首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate the response characteristics of a bay to tsunamis, field measurements of long-period waves have been carried out at Onagawa and Okachi Bays, both of which face the Pacific Ocean in northern Japan. In Onagawa Bay, the observed transfer function is in good agreement with the prediction based on the one-dimensional numerical model, in the period range larger than about 15 minutes. The response of shorter periods seems to be influenced by the two-dimensionality of the bay. The oscillations within Onagawa Harbor are also discussed with respect to the relative amplitude and phase at two stations inside the harbor and it is estimated that the reflection coefficient at the waterfront is about 0.7. In Okachi Bay, the oscillations in the period range larger than about 10 minutes could be explained by a Y-shaped model of the bay. The dominant oscillations offshore of these two-bays are found to be the mode with the motion predominantly in the direction normal to the shelf orientation, and the estimated power spectral density of incoming waves in deep water varies asf –2,f being the frequency. The waves of lateral modes, such as edge waves on the shelf, are small and of minor importance to generate bay oscillations of longer periods.  相似文献   

2.
Past observations and theories have indicated the importance of the constitution of the lowest-mode of shelf waves to the velocity field. However, significant contributions of the higher mode waves to current velocity fluctuations in the vicinity of the coast are suggested in observational results obtained along the Fukushima coast in Pt. I of this study (Kubota et al., 1981). To understand the importance of the higher modes, the generation of shelf waves is investigated theoretically by two methods. First, the generation of long shelf waves by monochromatic forcing is examined, and it is concluded that near the coast the second mode's contribution to the longshore velocity is the largest for the Fukushima coast. Second, the response of shelf waves to broad-band forcing is investigated by taking the dispersive characteristics of shelf waves into consideration. It is concluded that shelf waves with zero group velocity are selectively excited if the forcing has a broad-band spectrum. According to observational results obtained along the Fukushima coast, the wind spectrum has a broad peak at about 100 hours (Kubota et al., 1981). Since the third mode of shelf waves has zero group velocity around the period of 100 hours, the third mode can be selectively generated off the Fukushima coast. From this it is suggested that the Fukushima coast is in the forced region and that observed current fluctuations are motions associated with the second- and third-mode shelf waves.  相似文献   

3.
Seiche modes in a compound harbour (an “Outer Harbour” connected both to the sea and to an “Inner Harbour”) were studied using water level data and a numerical model. A variety of harbour oscillations are present, with periods up to 67 min. Periods longer than 25 min exceed resonant modes of the harbour. This paper addresses the characteristics and causes of the open-basin modes. The dual harbour open-basin mode is modified by constriction at the connection between harbours, by partial reflection at the antinode, and by the geometry of the entrance. The single-harbour open-basin mode excites the dual harbour closed-basin mode, which has nearly the same period. This forcing moves the closed-basin antinode and slightly changes the modal period, but the coupling permits the amplitude to increase through the closed-basin resonance. The water level response to wind stress is weak, but significant residual currents can occur, which take the form of clockwise gyres in each basin. Energetic peaks in the water level spectrum at 26, 35, and 67 min are shown to correspond to possible edge waves on the local shelf. The work has practical implications to port design, e.g. towards minimisation of ship ranging while at anchor.  相似文献   

4.
Characteristics of seiches in Onagawa Bay are investigated on the basis of observations at the bay head, Konorihama, from May 1972 to May 1973 and at the outside of the bay, Enoshima during the same period. At Konorihama seiches with the double amplitude of 7 to 11 cm occurred most frequently (63 percent of the total samples) and the maximum reached 31 cm. Short-time spectral analyses indicate that the periods of the spectral peaks shift considerably with the lapse of time, and that the location of the nodal line near the bay mouth moves offshore and inshore of Enoshima. The cause of these phenomena seems to be attributed to the change of incident angle of waves coming from the open sea to excite seiches. Amplitudes of the fundamental and of the lateral modes of seiches increase or decrease alternately with time, suggesting the energy transfer between these modes. Bay oscillations induced by remarkable atmospheric pressure-waves were observed. However, the amplitudes of the oscillations were within a few centimeters and dissipated in a few hours.  相似文献   

5.
为获取南海北部陆坡海区第一模态内孤立波的动力结构及时间变化特征,本文利用该海区1套内孤立波浮标观测数据,对陆坡海区的内孤立波现场观测数据分析,识别判定了2021年5月5日至6月3日共30 d的179次第1模态内孤立波过程,并进行了内孤立波的特征分析。南海北部陆坡海区第1模态内孤立波剖面流场为双层结构,上层主要为西偏北向流动,下层流向与之相背,流速转向发生在100~150 m深度处。内孤立波期间,最大流速多发生于上层,流速为60~120 cm/s,底层流增强,上层流与下层流流向相反。受内潮影响,研究区域内孤立波存在半日和全日2个周期,主要以20~30 min间隔的波列形式向西偏北方向传播。本文关于南海北部陆坡海区第一模态内孤立波的分析研究有助于提升对该海区内孤立波时空变化特征的认识,为工程水下施工提供参考和依据。  相似文献   

6.
《Progress in Oceanography》1987,19(2):177-220
Effects of continental shelf bends, converging depth contours and changing depth profiles are discussed. Some analysis is carried out for previously unstudied cases. Separate oceanic interior and shelf flow problems are formulated for a sufficiently narrow shelf. The ocean interior ‘sees’ only an integrated shelf effect, typically increasing shelf-edge amplitudes, retarding longshore Kelvin-wave propagation and increasing natural mode periods by 0 (10%). On the local shelf, the flow matches to the ocean interior and is nondivergent. Effects on shelf waves and slope currents depend subtly on the nature of the longshore variations. Curvature and contour convergence do not per se imply scaterring or generation of shelf waves. Indeed, any depth h(ξ) where ▽2 ξ(x,y) = 0 (a condition approximating longshelf uniformity in the topography's convexity) supports essentially the same shelf waves as do straight depth contours (DAVIS, 1983), and slope currents follow depth contours. Scattering results rather from breaks in analyticity of the depth profile. Hence calculations for small isolated features (necessarily highly convex or concave) may overestimate scattering, and superposition for realistic topography may lead to much self-cancellation among scattered waves. Otherwise, examples show a strong preference for scattering into adjacent mode numbers and into any shelf wave mode near to its maximum frequency. A shelf sector, where the maximum shelf wave frequency maxω is less than the frequency ω of an incident shelf wave, causes substantial scattering unless maxω and ω are very close. Adjustment of slope currents to changed conditions takes place through (and over the decay distance of) scattered shelf waves.  相似文献   

7.
The effect of stratification on very long-period waves trapped on a straight continental shelf of constant depth is examined for a two-layer model. There are 4 modes in this system. The characteristics of the mode with the largest phase velocity can be approximated by the barotropic mode. The mode corresponding to the barotropic shelf-wave mode is modified by the baroclinic motions significantly, and in the limit of very narrow shelf width, the mode characteristics are transformed from those of the barotropic shelf-wave to the baroclinic Kelvin wave if the long-shore wave length is larger than the internal deformation radius. In this case, the stratification has an apparent effect of increasing phase velocity of barotropic shelf-waves. The remaining two modes are dominated by baroclinic motions with significant contribution from barotropic motions: among which the one has a shelf-wave characteristics for small values of the shelf width and approaches the mode corresponding to the baroclinic Kelvin wave in shallower water for large shelf width and the other is a stationary mode. If the long-shore wave length is much shorter than the internal deformation radius, the motions in the upper and lower layers are decoupled: the surface and bottom modes analogous to those discussed byRhines (1970) appears.If the interface is deeper than the shelf depth, the stationary mode is absent and the characteristics of the third mode approaches those of the baroclinic double Kelvin wave mode as the shelf width increases.  相似文献   

8.
Resonance Induced by Edge Waves in Hua-Lien Harbor   总被引:2,自引:0,他引:2  
This article first reviews previous numerical studies on the resonance problem of Hua-Lien Harbor. All the research leads to the conclusion that resonance can be stimulated by 2-D infragravity waves. However, a literature survey suggests that outside the harbor these plane infragravity waves are too small to excite violent water-body movement inside. On the other hand, 3-D infragravity waves trapped along the coastline, also known as edge waves, are more likely to exist outside the harbor and their effect needs to be thoroughly discussed. Based on previous measurements, the response of Hua-Lien Harbor is best simulated using edge waves of 160 and 140 second periods and their resonance mechanisms are analyzed. The former case has a longitudinal resonant mode and hence the amplitude in the inner harbor is large. The latter case has a transverse mode in the outer basin and hence only berths in the outer basin are influenced. These features are both consistent with field measurement. Therefore, it is very likely that edge waves are responsible for the resonance of Hua-Lien Harbor. Finally, based on observation after the construction of the present offshore breakwaters, a theory is proposed to explain the trapping of incident edge waves, and a measure to further reduce the resonance is discussed.  相似文献   

9.
1 Introduction Hurricane is an extremely high wind event, which injects momentum into the oceanic mixed layer along its passage for a very short duration. If our interest is not at the surface, but in a depth away from the imme-diate surface wave influenc…  相似文献   

10.
南海西边界ADCP观测海流的垂直结构   总被引:9,自引:1,他引:8  
采用多种数据处理方法,分析了南海西南陆架西边界处定点连续观测站上的海流记录。正压潮流的调和分析结果表明该海域以日周期潮流为主,潮流椭圆随深度旋转。去潮后流速垂直结构的奇异值分解(SVD)证实观测点的流速结构存在不同的垂向模态,第一模态对应平均流的变化部分,第二模态含有倾向性变化部分,双日周期变化在各个模态中均较明显。对各观测层流速进行小波分析,进一步发现观测流的频率构成具有垂向变频和同一层次频率漂移的特征。  相似文献   

11.
Experiments in a wave flume have been performed to analyse the nonlinear interaction between regular gravity waves and a submerged horizontal plate used as breakwater. A new method, based on the Doppler shift generated by a moving probes, has been used to discriminate the incident fundamental mode and the reflected fundamental mode. The relationships of the reflection and transmission coefficients to the wave number at different submergence depth ratios are presented. The accurate discrimination, by this method, of the phase-locked and free modes allows the quantification of the higher harmonics generated by the breakwater and the analysis of the nonlinear interaction between the waves and the submerged plate. The transfer of energy from the fundamental mode to higher harmonics is very large in the cases of small submergence depth ratios. The vortices produced at the edges take part in the production of higher harmonics by interaction with the free surface but involve, at the same time, a dissipation process that increases the efficiency of the breakwater.  相似文献   

12.
The scattering of plane surface waves by bottom undulations in an ice-covered ocean modelled as a two-layer fluid consisting of a layer of fresh water of lesser density above a deep layer of salt water, is investigated here by using a simplified perturbation analysis. In such a two-layer fluid there exist waves of two different modes, one with higher mode propagates along the interface and the other with lower mode propagates along the ice-cover. An incident wave of a particular mode gets reflected and transmitted by the bottom undulations into waves of both the modes so that transfer of wave energy from one mode to another takes place. The first-order reflection and transmission coefficients of two different modes are obtained due to incident waves of again two different modes by employing Fourier transform technique in the mathematical analysis. For sinusoidal bottom topography these coefficients are depicted graphically against the wavenumber. These figures show how the transfer of energy from one mode to another takes place.  相似文献   

13.
The structure of the current and temperature fields along 30°N over the mid-shelf and western Blake Plateau in the South Atlantic Bight has been investigated by combining two moored instrument experiments in the summer of 1981. The shelf moorings were part of the second Georgia Bight Experiment (GABEX-II) and the Gulf Stream mooring data on the Blake Plateau have been described by LEE and WADDELL (1983). Empirical Orthogonal Functions (EOF) in the frequency domain are used to extract shelf and Gulf Stream coherent current and temperature fluctuations in the two- to 14-day period band. Three modes are found, of which the first two are interpreted as Gulf Stream meander and frontal eddy circulations. The difference between them is chiefly in the shelf motions; the first mode is primarily restricted to the shelf edge, whereas the second mode penetrates to the 40m isobath. The third mode dominates at mid-shelf and is the only mode that shows strong coherence with the windstress and local sea-level fluctuations. The relationship of the modes to the occurrence of mid- and inner-shelf cold sub-surface intrusions, generated by shelf-edge Gulf Stream frontal eddies, is examined. All three modes are found to play a role in the initiation, growth and decay of these structures.  相似文献   

14.
Properties of coastal trapped waves when the pycnocline intersects a sloping bottom are studied using a two-layer model which has slopes in both layers. In this system there is an infinite discrete sequence of modes, and four different sorts of waves exist: the barotropic Kelvin wave, the upper shelf wave, the lower shelf wave and the internal Kelvin-type wave. They all propagate with the coast to their right in the Northern Hemisphere. The upper and lower shelf waves are due to the topographic-effect on the upper-layer and lower-layer slopes, respectively. Their motions are dominant in the respective layers being accompanied by significant interface elevations. The properties of the upper (lower) shelf wave are almost unaffected by the existence of a lower-layer (upper-layer) slope. The motion of the internal Kelvin-type wave is confined to the region around the line where the density interface intersects the bottom slope.The modes, except that with the fastest phase speed (the barotropic Kelvin wave), are assigned mode numbers in order of descending frequency. Characteristics of Mode 1 change with wavenumber; the upper shelf wave for small wavenumbers and the internal Kelvin-type wave for large wavenumbers (high frequencies). The higher modes of Mode 2 and above can be classified into the upper and lower shelf waves.  相似文献   

15.
In this paper, the main results of field research into the seawater dynamics on the shelf of the Crimea in the summer of 1991 are reported. It is shown that in the weather frequency band, the oscillations with periods of 11–12 days have the greatest amplitude. These represent coastal-trapped waves with a spatial scale of the order of the length of the Black Sea coastline. These waves are generated by distant winds and significantly disturb the response of the Crimea shelf waters to local wind forcing. A transient upwelling-downwelling circulation having a period of 5–7 days is induced by local winds and is not accompanied by the generation of trapped waves at the frequency of forcing. Since the average circulation on the shelf of the Crimea is of cyclonic character, downwelling events are found more frequently and have longer time periods than the upwelling events. The wind-generated trapped waves on the shelves of the Crimea and Kerch Peninsula have an average period of 27 h. The inertial oscillations were well expressed during an experiment resembling long-wave motions.Translated by Mikhail M. Trufanov.  相似文献   

16.
The higher mode predominance in the current velocity fields associated with wind-induced shelf waves in the nondispersive regime is studied with a special attention to the effect of the geographical boundary, e.g. wide strait or wide bank areas. The effect of such large topographic change is represented by wind forcing with a finite dimension near the geographical boundary. The time development processes of the wind-induced shelf waves is examined in the context of an initial-value problem, where a spatially finite wind stress is applied att=0. Various modes of shelf waves excited at the boundary start propagating simultaneously and develop monotonically within the forcing region. After the passage of such wave, the energy of wind is used to maintain the attained equilibrium condition, i.e. the steady shelf circulation. The current evolution of the lower mode is restricted to the earlier stage because of the large propagation speed. In contrast, the higher mode waves can travel slowly within the forcing region so that the kinetic energy is supplied from wind stress for a long time before the equilibrium condition is established. Consequently, the observation at the fixed point near the geographical boundary would show that the higher mode waves gradually dominate as time goes on, i.e. for the long-term forcing.  相似文献   

17.
Oscillating Water Column (OWC) is one of the pioneer devices in harnessing wave energy; however, it is not fully commercialized perhaps due to the complicated hydrodynamic behavior. Previous studies are significantly devoted to OWC devices located in nearshore and coastal regions where incident wave energy would experience dissipation more than offshore. In this paper, a 1:15 scaled fixed offshore OWC model is tested in a large towing tank of National Iranian Marine Laboratory. Wave spectrum shape effect on the efficiency of the OWC model is addressed. Moreover, the paper investigates the effects of the geometric and hydrodynamic factors on OWC device efficiency and uncovers new points in nonlinear interaction occurring inside the chamber; i.e. sloshing. The results indicate that shape of the spectrum inside the chamber is affected by the type of incident wave spectrum, especially for long waves. Pierson–Moskowitz spectrum leaded to higher efficiency rather than JONSWAP spectrum at longer incident wave periods. According to efficiency analysis, increasing wave height may lead to air leakage from the chamber followed by vortex generation, which is a reason for decreasing the efficiency of the OWC device. Furthermore, no shift in the resonant period of the OWC model, due to wave height increase, was observed at the opening ratios equal or smaller than 1.28%. Spectral analysis of water fluctuation inside the OWC chamber illustrates two modes of sloshing. The first mode can be seen at short period waves while the second mode is visible at long period waves. The sloshing modes approximately vanish by increasing draft value.  相似文献   

18.
Generation and propagation of several-day period fluctuations along the southeast coast of Honshu, Japan, were investigated by analyzing sea level data and by using a numerical model. The sea level data obtained at twelve stations from Choshi to Omaezaki in fall in 1991, showed energy peaks at the 3–6 day period at the eastern stations in this coast. Time lags of the 3–6 day period fluctuations between station and station indicate westward propagation along the coast. However, the energy level of the 3–6 day period fluctuations suddenly decreased south of the Izu Peninsula. Numerical experiments using a two-layer model were performed to clarify the generation and propagation mechanism of the several-day period fluctuations by periodical wind in fall. The amplitude distributions of observed sea level were qualitatively explained by a coastal-trapped wave (CTW) in the numerical experiment. From the discussions on propagation of a free wave, CTW with the characteristics of a shelf wave generated by the wind along the northeast of the Boso Peninsula was separated into two types of wave at the southeast of the peninsula. One is an internal Kelvin wave with large interface displacement and the other is the shelf wave propagating over the northern part of the Izu Ridge. The sudden decrease in the surface displacement with the 3–6 day period observed at the western stations is considered to be due to the local effect of the wind and phase relation between the internal Kelvin wave and shelf wave.  相似文献   

19.
Dynamical properties of short-period temperature fluctuations are studied. Water temperature was measured continuously at several depths at the following stations: at 38°29.5′N, 141°35.8′E (100 m depth) on the continental shelf off Miyagi Prefecture in the summer of 1967, at 35°01.8′N, 139°0.8.5′E (100 m depth) in Sagami Bay in the summer of 1968, and at 32°32.2′N, 129°53.7′E (74 m depth) in Tachibana Bay in the summer of 1970. These measurements were made with a thermistor array laid down from the R. V.Tanseimaru (Ocean Research Institute, University of Tokyo) which was fixed with bow and stern anchors. Significant temperature fluctuations found at the first and the third stations are thought to be due to first mode internal waves having amplitude 3 to 5 m and period 5 to 20 minutes. The wave length of the waves is estimated to be 25 m to 400 m from the observed density structure. At the second station, we found second-mode internal waves. The period, amplitude and wave length of the waves are about 30 minutes, 1.3 m and 600 m, respectively. In all cases, the spectral density of the temperature fluctuations decreases with increase in frequency. However, the decrease obey neither the ?3 power law nor the ?5/3 power law. Coherences in the temperature fluctuations between two depths of measurement in the seasonal thermocline are significantly high in the range of frequencies lower than the local Brunt-Väisälä frequency, but are low in the higher frequency range. At the first and the third stations, the difference in the level of coherences between the lower frequencies and the higher frequencies are large. Phase differences between two depths in the thermocline are small in the lower frequency range. This suggests that the first-mode internal waves are predominant over higher-mode internal waves and over other disturbances.  相似文献   

20.
Signals from the tsunami waves induced by the March 11, 2011 moment magnitude (Mw) 9.0 Tohoku-Oki earthquake and from subsequent resonances were detected as radial velocity variability by a high-frequency ocean surface radar (HF radar) installed on the eastern coast of the Kii Channel, at a range of about 1000 km from the epicenter along the eastern to southern coasts of Honshu Island. A time–distance diagram of band-passed (9–200 min) radial velocity along the beam reveals that the tsunami waves propagated from the continental shelf slope to the inner channel as progressive waves for the first three waves, and then natural oscillations were excited by the waves; and that the direction of the tsunami wave propagation and the axis of the natural oscillations differed from that of the radar beam. In addition, spectral analyses of the radial velocities and sea surface heights obtained in the channel and on the continental shelf slope suggest complex natural oscillation modes excited by the tsunami waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号