首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对浮空器遥感平台进行精密的控制定位是其完成对地观测、中继通信以及环境遥感等任务的关键。在自主地面测控系统对浮空器平台跟踪定位的基础上,给出加窗径向速度平滑伪距的多站跟踪定位方法。仿真结果表明:在GDOP值超过6的情况下,利用加窗速度平滑伪距方法仍能改善遥感平台定位的精度,而且能够有效地削弱测距链路中粗差的影响,从而自主地根据近地空间环境对浮空器进行控制。  相似文献   

2.
This paper addresses the trajectory tracking problem for the low-speed maneuvering of fully actuated underwater vehicles. It is organized as follows. First, a brief review of previously reported control studies and plant models is presented. Second, an experimentally validated plant model for The Johns Hopkins University Remotely Operated Underwater Vehicle (JHUROV) is reviewed. Third, the stability of linear proportional-derivative (PD) control and a family of fixed and adaptive model-based controllers is examined analytically and demonstrated with numerical simulations. Finally, we report results from experimental trials comparing the performance of these controllers over a wide range of operating conditions. The experimental results corroborate the analytical predictions that the model-based controllers outperform PD control over a wide range of operating conditions. The exactly linearizing model-based controller is outperformed by its nonexactly linearizing counterpart. The adaptive controllers are shown to provide reasonable online plant parameter estimates, as well as velocity and position tracking consistent with theoretical predictions-providing good velocity tracking and, with the appropriate parameter update law, position tracking. The effects of reference trajectory, "bad" model parameters, feedback gains, adaptation gains, and thruster saturation are experimentally evaluated. To the best of our knowledge, this is the first reported comparative experimental study of this class of model-based controllers for underwater vehicles.  相似文献   

3.
基于分布式控制力矩陀螺的水下航行器轨迹跟踪控制   总被引:2,自引:0,他引:2  
基于控制力矩陀螺群(CMGs)的水下航行器具有低速或零速机动的能力。采用基于分布式CMGs的水下航行器方案,并研究其水平面的轨迹跟踪控制问题。通过全局微分同胚变换将非完全对称的动力学模型解耦成标准欠驱动控制模型,并根据简化的模型构建其轨迹跟踪的误差动力学模型,将轨迹跟踪控制问题转化为误差模型镇定问题。基于一种分流神经元模型和反步法设计了系统的轨迹跟踪控制律,该控制器不需要对任何虚拟控制输入进行求导计算,且能确保跟踪误差的最终一致有界性。仿真结果表明该控制器能够实现在不依赖动力学参数先验知识的情况下对光滑轨迹的有效跟踪。  相似文献   

4.
In this study, a method is proposed for estimating the uncertainty of a Lagrangian pathway calculated from an undersampled ocean surface velocity field. The primary motivation and application for this method is the differentiation between active and passive movements for sea turtles whose trajectories are observed with satellite telemetry. Synthetic trajectories are launched within a reconstructed surface velocity field and integrated forward in time to produce likely trajectories of an actual turtle or drifter. Uncertainties in both the initial conditions at launch and the velocity field along the trajectory are used to yield an envelope of possible synthetic trajectories for each actual trajectory. The juxtaposition of the actual trajectory with the resulting cloud of synthetic trajectories provides a means to distinguish between active and passive movements of the turtle. The uncertainty estimates provided by this model may lead to improvements in our understanding of where and when turtles are engaged in specific behaviors (i.e. migration vs. foraging)—for which potential management efforts may vary accordingly.  相似文献   

5.
Biologically inspired maneuvering of autonomous undersea vehicles (AUVs) in the dive plane using pectoral-like oscillating fins is considered. Computational fluid dynamics are used to parameterize the forces generated by a mechanical flapping foil, which attempts to mimic the pectoral fin of a fish. Since the oscillating fins produce periodic force and moment of a variety of wave shapes, the essential characteristics of these signals are captured in their Fourier expansions. Maneuvering of the biorobotic AUV in the dive plane is accomplished by periodically altering the bias angle of the oscillating fin. Based on a discrete-time AUV model, an inverse control system for the dive-plane control is derived. It is shown that, in the closed-loop system, the inverse control system accomplishes accurate tracking of the prescribed time-varying depth trajectories and the segments of the intersample depth trajectory remain close to the discrete-time reference trajectory. The results show that the fins located away from the center of mass toward the nose of the vehicle provide better maneuverability.  相似文献   

6.
In this paper, the problem of tracking a desired motion trajectory for an underwater vehicle-manipulator system without using direct velocity feedback is addressed. For this purpose, an observer is adopted to provide estimation of the system's velocity needed by a tracking control law. The combined controller-observer scheme is designed so as to achieve exponential convergence to zero of both motion tracking and estimation errors. In order to avoid representation singularities of the orientation, unit quaternions are used to express the vehicle attitude. Implementation issues are also considered and simplified control laws are suggested, aimed at suitably trading off tracking performance against reduced computational load. Simulation case studies are carried out to show the effectiveness of the proposed controller-observer algorithm. The obtained performance is compared to that achieved with a control scheme in which the velocity is reconstructed via numerical differentiation of position measurements. The results confirm that the chattering on the control commands is significantly reduced when the controller-observer strategy is adopted in lieu of raw numerical differentiation; this leads to lower energy consumption at the actuators and increases their lifetime  相似文献   

7.
ROV accurate path following is challenging due to system unmodeled dynamics, disturbances and navigation sensors error. The model uncertainty and disturbances are commonly treated using robust methods such as the sliding mode controller where by incorporating an integral action in the zero tracking error is also guaranteed. Practically, the ROV position data is often computed using low cost inertial measurement unit (IMU) with outputs contaminated with bias and noise. Failure of mission is an immediate consequence of employing such biased sensors. However, the problem can be circumvented using the concept of redundant measurements and data fusion. In this respect, a set of 12 measurements from IMU, magnetometer and Doppler velocity log (DVL) are employed where the last two are aided sensors. The set up is shown to be capable of providing ROV path following with zero (in average) steady state tracking error irrespective of its dynamic parameters, environmental disturbances and erroneous data; as if it enjoys the exact values of the position of the ROV. It means that the combined DVL and magnetometer are sufficient for filtering the IMU biased measurements. Various simulations conducted confirm the results.  相似文献   

8.
A robust optimal output tracking control method for a midwater trawl system is investigated based on T-S fuzzy nonlinear model.A simplified nonlinear mathematical model is first employed to represent a midwater trawl system,and then a T-S fuzzy model is adopted to approximate the nonlinear system.Since the strong nonlinearities and the external disturbance of the trawling system,a mixed H 2 /H ∞ fuzzy output tracking control strategy via T-S fuzzy system is proposed to regulate the trawl depth to follow a desired trajectory.The trawl depth can be regulated by adjusting the winch velocity automatically and the tracking error can be minimized according to the robust optimal criterion.In order to validate the proposed control method,a computer simulation is conducted.The simulation results indicate that the proposed fuzzy robust optimal controller make the trawl net rapidly follow the desired trajectory under the model uncertainties and the external disturbance caused by wave and current.  相似文献   

9.
This paper proposes a saturated tracking controller for underactuated autonomous marine surface vehicles with limited torque. First, a second-order open-loop error dynamic model is developed in the actuated degrees of freedom to simplify the design procedure. Then, a saturated tracking controller is designed by utilizing generalized saturation functions to reduce the risk of actuator saturation. This, in turn, improves the transient performance of the control system. A multi-layer neural network and adaptive robust control techniques are also employed to preserve the controller robustness against unmodeled dynamics and environmental disturbances induced by waves and ocean currents. A Lyapunov stability analysis shows that all signals of the closed-loop system are bounded and tracking errors are semi-globally uniformly ultimately bounded. Finally, simulation results are provided for a hovercraft vehicle to illustrate the effectiveness of the proposed controller as a qualified candidate for real implementations in offshore applications.  相似文献   

10.
《Ocean Engineering》2006,33(11-12):1413-1430
This paper presents the design of an adaptive input–output feedback linearizing dorsal fin control system for the yaw plane control of low-speed bio-robotic autonomous underwater vehicles (BAUVs). The control forces are generated by cambering two dorsal fins mounted in the vertical plane on either side of the vehicle. The BAUV model includes nonlinear hydrodynamics, and it is assumed that its hydrodynamic coefficients as well as the physical parameters are not known. For the purpose of design, a linear combination of the yaw angle tracking error and its derivative and integral is chosen as the controlled output variable. An adaptive input–output feedback linearizing control law is derived for the trajectory control of the yaw angle. Unlike indirect adaptive control, here the controller gains are directly tuned. The stability of the zero dynamics is examined. Simulation results are presented for tracking exponential and sinusoidal yaw angle trajectories and for turning maneuvers, and it is shown that the adaptive control system accomplishes precise yaw angle control of the BAUV using dorsal fins in spite of the nonlinearity and large uncertainties in the system parameters.  相似文献   

11.
A ship optimal trajectory planning method based on the dynamic model of the ship is presented. First a mathematical modular model is introduced for describing the non-linear dynamics of the ship. Then the problem of optimal trajectory planning is discussed. The trajectory is obtained through the optimization of a time-energy criterion, taking into account constraints on the steering system, environment, non-linearities, and non-convexity of the state space equations. The discrete augmented Lagrangian approach is used to compute the optimal constrained controller. The method was programmed on a HP700 workstation. This approach was applied to automatic ship berthing maneuver  相似文献   

12.
简要介绍了声线跟踪计算中比较精确的常梯度声线跟踪算法,针对实际声速剖面测量中可能出现的随机误差和整体偏差两种情况,分别设计了相对应的模拟声速剖面,然后采用常梯度声线跟踪算法计算波束脚印,分析声速剖面误差对波束脚印计算的影响,给出了实际多波束测量作业中声速剖面测定密度和间隔的建议。  相似文献   

13.
Collision at sea is always a significant issue affecting the safety of ship navigation. The shipborne autonomous collision avoidance system (SACAS) has the great advantage to minimize collision accidents in ship navigation. A parallel trajectory planning architecture is proposed in this paper for SACAS system. The fully-coupled deliberative planner based on the modified RRT algorithm is developed to search for optimal global trajectory in a low re-planning frequency. The fully-coupled reactive planner based on the modified DW algorithm is developed to generate the optimal local trajectory in a high re-planning frequency to counteract the unexpected behavior of dynamic obstacles in the vicinity of the vessel. The obstacle constraints, ship maneuvering constraints, COLREGs rules, trajectory optimality, and real-time requirements are satisfied simultaneously in both global and local planning to ensure the collision-free optimal navigation in compliance with COLREGs rules. The on-water tests of a trimaran model equipped with a model-scale SACAS system are presented to demonstrate the effectiveness and efficiency of the proposed algorithm. The good balance between the computational efficiency and trajectory optimality is achieved in parallel trajectory planning.  相似文献   

14.
When using self-propelled ship models, it is necessary to observe and record a trajectory of actual movement and also to determine a current value of velocity and acceleration. An optoelectronic system for determining and recording the trajectory of the model has been developed. It operates over an 150 m×150 m area with a fundamental error of less than 0.1 m and consists of an optical transmitter aboard the model and two stations ashore connected to a computer placed in a remote operational room. The directional angles are measured by two receiving telescopes (one for each station ashore), which are rotating with an angular velocity ~15 rad/s. The coordinates of the model are obtained by simple arithmetic. Errors of measurements and the maximum range of operation are also discussed  相似文献   

15.
A global trajectory tracking controller is presented for underactuated AUVs with only surge force and yaw moment in the horizontal plane. A transformation is introduced to represent the tracking error system into a cascade form. The global and uniform asymptotic stabilization problem of the resulting cascade system is reduced to the stabilization problem of two subsystems by use of the cascade approach. For the stabilization of the subsystem involving the yaw moment, a control law is proposed based on the feedback linearization method. Another subsystem is stabilized by designing a fuzzy sliding mode controller which can offer a systematical means of constructing a set of shrinking-span and dilating-span membership functions. In order to demonstrate the practicability of the proposed controller, control constraints, parameter uncertainties, and external disturbances are considered according to practical situation of AUVs. Simulation results show very good tracking performance and robustness of the proposed control schemes.  相似文献   

16.
The horizontal movement of inertial particles in the intensive vortices, where the centrifugal force can be substantially higher than the gravity, is studied analytically. A similar problem was studied earlier for small (Stokes) particles at low Reynolds number, which allow one to be limited to the linear resistance law. It is shown that the previous results to a great extent can be extrapolated to the case of considerably heavier particles (e.g., water droplets with a diameter up to 1 mm at Reynolds numbers up to 103). The nonlinear nature of the resistance, i.e., its dependence on the particle velocity relative to the medium, should be taken into account for such particles. Some general laws are established for particle dynamics. In particular, their tangential velocity is close to the velocity of the medium, while the radial velocity is substantially lower (it is close on the order of magnitude to the geometric mean of the particle tangential velocity and the difference between the latter and the tangential velocity of the medium). The limits of applicability of the results are found, i.e., the restrictions to the size and mass/density of particles.  相似文献   

17.
This paper presents a technique for adaptively tracking bathymetric contours using an autonomous underwater vehicle (AUV) equipped with a single altimeter sonar. An adaptive feature mapping behavior is developed to address the problem of how to locate and track features of unknown extent in an environment where a priori information is unavailable. This behavior is implemented as part of the layered control architecture used by the AUV Odyssey II. The new adaptive feature mapping behavior builds on previous work in layered control by incorporating planning and mapping capabilities that allow the vehicle to alter its trajectory online in response to sensor data in order to track contour features. New waypoints are selected by evaluating the expected utility of visiting a given location balanced against the expected cost of traveling to a particular cell. The technique is developed assuming sensor input in the form of a single, narrow-beam altimeter sensor attached to a non-holonomic, dynamically controlled survey-class AUV such as the Odyssey II. Simulations of the Charles River basin which have been constructed from real bathymetry data are used as test missions. The 7-m contour line of a prominent trench in the river serves as the target feature. The adaptive contour following behavior tracks the contour despite navigation error and environmental disturbances, supplying the capability of autonomously detecting and following distinctive bathymetric features using a point sensor. This behavior provides a foundation for future research in tracking of dynamic features in the water-column and for concurrent mapping and localization over natural terrain using a point sensor  相似文献   

18.
南海自动剖面浮标轨迹模拟系统包括高分辨率模式流场、拉格朗日追踪模型和垂向浮标运动参数化方案等三个核心部分。该系统可在南海范围内模拟两类自动剖面浮标: 传统自动剖面浮标(停滞深度为1000m, 最大下潜深度为2000m)和新型深海自动剖面浮标(停滞深度为距海底500m)。通过对南海现有的6个传统浮标的模拟, 该系统可以预测其100d内的漂流轨迹。通过与真实浮标轨迹数据的对比, 验证了该模拟系统的准确性。此外, 根据该系统, 我们初步探讨了深海自动剖面浮标阵列(时空分辨率为2°×2°×30d)在南海内区布放方案的可行性。该模拟系统的建立和完善将有助于对现有传统剖面浮标布放策略进行优化, 并对未来深海剖面浮标在南海的推广应用提供初步的理论依据。  相似文献   

19.
《Ocean Engineering》2007,34(11-12):1505-1515
The interaction between current and flexural gravity waves generated due to a floating elastic plate is analyzed in two dimensions under the assumptions of linearized theory. For plane flexural gravity waves, explicit expressions for the water particle dynamics and trajectory are derived. The effect of current on the wavelength, phase velocity and group velocity of the flexural gravity waves is analyzed. Variations in wavelength and wave height due to the changes in current speed and direction are analyzed. Effects of structural rigidity and water depth on wavelength are discussed in brief. Simple numerical computations are performed and presented graphically to explain most of the theoretical findings in a lucid manner.  相似文献   

20.
An investigation to improve trajectory prediction using Lagrangian data is presented. The velocity field of a data assimilating model, EAS-16, is corrected using drifter observations taken during an experiment off Taiwan. The results are tested using another independent Lagrangian data set provided by sonobuoys launched in the same area. The latter have instrument chains that extend well into the water column. Consequently the corrected model velocities were projected into the water column in order to calculate sonobuoy trajectories. The drifter and sonobuoy trajectories both show two distinct regimes in the considered area of approximately 1/2° square. One regime is dominated by shelf dynamics, the other by meandering of the Kuroshio, with a sharp boundary dividing the two. These two regimes are not reproduced by the trajectories of the EAS-16 model. When the drifter data are blended with the model velocities, synthetic sonobuoy trajectories track the observed ones much better, and the two regimes are clearly depicted. Two different methods for the velocity reconstruction are tested. One is based on a variational approach and the other on a normal mode decomposition. Both methods show qualitatively similar improvements in the prediction of sonobuoys trajectories, with a quantitative improvement in the total rms error of approximately 50% and 25%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号