首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the static structural test of 1.5-ton test WIG (Wing-In-Ground effect) craft designed and built to verify its aero/hydro-dynamic and structural design characteristics prior to the design of full scale 20-passenger WIG craft. The test WIG craft is scaled down from its full scale WIG craft by 1/2 and built using pre-preg carbon/epoxy composites for the majority of structural parts with metallic materials for fittings used at wings to hull connections. To initiate the test, the finite element (FE) models of the test WIG craft are developed and, based on their results, the details of applied load range, strain/deflection gauge types and locations, load application methods and data acquisition system specifications are determined. The test is performed with respect to main wings to hull connection part first and then vertical tail wing to hull connection part and, finally, horizontal tail wing to vertical tail wing/hull connection part. Both the test and FE model results are compared with respect to stresses and deflections and the comparison shows good correlation between them which implies satisfactory design and building of 1.5-ton test WIG craft.  相似文献   

2.
Flapping wings located beneath or to the side of the hull of the ship are investigated as unsteady thrusters, augmenting ship propulsion in waves. The main arrangement consists of horizontal wing(s) in vertical oscillatory motion which is induced by ship heave and pitch, while rotation about the wing pivot axis is actively controlled. In this work we investigate the energy extraction by the system operating in irregular wave conditions and its performance concerning direct conversion to propulsive thrust. More specifically, we consider operation of the flapping foil in waves characterised by a spectrum, corresponding to specific sea state, taking into account the coupling between the hull and the flapping foil dynamics. The effect of the wavy free surface is accounted for through the satisfaction of the corresponding boundary conditions and the consideration of the wave velocity on the formation of the incident flow. Numerical results concerning thrust and power coefficients are presented, indicating that significant thrust can be produced under general operating conditions. The present work can be exploited for the design and optimum control of such systems extracting energy from sea waves for augmenting marine propulsion in rough seas, with simultaneous reduction of ship responses offering also dynamic stabilisation.  相似文献   

3.
Prediction of ship motions at high Froude number is carried out using a time domain strip theory in which the unsteady hydrodynamic problem is treated in terms of the motion of fixed strips of the water as hull sections pass through it. The Green function solution is described and the integration of the ship motion carried out by an averaging method to ensure stability of the solution. The method is validated by comparison with tank data for conventional slender hulls suitable for catamarans, small water area twin hull (SWATH) forms and hulls suitable for high-speed monohulls. Motion computations are then carried out for 14 designs with an operating speed of 40 kts and a displacement of 1000 tonnes. The vessels are assumed not to be fitted with motion control systems for the purposes of this comparative study. Motion sickness incidence is predicted to rise to between 42 and 72% depending upon the hull design in 3 m head seas of average period 7.5 s. MSI values reduce in smaller seas with a shorter average period to be less than 15% in all cases in 1m seas with an average period of 5.5 s.  相似文献   

4.
A hydrodynamic model of a two-part underwater manoeuvrable towed system is proposed in which a depressor is equipped with active horizontal and vertical control surfaces, and a towed vehicle is attached to the lower end of a primary cable. In such a system the towed vehicle can be manoeuvred in both vertical and horizontal planes when it is towed at a certain velocity and the coupling effect of excitations at the upper end of the primary cable and disturbances of control manipulations to the towed vehicle can be reduced. In the model the hydrodynamic behavior of an underwater vehicle is described by the six-degrees-of-freedom equations of motion for submarine simulations. The added masses of an underwater vehicle are obtained from the three-dimensional potential theory. The control surface forces of the vehicle are determined by the wing theory. The results indicate that with relative simple control measures a two-part underwater manoeuvrable towed system enables the towed vehicle to travel in a wide range with a stable attitude. The method in this model gives an effective numerical approach for determining hydrodynamic characteristics of an underwater vehicle especially when little or no experimental data are available or when costs prohibit doing experiments for determining these data.  相似文献   

5.
针对现有拖曳式水下潜器控制机构复杂、航向与姿态不容易稳定的缺陷,提出和设计了一种具有航向与姿态稳定的多自由度可控制拖曳式水下潜器样机。该样机主要由鱼雷状浮体、固定水平主翼、转角可控制襟翼、立式翼型主体等部分组成,潜器的深度控制通过控制襟翼的偏转来诱导固定水平主翼攻角的改变来实现;潜器的横荡运动操纵以通过控制两个作为转艏控制器的导管螺旋桨的转向与转速、诱导立式翼型主体产生诱导力矩使其产生横向偏转来进行。文中所提出和设计的样机具有运动过程中自我稳定能力强、航向稳定性好、控制机构简单并具有较高实用价值的特点。  相似文献   

6.
The paper addresses the problem of autonomous underwater vehicle (AUV) modelling and parameter estimation as a means to predict the dynamic performance of underwater vehicles and thus provide solid guidelines during their design phase. The use of analytical and semi-empirical (ASE) methods to estimate the hydrodynamic derivatives of a popular class of AUVs is discussed. A comparison is done with the results obtained by using computational fluid dynamics to evaluate the bare hull lift force distribution around a fully submerged body. An application is made to the estimation of the hydrodynamic derivatives of the MAYA AUV, an autonomous underwater vehicle developed under a joint Indian-Portuguese project. The estimates obtained were used to predict the turning diameter of the vehicle during sea trials.  相似文献   

7.
This paper attempts to provide a better understanding of the hydrodynamic behavior of a tandem hull form in a floating production platform application where high deck payload capacity and low wave induced motions of this vessel are primary design goals. A simplified hydrodynamic analysis and a more representative radiation and diffraction theory based hydrodynamic analysis are used for wave induced forces and motions. The analysis results are compared with model test results to deduce principal features of these special purpose hull configurations. The motion responses in different wave headings evaluated from the complicated diffraction analysis are compared and discussed in some detail.  相似文献   

8.
曹守启  冯江伟 《海洋工程》2020,38(2):92-100
为满足对远洋环境进行长时间、大范围监测的实际需求,设计提出一种波浪动力滑翔机,该设备是一种无需携带能源即可实现自主航行的新型海洋监测平台,其主体结构由水面母船、水下牵引机和柔性缆绳三大部分组成。平台通过即时获取海洋中的波浪能、太阳能、风能作为行走的动力源,克服了传统海洋监测设备在能源供应上存在的短板。为进一步提升水下牵引机对波浪能的利用率,采用Ansys软件中的Fluent模块对水下牵引机进行水动力仿真研究,分析了侧翼板形状、侧翼板工作最大摆动角度以及侧翼板安装分布间距对滑翔机总体行走效率的影响。结果表明:NACA翼型侧翼板具有更好的水动力性能;随着最大摆动角度的增加,水下牵引机的推进效率先增大后减小,最大摆角在20°左右时,推进效果最佳;随着侧翼板分布间距的增大,水下牵引机的推进效率逐渐减小,分布间距在80 mm左右时,推进效果最佳。  相似文献   

9.
An underwater vehicle typically has various appendages such as sail, rudders and hydroplanes. These appendages affect the hull hydrodynamic characteristics, including the resistance components and the form of the generated wave due to the motion of the vehicle near the free surface. The effect of the appendages on the hydrodynamic characteristics of an underwater vehicle near the free surface is studied. Initially the DARPPA SUBOFF submarine without the appendages is selected and hydrodynamic characteristics, including the friction resistance, viscous pressure resistance, wave resistance and shape of the created wave on the free surface are calculated for Froude numbers in the range of 0.128–0.84 and non-dimensional submergence depths 1.3, 2.2, 3.3 & 4.4. Then, by adding the appendages and comparing these two conditions, the effect of appendages is obtained. The results of computations indicate that the appendages cause a mean increase of about 16% in the total resistance. This increment is due to viscosity of fluid and also the interaction of the main hull with the appendages. There are no significant changes in the wave pattern and wave making resistance due to the presence of appendages.  相似文献   

10.
PETREL,a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle).It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile.In this paper,theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration.In addition,due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes,the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced,and the tailored dynamic equations of the hybrid glider are formulated.Moreover,the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.  相似文献   

11.
Planing hull vessel is well-known to have the problem of low damping and susceptible to large roll angles when encountering beam seas especially when stopped or operated at low speed. One approach to reduce this problem is to incorporate a pair of side keels. The effects of the side keels on both roll damping and resistance of a planing hull patrol vessel were experimentally evaluated by varying length, breadth and the position of the side keels. Tests data of the side keels have been presented on the roll damping coefficients and the resistance forces of the vessel. Next, the roll damping coefficients were utilised in time domain simulation program based on a six-degree-of-freedom mathematical model to predict the roll response and assess the vessel safety in astern waves for the case with and without the side keels. The results from the time domain simulation program have indicated that the effects of a pair of side keels can improve the vessel safety.  相似文献   

12.
Development and experiments of the Sea-Wing underwater glider   总被引:1,自引:0,他引:1  
Underwater gliders,which glide through water columns by use of a pair of wings,are efficient long-distance,long-duration marine environment observatory platforms.The Sea-Wing underwater glider,developed by the Shenyang Institute of Automation,CAS,is designed for the application of deep-sea environment variables observation.The system components,the mechanical design,and the control system design of the Sea-Wing underwater glider are described in this paper.The pitch and roll adjusting models are derived based on the mechanical design,and the adjusting capabilities for the pitch and roll are analyzed according to the models.Field experiments have been carried out for validating the gliding motion and the ability of measuring ocean environment variables.Experimental results of the motion performances of the glider are presented.  相似文献   

13.
This paper presents an open-loop control system for a new experimental vehicle, named the biorobotic autonomous underwater vehicle (BAUV). The rigid cylindrical hull of the vehicle is attached with six strategically located fins to produce forces and moments in all orthogonal directions and axes with minimal redundancy. The fins are penguin-wing inspired and they implement the unsteady high-lift principle found widely in swimming and flying animals. The goal has been to design an underwater vehicle that is highly maneuverable by taking the inspiration from nature where unsteady hydrodynamic principles of lift generation and the phase synchronization of fins are common. We use cycle-averaged experimental data to analyze the hydrodynamic forces and moments produced by a single foil as a function of its kinematic motion parameters. Given this analysis, we describe a method for synthesizing and coordinating the sinusoidal motion of all six foils to produce any desired resultant mean force and moment vectors on the vehicle. The mathematics behind the resulting algorithm is elegant and effective, yielding compact and efficient implementation code. The solution method also considers and accommodates the inherent physical constraints of the foil actuators. We present laboratory experimental results that demonstrate the solution method and the vehicle's resulting high maneuverability.   相似文献   

14.
SMOS卫星盐度数据在中国近岸海域的准确度评估   总被引:3,自引:3,他引:0  
盐度是描述海洋的关键变量,对海表面盐度进行观测可以推进对全球水循环的理解。本文的主要目的是在中国近海海域对SMOS卫星盐度数据进行准确度评估。主要方法是将SMOS卫星L2海洋盐度数据产品(V317)与实测ARGO数据和走航数据进行匹配,并采用统计学的方法对SMOS卫星数据准确度进行评估。结果表明:匹配数据的线性关系不显著,SMOS卫星盐度数据(V317)在南海和东海的均方根误差分别约为1.2和0.7,应用海表面粗糙度修正模型得到的3组海表盐度数据准确度都相对较低,尤其在近岸强风场区域,海表盐度卫星数据相对于实测数据偏高,这可能是由于海表粗糙度和陆地射频干扰(RFI)作用影响的结果;SMOS卫星数据在东海的均方根误差比南海高0.5左右,这可能是由于东海海域为相对开阔海域,受陆地RFI影响相对南海较小;在中国近岸海域,应用SSS1和SSS3模型得到的盐度数据准确度相对较高,可以对模型进行地球物理参数修正,进行局地化改进,预计可以提高近岸海域盐度反演的准确度。  相似文献   

15.
针对水下机器人操纵性优化设计中水动力系数预报问题,在水下机器人水动力预报中引入艇体肥瘦指数概念,确定了水下机器人艇体几何描述的五参数模型。提出采用小波神经网络方法预报水下机器人水动力,确定了神经网络的结构,利用均匀试验设计方法,设计了神经网络的学习样本。研究结果表明,只要确定适当的输入参数,选择适当的学习样本和网络结构,利用小波神经网络方法对水下机器人水动力进行预报可以达到较好的精度。  相似文献   

16.
We numerically studied the full (six degrees of freedom) motion of a cargo ship without roll stabilizers in rough (sea state 5) conditions for multiple heading angles ranging from 0° (follower seas) to 180° (head seas). We found that the ship exhibits excessive roll motion in quartering (45° off the stern), beam, and head seas. Therefore, roll damping is critical in these conditions. We then investigated the performance of passive and active anti-roll tank (ART) systems and compared their performance in each of the three sea conditions. Each ART consists of three identical tanks, distributed along the centerline of the ship, each of which consists of two vertical ducts connected at the bottom with a horizontal duct. A pump is located at the middle of the horizontal duct of each tank. The pumps are switched on for active ARTs but switched off for passive ones. The loads (forces and moments) exerted on the ship by the ARTs are added to the hydrodynamic loads (e.g., due to pressure and viscous effects) and the thrust in the governing equations of motion of the ship. Whereas both passive and active ARTs are able to reduce the excessive roll motion, active ARTs outperform the passive ones from three perspectives. First, they are more effective in reducing the roll motion. Second, they require much less working liquid. Third, their performance is insensitive to their natural frequencies and, hence, to their geometric design. In addition, we found that head seas are most responsive to ARTs, which suggests that they are effective in mitigating parametric roll.  相似文献   

17.
An integrated hydrodynamics and control model to simulate tethered underwater robot system is proposed. The governing equation of the umbilical cable is based on a finite difference method, the hydrodynamic behaviors of the underwater robot are described by the six-degrees-of-freedom equations of motion for submarine simulations, and a controller based on the fuzzy sliding mode control (FSMC) algorithm is also incorporated. Fluid motion around the main body of moving robot with running control ducted propellers is governed by the Navier–Stokes equations and these nonlinear differential equations are solved numerically via computational fluid dynamics (CFD) technique. The hydrodynamics and control behaviors of the tethered underwater robot under certain designated trajectory and attitude control manipulation are then investigated based on the established hydrodynamics and control model. The results indicate that satisfactory control effect can be achieved and hydrodynamic behavior under the control operation can be observed with the model; much kinematic and dynamic information about tethered underwater robot system can be forecasted, including translational and angular motions of the robot, hydrodynamic loading on the robot, manipulation actions produced by the control propellers, the kinematic and dynamic behaviors of the umbilical cable. Since these hydrodynamic effects are fed into the proposed coupled model, the mutual hydrodynamic influences of different portions of the robot system as well as the hydrological factors of the undersea environment for the robot operation are incorporated in the model.  相似文献   

18.
A computer program is developed for hull/mooring/riser coupled dynamic analysis of a tanker-based turret-moored FPSO (Floating Production Storage and Offloading) in waves, winds, and currents. In this computer program, the floating body is modeled as a rigid body with six degrees of freedom. The first- and second-order wave forces, added mass, and radiation damping at various yaw angles are calculated from the second-order diffraction/radiation panel program WAMIT. The wind and current forces for various yaw angles of FPSO are modeled following the empirical method suggested by OCIMF (Oil Company International Marine Forum).

The mooring/riser dynamics are modeled using a rod theory and finite element method (FEM), with the governing equations described in a generalized coordinate system. The dynamics of hull, mooring lines, and risers are solved simultaneously at each time step in a combined matrix for the specified connection condition. For illustration, semi-taut chain-steel wire-chain mooring lines and steel catenary risers are employed and their effects on global FPSO hull motions are investigated. To better understand the physics related to the motion characteristics of a turret-moored FPSO, the role of various hydrodynamic contributions is analyzed and assessed including the effects of hull and mooring/riser viscous damping, second-order difference-frequency wave-force quadratic transfer functions, and yaw-angle dependent wave forces and hydrodynamic coefficients. To see the effects of hull and mooring/riser coupling and mooring/riser damping more clearly, the case with no drag forces on those slender members is also investigated. The numerical results are compared with MARIN's wave basin experiments.  相似文献   


19.
刘晨飞  刘亚东 《海洋工程》2018,36(6):109-115
基于CFD技术和重叠网格技术完成了黏性流场中KVLCC2船模的操纵性水动力导数的数值计算。为保证计算的精确性,进行了网格的收敛性分析,给出了合适的网格划分方法;通过数值模拟斜航运动、纯横荡运动和纯艏摇运动计算出的水动力与相应条件下的试验值对比,计算结果与试验值吻合良好,计算出的水动力导数准确度较高。基于MMG分离建模方法建立KVLCC2船模的操纵性数学模型,利用龙格-库塔算法求解微分方程组,对船舶操纵运动进行仿真。回转试验和Z形操舵试验的仿真结果与试验结果对比,其回转直径和轨迹都非常吻合,表明采用的船舶操纵性预报是可行的。  相似文献   

20.
Parametric roll of a containership in head sea condition has been studied in the paper. A time domain routine for GZ righting arm calculation based on exact underwater hull geometry has been implemented into a two-degree-of-freedom procedure for roll response calculation. The speed variation due to e.g. added resistance has been accounted for in the model by the surge velocity. The ship roll motion due to a regular wave critical for parametric roll occurrence has been simulated, as well as the ship roll response in a severe stochastic sea. The present method has been compared with other existing methods for parametric roll prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号