in flow structure and the development of turbulent, transitional and laminar flow behaviour in different parts of the same flow. Many hybrid event beds are capped by a relatively thin, well-structured and graded sand–mud couplet (trailing low-density turbulent cloud H4 and mud suspension fallout H5). Progressive bed aggradation results in the deposits of the different flow components stacked vertically in the final bed. Variable vertical bed character is related to the style of up-dip flow transformations, the distance over which the flows can evolve and partition into rheological distinct sections, the extent to which different flow components mutually interact, and the rate at which the flows decelerate, reflecting position (lateral versus distal) and gradient changes. Hybrid beds may inherit their structure from the original failure, with turbidity currents outpacing debris flows from which they formed via partial flow transformation. Alternatively, they may form where sand-bearing turbidity currents erode sufficient substrate to force transformation of a section of the current to form a linked debris flow. The incorporation of mud clasts, their segregation in near-bed layers and their disintegration to produce clays that can dampen turbulence are inferred to be key steps in the generation of many hybrid flow deposits. The occurrence of such beds may therefore identify the presence of non-equilibrium slopes up-dip that were steep enough to promote significant flow incision. Where hybrid event beds dominate the entire distal fan stratigraphy, this implies either the system was continually out of grade in order to freight the flows with mud clasts and clays, or the failure mechanism and transport path repeatedly allowed transmission of components of the initial slumps distally. Where hybrid beds are restricted to sections representing fan initiation, or occur more sporadically within the fan deposits, this could indicate shorter episodes of disequilibrium, due to an initial phase of slope re-adjustment, or intermittent tectonically or gravity-driven surface deformation or supply variations. Alternatively, changes between conventional and hybrid event beds may record changes in the flow generation mechanism through time. Thus the vertical distribution of hybrid event beds may be diagnostic of the wider evolution of the fan systems that host them.  相似文献   

2.
This study documents the stratigraphic and palaeogeographic distribution of hybrid event beds that comprise both debris-flow (cohesive) and turbidity current (non-cohesive) deposits. This is the first study of such beds in a submarine fan system to combine outcrop and research borehole control, and uses a dataset from the Skoorsteenberg Formation of the Tanqua depocentre in the Karoo Basin, South Africa. Three types of 0.1–1.0 m thick hybrid beds are observed, which have a basal weakly graded fine-grained sandstone turbidite division overlain by a division of variable composition that can comprise 1) poorly sorted carbonaceous-rich material supported by a mud-rich and micaceous sand-matrix; 2) poorly sorted mudstone clasts in a mud-rich sand-silt matrix; or 3) gravel-grade, rounded mudstone clasts in a well sorted (mud-poor) sandstone matrix. These upper divisions are interpreted respectively as: 1) the deposit of a debris-flow most likely derived from shelf-edge collapse; 2) the deposit of a debris flow, most likely developed through flow transformation from turbidity current that eroded a muddy substrate; and 3) from a turbidity current with mudstone clasts transported towards the rear of the flow. All three hybrid bed types are found concentrated at the fringes of lobes that were deposited during fan initiation and growth. The basinward stepping of successive lobes means that the hybrid beds are concentrated at the base of stratigraphic successions in medial and distal fan settings. Hybrid beds are absent in proximal fan positions, and rare and thin in landward-stepping lobes deposited during fan retreat. This distribution is interpreted to reflect the enhanced amounts of erosion and availability of mud along the transport route during early lowstands of sea level. Therefore, hybrid beds can be used to indicate a fan fringe setting, infer lobe stacking patterns, and have a sequence stratigraphic significance.  相似文献   

3.
The West Crocker Formation (Oligocene–Early Miocene), NW Borneo, consists of a large (>20 000 km2) submarine fan deposited as part of an accretionary complex. A range of gravity-flow deposits are observed, the most significant of which are mud-poor, massive sandstones interpreted as turbidites and clast-rich, muddy sandstones and sandy mudstones interpreted as debrites. An upward transition from turbidite to debrite is commonly observed, with the contact being either gradational and planar, or sharp and highly erosive. Based on their repeated vertical relationship and the nature of the contact between them, these intervals are interpreted as being deposited from one flow event which consisted of two distinct flow phases: fully turbulent turbidity current and weakly turbulent to laminar debris flow. The associated bed is called a co-genetic turbiditedebrite, with the upper debrite interval termed a linked debrite. Linked debrites are best developed in the non-channellised parts of the fan system, and are absent to poorly-developed in the proximal channel-levee and distal basin floor environments. Due to outcrop limitations, the genesis of linked debrites within the West Crocker Formation is unclear. Based on clast size and type, it seems likely that a weakly turbulent to laminar debris-flow flow phase was present when the flow event entered the basin. A change in flow behaviour may have led to deposition of a sand-rich unit with ‘turbidite’ characteristics, which was subsequently overlain by a mud-rich unit with ‘debrite’ characteristics. Flow transformation may have been enhanced by the disintegration and incorporation into the flow of muddy clasts derived from the upstream channel floor, channel mouth or from channel-levee collapse. Lack of preservation of this debrite in proximal areas may indicate either bypass of this flow phase or that the available outcrops fail to capture the debris flow entry point. Establishing robust sedimentological criteria from a variety of datasets may lead to the increasing recognition of co-genetic turbidite-debrite beds, and an increased appreciation of the importance of bipartite flows in the transport and deposition of sediments in deepwater environments.  相似文献   

4.
Various transformation mechanisms can generate turbidity currents from subaqueous debris flows. Different transformation mechanisms have been described and interpreted in the past from laboratory experiments and from deposits, but the two approaches have not generally been linked. This has made the genetic interpretation and comparison of deposits difficult. In this paper a generic classification scheme of debrite–turbidite couplets is proposed based on transformation mechanisms inferred from laboratory experiments. Five different flow types (called A–E herein) and their resulting deposits are detailed, but they are all part of a continuous spectrum, and a mixture of types is likely to be found in the field. Type A flows are strong, dense debris flows that undergo little transformation. Their deposit will be a debrite overlain by a thin turbidite, which is separated from it by a clear grain size break. Type B flows are weaker and can develop waves at the debris flow-turbidity current interface. The deposit will be a debrite with a wavy top overlain by a turbidite that is thicker than for type A flows. For type C flows, the interfacial waves will grow so much that the debris flow disintegrates into separate parts. The deposit will consist of debrite lenses encased in a turbidite. Type D flows will undergo even more mixing than type C flows so that the debrite parts will be mixed. Their deposit will be a turbidite with laterally varying areas of debrite characteristics near the bed. Type E flows will be so transformed that the debris flow character has disappeared and the flow is a turbidity current with high sediment concentration. The deposit will be largely turbiditic. The flow types and deposits will be illustrated with some examples from two field areas: the Polish Carpathians and the French Maritime Alps.  相似文献   

5.
The northwest African margin has been affected by numerous large-scale landslides during the late Quaternary. This study focuses on a recent collapse of the Sahara Slide headwall and characterises the resulting flow deposit. Core and seismic data from the base of the upper headwall reveal the presence of blocky slide debris, comprising heavily deformed hemipelagic slope sediments. The blocky slide debris spilled over a lower headwall 60 km downslope and formed a thick transparent debris flow unit. Cores recovered 200–250 km farther downslope contain a surficial turbidite that is interpreted to be linked to the headwall collapse event based on timing and composition. One core located approximately 200 km from the headwall scar (C13) contains debrite encased in turbidite. The debrite comprises sheared and contorted hemipelagic mudstone clasts similar as those seen in the vicinity of the Sahara Slide headwall, and lacks matrix. This debrite pinches out laterally within 25 km of C13, whereas the accompanying turbidite can be correlated across 700 km of the northwest African margin. The linked turbidite–debrite bed is interpreted to have formed through recent failure of the steep Sahara Slide headwall that either 1) generated both a debris flow and a turbidity current almost simultaneously, or 2) generated a debris flow which with entrainment of water and progressive dilution led to formation of an accompanying turbidity current.  相似文献   

6.
The Upper Cretaceous Bordighera Sandstone of NW Italy is a coarse-grained, sand-rich elongated turbidite system (ca. 15 × 45 km in outcrop) up to 250 m thick, interpreted to have been deposited in a trench setting. The siliciclastic succession interfingers with muddy calcareous turbidites, which become more abundant toward the lateral and distal domains. Bed type associations allow the distinction of a proximal channelized domain which transitions to a more distal lobe domain, characterized by abundant mudclast-rich sandstones and by bipartite and tripartite beds with a mud-rich middle or upper division (hybrid event beds). The transition between the proximal and distal domains occurs over a relatively limited spatial extent (ca. 5 km). The presence of lenticular bed-sets made up of coarse grained and mud-poor sandstones throughout the distal domain suggests that distributary channels were present, indicating sediment bypass further down-dip toward the most distal and not preserved parts of the system. Hybrid event beds - commonly associated with distal and marginal fan environments such as fan fringes - are present throughout the lobe domain and extend for up to ca. 30 km in down-dip distance. They are more abundant in the proximal and axial depositional lobe domain and their appearance occurs within a short basin-ward distance from the inferred channel-lobe transition zone. Flow expansion at the termination of the channelized domain and the enhanced availability of cohesive substrate due to the presence of intra-basinal muddy calcareous beds are interpreted as the key controls on the widespread occurrence of mudclast-rich and argillaceous sandstone beds. The abrupt appearance and the persistent occurrence of such beds across an extensive domain have implications for characterizing bed-scale (sub-seismic) heterogeneity of deep-water clastic hydrocarbon reservoirs.  相似文献   

7.
This study documents the stratigraphic evolution of the Castagnola ponded turbidite mini-basin through analysis of a detailed base-to-top section measured in the central part of the basin. Vertical variations in facies characteristics, thickness ratio of mud cap vs. sandstone of event beds and net/gross are argued to be good proxies for pinpointing the stratigraphic transition from dominantly ponded deposition, where most of the flow is trapped by the confining topography, to a flow-stripping – dominated phase in which an increasingly large part of incoming flows can escape the basin by spilling over the enclosing topography. Thickness statistics of sandstones and mud caps of event beds from the case study show that in the initial stage of turbidite deposition only part of the mud of exceptionally large volume flows escaped the confining topography; as the basin was progressively infilled, nearly all inbound flows were affected by flow stripping, with part of the sand and most of the mud escaping the basin. In the latest recorded stage of deposition the abundance of by-pass features coupled with significant modification of the sandstone bed thickness population suggests that the turbidite system was no longer obstructed frontally, and could step forward onto a healed topography. In order to assess whether the documented trends of turbidite bed characteristics indicative of the ‘fill to spill’ transition could be recognised from wireline log data alone, synthetic logs were prepared by up-scaling the field data to resolutions typical of borehole geophysical log data. Vertical trends of average bed thickness and net/gross recognisable in the synthetic data suggest that the transition from ponded to spill-dominated situations should be resolvable in geophysical log data.  相似文献   

8.
Navy Fan is a Late Pleistocene sand-rich fan prograding into an irregularly shaped basin in the southern California Borderland. The middle fan, characterized by one active and two abandoned “distributary” channels and associated lobe deposits, at present onlaps part of the basin slope directly opposite from the upper-fan valley, thus dividing the lower-fan/basin-plain regions into two separate parts of different depths. Fine-scale mesotopographic relief on the fan surface and correlation of individual turbidite beds through nearly 40 cores on the middle and lower fan provide data for evaluating the Late Pleistocene and Holocene depositional processes. Margin setting represents fan and/or source area  相似文献   

9.
Based on analysis of well and drilling data, cores, sediment grains and 3D seismic data, four types of turbidites–slope fan, channelized, laminated and sublacustrine fan turbidite–are identified in Members 1 and 2 of the Qingshankou Formation in northern Songliao Basin. The slope fan turbidite is located in Members 1 and 2 of the Qingshankou Formation. It is dominated by silt and fine sand and is distributed in an SN-trending ribbon zone along the slope break at delta front in the western part of the basin. The channelized turbidite is located at the bottom of Member 1 of the Qingshankou Formation. It is dominated by silt and fine sand and is distributed in an SN-trending strip-shaped zone along the Qijia-Gulong sag, with funnel-shaped sublacustrine fans at the end. The laminated turbidite body is located in Member 2 of the Qingshankou Formation. It is dominated by siltstone and argillaceous siltstone and is distributed continuously in a tongue-shaped zone along the northern delta front towards the lacustrine region, with belt-like distributaries at the central part and sublacustrine fans at the end. Low-permeability and low-yield lithologic reservoirs are formed near the delta front within the slope fan turbidite and channelized turbidite. There are “sweet spots” in local regions, where reservoir reform techniques are required to attain high industrial yields. Laminated turbidite and sublacustrine fans can form unconventional and continuous reservoirs that generally have no natural productivity; industrial production is impossible until horizontal drilling and multistage volume fracturing are employed. Therefore, the research results are important to the exploration of unconventional oil and gas reservoirs in northern Songliao Basin.  相似文献   

10.
A series of two-dimensional numerical flow simulations were carried out to investigate the production characteristics of a sheet sandstone bed with a linked-debrite interval. A deterministic geological model was used based on a two-dimensional representation of a bed from the Marnoso Arenacea Formation. The model was 60 km long and 1 m thick and contained three zones, arranged in a vertical facies arrangement typical of many linked-debrite beds: i) a lower, coarse-to-medium grained, clean turbidite sandstone interval; ii) a middle, muddy sandstone, debrite interval; iii) an upper, fine-grained, clean, laminated sandstone interval. Simulation involved only a 3-km long sector of the model, with one injector well and one production well, placed 1-km apart in the middle of the sector model. The simulated sector was moved progressively down the length of the bed, in 1-km steps, sampling different parts of the bed with different facies proportions. The petrophysical properties of the debrite interval were varied to produce different porosity–permeability cases. All other modelling parameters, including the upper and lower interval petrophysics, were kept constant. Results indicate that, in most cases, key production parameters such as cumulative oil production with time and water cut are proportional to the volume of movable oil between the wells. This relationship does not hold, however, for cases with relatively low values of debrite porosity (≤0.15) and permeability (kh ≤ 100 mD) where the debrite interval accounts for more than 20% of the interwell volume. In these models, production efficiency declines systematically with reducing reservoir quality and increasing debrite percentage, resulting in relatively low oil production and early water breakthrough.  相似文献   

11.
The marine fill of ancient foreland basins is primarily recorded by depositional systems consisting of facies and facies associations deposited by a variety of sediment gravity flows in shallow-marine, slope and basinal settings. Tectonism and climate were apparently the main factors controlling the sediment supply, accommodation and depositional style of these systems. In marginal deltaic systems, sedimentation is dominated by flood-generated hyperpycnal flows that build up impressive accumulations of graded sandstone beds in front of relatively small high-gradient fan-deltas and river deltas. During periods of tectonically forced lowstands of sealevel, these systems may commonly shift basinward to shelfal and slope regions. Instability along the edges of these lowstand deltas and sand-laden hyperpycnal flows generate immature and coarse-grained turbidite systems commonly confined within structural depressions and generally encased in distal delta-front and prodeltaic deposits. Because of the close vertical and lateral stratigraphic relations between deltaic and turbidite-like facies, these marginal systems are herein termed ‘mixed depositional systems’. They are very common in the fill of foreland basins and represent the natural link between deltaic and basinal turbidite sedimentation.Basinal turbidite systems form in deeper water elongate highly subsiding troughs (foredeeps) that developed in front of advancing thrust systems. The impressive volumes of sheet-sandstones that form the fill of these troughs suggest that basinal turbidite systems are likely to form following periods of dramatic tectonic uplift of adjacent orogenic wedges and related high-amplitude tectonically-forced sealevel lowstands. In such deep basinal settings, sediment flux to the sea is dramatically increased by newly formed sediment in fluvial drainage basins and the subaerial and submarine erosion of falling-sealevel deltaic deposits generated during the uplift. Turbidity currents are very likely to be mainly triggered by floods, via hyperpycnal flows and related sediment failures, but can fully develop only in large-scale erosional conduits after a phase of catastrophic acceleration and ensuing bulking produced by bed erosion. This process leads to deepening and widening of the conduits and the formation of large-volume highly efficient bipartite currents whose energy dissipation is substantially reduced by the narrow and elongate basin geometry. These currents can thus carry their sediment load over considerable distances down the basin axis.  相似文献   

12.
Side-scan data from the epicentral area of the 1929 Grand Banks earthquake and cores from the resulting turbidite are used to determine a sediment budget for the event. The 1929 turbidite has a volume of about 185 cubic km, which is mostly sand. Features indicating failure on the continental slope are observed only in muddy sediment. A major source of sand in the heads of the fan valleys of the Laurentian Fan is postulated to balance the sediment budget. This sand accumulated proglacially during the Wisconsinan glaciation and probably failed through liquefaction in the 1929 earthquake.  相似文献   

13.
Seven piston cores retrieved from the Algerian margin from Oran to 80 km east of Algiers were studied to identify sediment gravity-flow deposits and their sources. At the foot of the slope, five sediment cores indicate a decreasing frequency of turbidite sequences from the transgressive systems tract to the highstand systems tract resulting in lower off-shelf sediment fluxes during the last highstand episode. There is an approximately log-normal frequency distribution of bed thickness that increases for larger grain-size class, but this relationship is frequently altered by truncation of the top of the turbidite sequence. In the deep basin off Algeria, two sediment cores indicate that turbidite sequences are both thicker and more preserved than at the foot of the slope and are observed through the entire sediment core implying various origin of the gravity flow (eustatic change, seismicity).  相似文献   

14.
This work discusses the synsedimentary structural control affecting the turbidites of the Marnoso-arenacea Formation (MAF) deposited in an elongate, NW-stretched foredeep basin formed in front of the growing Northern Apennines orogenic wedge. The stratigraphic succession of the MAF (about 4000 m thick) records the progressive closure of the Apennine foredeep basin due to the NE propagation of thrust fronts. In this setting, Langhian to Serravallian turbidites are overlain by Tortonian mixed turbidite deposits, i.e. sandstone-rich low-efficiency turbidites. The high-resolution stratigraphic framework of basin-plain turbidites has made it possible to identify five informal stratigraphic units (I, II, III, IV, V) mainly on the basis of the structural control highlighted by: 1) the presence of topographic highs and relative depocentres detected through a progressive flattening approach, and 2) the presence of thrust-related mass-transport complexes and the progressive appearance and disappearance of five bed types (Types 1, 2, 3, 4, 5) considered important to understand the interaction between flow efficiency and basin morphology. By contrast, the upper part of the MAF succession (Tortonian in age) is formed by more sandstone-rich systems characterized by beds whose origin is likely to depend, at least in part, upon flow decelerations related to topographic confinement due to the progressive closure of the foredeep. The vertical and lateral distribution of these types of beds is, therefore, useful for the reconstruction of the morphological evolution of structurally controlled basins; in the MAF example, this is mainly due to the progressive narrowing of the foredeep caused by the propagation of the main thrust fronts toward the foreland.  相似文献   

15.
Coast-hugging surface flood plumes occur on the inner shelf of northern California during the winter season, generating dense, near-bottom suspensions which may attain fluid mud concentrations as particles settle. The period of storm-heightened waves may continue into the flood period, leading to gravity-driven seaward displacement of the bottom suspension; or the wave regime may ameliorate, leaving the suspension to consolidate as a short-lived, inner-shelf flood bed. Such beds tend to be resuspended within days or weeks by subsequent storm events that may recreate the original high concentrations. The sediment is thus dispersed seaward by gravity flows, to be deposited as a muddy flood bed on the central shelf. The locus of deposition of these “high-concentration regimes” is a function of the relative intensities of river discharge and storm wave height. Greater discharge piles thicker storm beds nearer shore, while intense wave regimes allow deposition of the fluid mud further seaward. During events with high values of both parameters, large amount of fluid mud may bypass over the shelf edge. In contrast, “low-concentration regimes” occur during storm periods when there has been no recent flood deposition on the inner shelf. The shelf floor is better consolidated than in the previous case, and the resulting suspended sediment concentrations are lower. As a consequence, low-concentration regimes are winnowing and bypassing regimes, and the beds deposited are thinner and sandier. Algorithms describing deposition by high and low-concentration regimes have been embedded in a probabilistic model. A simulation of a 400-year sequence of beds deposited by winter storms and floods suggests that on the Eel shelf, the Holocene transgressive systems tract consists of back-stepping, seaward-fining event beds, whose timelines (bedding planes) dip more gently than do their gradational facies boundaries. At these longer time scales, flood beds dominate over storm beds.  相似文献   

16.
Hans Nelson 《Marine Geology》1976,22(2):129-155
The asymmetrical Astoria Fan (110 × 180 km) developed off the Columbia River and Astoria submarine canyon during the Pleistocene. Morphology, stratigraphy, and lithology have been outlined for a Pleistocene turbidite, and a Holocene hemipelagic sedimentary regime to generate geologically significant criteria for comparison with ancient equivalent deposits. Both gray silty clay of the Late Pleistocene and olive-gray clay of the Early Holocene are interrupted by turbidites. The few deeply incised fan valleys of the more steeply sloping upper fan contain thick, muddy and very poorly sorted sand and gravel beds that usually have poorly developed internal sedimentary structures. The numerous shallower fan valleys and distributaries of the flatter middle and lower fan contain thick, clean, and moderately sorted medium to fine sands that are vertically graded in texture, composition and well-developed internal sedimentary structures. Tuffaceous turbidites (containing Mazama ash, 6600 B.P.) can be traced as thick deposits (ca. 30–40 cm) throughout the Astoria Channel system and as thin correlative interbeds (ca. 1–2 cm) in interchannel areas. Similarly, sand/shale ratios are high throughout the fan valleys and the middle and lower fan areas of distributaries, but are low in the upper-fan interchannel areas.These depositional trends indicate that high-density turbidity currents carry coarse traction loads that remain confined in upper but not lower fan valleys. Fine debris selectively sorts out from channelized flows into overbank suspension flows that spread over the fan and deposit clayey silt. A high content of mica, plant fragments, and glass shards (if present) characterizes deposits of the overbank flows, a major process in the building of upper fan levees and interchannel areas.In the Late Pleistocene, turbidity currents funneled most coarse-grained debris through upper channels to depositional sites in middle and lower fan distributaries that periodically shifted, anastomosed and braided to spread sand layers throughout the area. At this time, depositional rates were many times greater (>50 cm/1000 years) than in the Holocene (8 cm/1000 years).During the Holocene rise of sea level, the shoreline shifted, the Columbia River sediment was trapped, and turbidity-current activity slackened from one major event per 6 years in the Late Pleistocene, to one per 1000 years in the Early Holocene, to none since the Mt. Mazama eruption (ca. 6600 B.P.). Turbidites became muddier and deposited as thick beds within main channels, in part explaining Holocene deposition rates three times greater there (25 cm/1000 years) than in interchannel regions. Turbid-layer debris, funneled through channel systems and trapped from flows off the continental terrace, also contributed to rapid sedimentation in valleys; however, less than 2% of the suspended sediment load of the Columbia River has been trapped in fan valleys during the Holocene.By the Late Holocene, continuous particle-by-particle deposition of hemipelagic clay with a biogenous coarse fraction was the predominant process on the fan. These hemipelagites contain progressively more clay size and less terrigenous debris offshore, and are finer grained, richer in planktonic tests and dominated by radiolarians compared to the foraminiferal-rich Pleistocene clays. The hemipelagic sedimentation of interglacial times, however, is insignificant compared to turbidite deposition of glacial times.  相似文献   

17.
Drilling at the site UBGH1-9, offshore Korea in 2007, revealed varied gas-hydrate saturation with depth and a wide variety of core litholgies, demonstrating how the variations in the lithology are linked with those in gas-hydrate saturation and morphology. Discrete excursions to low chlorinity values from in situ background chlorinity level occur between 63 and 151 mbsf. In this occurrence zone, gas-hydrate saturations estimated from the low chlorinity anomalies range up to 63.5% of pore volume with an average of 9.9% and do not show a clear depth-dependent trend. Sedimentary facies analysis based on grain-size distribution and sedimentary structures revealed nine sediment facies which mainly represent hemipelagic muds and fine- to medium-grained turbidites. According to the sedimentary facies distribution, the core sediments are divided into three facies associations (FA): FA I (0–98 mbsf) consisting mainly of alternating thin- to medium-bedded hemipelagic mud and turbidite sand or mud beds, FA II (98–126 mbsf) dominated by medium- to very thick-bedded turbidite sand or sandy debris flow beds, and FA III (126–178 mbsf) characterized by thick hemipelagic mud without intervening discrete turbidite sand layers. Thermal anomalies from IR scan, mousse-like and soupy structures on split-core surfaces, non-destructive measurements of pressure cores, and comparison of gas-hydrate saturations with sand contents of corresponding pore-water squeeze cakes, collectively suggest that the gas hydrate at the site UBGH1-9 generally occurs in two different types: “pore-filling” type preferentially associated with thin- to medium-turbidite sand beds in the FA I and “fracture-filling” type which occurs as hydrate veins or nodules in hemipelagic mud of the FA III. Gas-hydrate saturation in the FA II is generally anomalously low despite the dominance of turbidite sand or sandy debris flow beds, suggesting insufficient methane supply.  相似文献   

18.
The Zenisu deep-sea channel originates on the Izu-Ogasawara island arc, and disappears in the Shikoku Basin of the Philippine Sea. The geomorphology, sedimentary processes, and the development of the Zenisu deep-sea channel were investigated on the basis of swath bathymetry, side-scan sonar imagery, submersible observations, and seismic data. The deep-sea channel can be divided into three segments according to the downslope gradient and channel orientation. They are the Zenisu Canyon, the E–W fan channel, and the trough-axis channel. The sediment fill is characterized by turbidite and debrite deposition and blocky–hummocky avalanche deposits on the flanks of the Zenisu Ridge. In the Zenisu Canyon and the Zenisu deep-sea channel, sediment transport by turbidity currents generates sediment waves (dunes) observed during the Shinkai 6500 dive 371. The development of the Zenisu Canyon is controlled by a N–S shear fault, whereas the trough-axis channel is controlled by basin subsidence associated with the Zenisu Ridge. The E–W fan channel was probably affected by the E–W fault and the basement morphology.  相似文献   

19.
运用近年来采集的高分辨率地震资料和多波束测深数据,在珠江海谷及西北次海盆深海平原区发现大规模发育的第四纪重力流沉积体系,该沉积体系沿珠江海谷以北西-南南东方向贯穿整个北部陆坡,进入西北次海盆后呈扇形展开,形成珠江海谷-西北次海盆大型深水浊积扇系统。据沉积体系空间展布特征差异,将珠江海谷划分为北、中、南三段,北段为过路侵蚀和水道下切,中段以水道充填和天然堤沉积为主,南段以水道-天然堤和朵叶体沉积共存为特征,揭示出北部陆坡珠江海谷是珠江口外陆缘物质输送海盆深海平原的主要通道;海盆区总体以朵叶体发育为特色,呈扇形展布。深水扇系统可分为三期次沉积体,其区域结构记录了重力流沉积物从侵蚀、卸载到南海海盆作为限制性盆地接收陆源沉积物的全过程,为“源-渠-汇”的研究构建了一个完美的范例。本文以珠江海谷-西北次海盆第四纪深水浊积扇沉积体系为例,完整地揭示了水道-扇体的组构和特征,清晰呈现了陆坡-海盆砂体展布的规律,可为建立南海北部新近纪早期深水扇形成模式提供参考,有助于指导南海深水油气勘探工作。  相似文献   

20.
The 380 m thick fine-grained Vischkuil Formation comprises laterally extensive hemipelagic mudstones, separated by packages of graded sandstone and siltstone turbidites, and volcanic ash beds, and is an argillaceous precursor to a 1 km thick sand-prone basin floor fan to shelf succession. The Vischkuil Formation provides an insight into the process by which regional sand supply is initiated and for testing sequence stratigraphic principles in a basin plain setting. Regionally mapped 1–2 m thick hemipelagic mudstone units are interpreted as condensed drapes that represent the starved basin plain equivalents of transgressive systems tracts and maximum flooding surface on the coeval shelf (now removed during later uplift). The section above each mudstone drape comprises siltstone turbidites interpreted as highstand systems tract deposits and a surface of regional extent, marked by an abrupt grain size shift to fine sandstone. These surfaces are interpreted as sequence boundaries, related to abrupt increases in flow volume and delivery of sand grade material to the basin-plain. The interpreted lowstand systems tract comprises sandstone-dominated turbidites and is overlain by another hemipelagic mudstone drape. The upper Vischkuil Formation is marked by three 20–45 m thick debrites, with intraformational sandstone clasts up to 20 cm in diameter that can be mapped over 3000 km2. In each case, debrite emplacement resulted in widespread deformation of the immediately underlying 3–10 m of silty turbidites. A sequence boundary is interpreted at the base of each deformation/debrite package. Six depositional sequences are recognised and the interfered energy shift across each successive sequence boundary and LSTs include a larger volume of sandstone increases up section. The lower two sequences thin to the NW and show NW-directed palaeocurrents. The four overlying sequences show a polarity switch in palaeocurrent directions and thinning, to the E and SE. Sequence 6 is overlain sharply by the 300 m thick sandstone dominated Fan A of the Laingsburg Formation. The LST debrites may indicate gradual development of major routing conduits that subsequently fed Fan A. The polarity shift from westward flowing turbidity currents to an eastward prograding deepwater to shelf system represents establishment of a long term feeder system from the west. Sand supply to the Karoo basin floor was established in an incremental, stepwise manner. Given the early post-glacial setting in an icehouse climate, glacio-eustatic sea-level changes are considered to have been the main control on sequence development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号