首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper shows demonstrable improvement in the global seasonal climate predictability of boreal summer (at zero lead) and fall (at one season lead) seasonal mean precipitation and surface temperature from a two-tiered seasonal hindcast forced with forecasted SST relative to two other contemporary operational coupled ocean–atmosphere climate models. The results from an extensive set of seasonal hindcasts are analyzed to come to this conclusion. This improvement is attributed to: (1) The multi-model bias corrected SST used to force the atmospheric model. (2) The global atmospheric model which is run at a relatively high resolution of 50 km grid resolution compared to the two other coupled ocean–atmosphere models. (3) The physics of the atmospheric model, especially that related to the convective parameterization scheme. The results of the seasonal hindcast are analyzed for both deterministic and probabilistic skill. The probabilistic skill analysis shows that significant forecast skill can be harvested from these seasonal hindcasts relative to the deterministic skill analysis. The paper concludes that the coupled ocean–atmosphere seasonal hindcasts have reached a reasonable fidelity to exploit their SST anomaly forecasts to force such relatively higher resolution two tier prediction experiments to glean further boreal summer and fall seasonal prediction skill.  相似文献   

2.
Vasubandhu Misra  H. Li 《Climate Dynamics》2014,42(9-10):2491-2507
An extensive set of boreal summer seasonal hindcasts from a two tier system is compared with corresponding seasonal hindcasts from two other coupled ocean–atmosphere models for their seasonal prediction skill (for precipitation and surface temperature) of the Asian summer monsoon. The unique aspect of the two-tier system is that it is at relatively high resolution and the SST forcing is uniquely bias corrected from the multi-model averaged forecasted SST from the two coupled ocean–atmosphere models. Our analysis reveals: (a) The two-tier forecast system has seasonal prediction skill for precipitation that is comparable (over the Southeast Asian monsoon) or even higher (over the South Asian monsoon) than the coupled ocean–atmosphere. For seasonal anomalies of the surface temperature the results are more comparable across models, with all of them showing higher skill than that for precipitation. (b) Despite the improvement from the uncoupled AGCM all models in this study display a deterministic skill for seasonal precipitation anomalies over the Asian summer monsoon region to be weak. But there is useful probabilistic skill for tercile anomalies of precipitation and surface temperature that could be harvested from both the coupled and the uncoupled climate models. (c) Seasonal predictability of the South Asian summer monsoon (rainfall and temperature) does seem to stem from the remote ENSO forcing especially over the Indian monsoon region and the relatively weaker seasonal predictability in the Southeast Asian summer monsoon could be related to the comparatively weaker teleconnection with ENSO. The uncoupled AGCM with the bias corrected SST is able to leverage this teleconnection for improved seasonal prediction skill of the South Asian monsoon relative to the coupled models which display large systematic errors of the tropical SST’s.  相似文献   

3.
This paper presents an assessment of the seasonal prediction skill of current global circulation models, with a focus on the two-meter air temperature and precipitation over the Southeast United States. The model seasonal hindcasts are analyzed using measures of potential predictability, anomaly correlation, Brier skill score, and Gerrity skill score. The systematic differences in prediction skill of coupled ocean–atmosphere models versus models using prescribed (either observed or predicted) sea surface temperatures (SSTs) are documented. It is found that the predictability and the hindcast skill of the models vary seasonally and spatially. The largest potential predictability (signal-to-noise ratio) of precipitation anywhere in the United States is found in the Southeast in the spring and winter seasons. The maxima in the potential predictability of two-meter air temperature, however, reside outside the Southeast in all seasons. The largest deterministic hindcast skill over the Southeast is found in wintertime precipitation. At the same time, the boreal winter two-meter air temperature hindcasts have the smallest skill. The large wintertime precipitation skill, the lack of corresponding two-meter air temperature hindcast skill, and a lack of precipitation skill in any other season are features common to all three types of models (atmospheric models forced with observed SSTs, atmospheric models forced with predicted SSTs, and coupled ocean–atmosphere models). Atmospheric models with observed SST forcing demonstrate a moderate skill in hindcasting spring-and summertime two-meter air temperature anomalies, whereas coupled models and atmospheric models forced with predicted SSTs lack similar skill. Probabilistic and categorical hindcasts mirror the deterministic findings, i.e., there is very high skill for winter precipitation and none for summer precipitation. When skillful, the models are conservative, such that low-probability hindcasts tend to be overestimates, whereas high-probability hindcasts tend to be underestimates.  相似文献   

4.
The seasonal forecast skill of the NASA Global Modeling and Assimilation Office atmosphere–ocean coupled global climate model (AOGCM) is evaluated based on an ensemble of 9-month lead forecasts for the period 1993 to 2010. The results from the current version (V2) of the AOGCM consisting of the GEOS-5 AGCM coupled to the MOM4 ocean model are compared with those from an earlier version (V1) in which the AGCM (the NSIPP model) was coupled to the Poseidon Ocean Model. It was found that the correlation skill of the Sea Surface Temperature (SST) forecasts is generally better in V2, especially over the sub-tropical and tropical central and eastern Pacific, Atlantic, and Indian Ocean. Furthermore, the improvement in skill in V2 mainly comes from better forecasts of the developing phase of ENSO from boreal spring to summer. The skill of ENSO forecasts initiated during the boreal winter season, however, shows no improvement in terms of correlation skill, and is in fact slightly worse in terms of root mean square error (RMSE). The degradation of skill is found to be due to an excessive ENSO amplitude. For V1, the ENSO amplitude is too strong in forecasts starting in boreal spring and summer, which causes large RMSE in the forecast. For V2, the ENSO amplitude is slightly stronger than that in observations and V1 for forecasts starting in boreal winter season. An analysis of the terms in the SST tendency equation, shows that this is mainly due to an excessive zonal advective feedback. In addition, V2 forecasts that are initiated during boreal winter season, exhibit a slower phase transition of El Nino, which is consistent with larger amplitude of ENSO after the ENSO peak season. It is found that this is due to weak discharge of equatorial Warm Water Volume (WWV). In both observations and V1, the discharge of equatorial WWV leads the equatorial geostrophic easterly current so as to damp the El Nino starting in January. This process is delayed by about 2 months in V2 due to the slower phase transition of the equatorial zonal current from westerly to easterly.  相似文献   

5.
Significant systematic errors in the tropical Atlantic Ocean are common in state-of-the-art coupled ocean–atmosphere general circulation models. In this study, a set of ensemble hindcasts from the NCEP coupled forecast system (CFS) is used to examine the initial growth of the coupled model bias. These CFS hindcasts are 9-month integrations starting from perturbed real-time oceanic and atmospheric analyses for 1981–2003. The large number of integrations from a variety of initial states covering all months provides a good opportunity to examine how the model systematic errors grow. The monthly climatologies of ensemble hindcasts from various initial months are compared with both observed and analyzed oceanic and atmospheric datasets. Our analyses show that two error patterns are dominant in the hindcasts. One is the warming of the sea surface temperature (SST) in the southeastern tropical Atlantic Ocean. This error grows faster in boreal summer and fall and peaks in November–December at round 2°C in the open ocean. It is caused by an excessive model surface shortwave radiative flux in this region, especially from boreal summer to fall. The excessive radiative forcing is in turn caused by the CFS inability to reproduce the observed amount of low cloud cover in the southeastern ocean and its seasonal increase. According to a comparison between the seasonal climatologies from the CFS hindcasts and a long-term simulation of the atmospheric model forced with observed SST, the CFS low cloud and radiation errors are inherent to its atmospheric component. On the other hand, the SST error in CFS is a major cause of the model’s southward bias of the intertropical convergence zone (ITCZ) in boreal winter and spring. An analysis of the SST errors of the 6-month ensemble hindcasts by seven coupled models in the Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction project shows that this SST error pattern is common in coupled climate hindcasts. The second error pattern is an excessive deepening of the model thermocline depth to the north of the equator from the western coast toward the central ocean. This error grows fastest in boreal summer. It is forced by an overly strong local anticyclonic surface wind stress curl and is in turn related to the weakened northeast trade winds in summer and fall. The thermocline error in the northwest delays the annual shoaling of the equatorial thermocline in the Gulf of Guinea remotely through the equatorial waveguide.  相似文献   

6.
Using the hindcasts provided by the Ensemble-Based Predictions of Climate Changes and Their Impacts(ENSEMBLES) project for the period of 1980–2005, the forecast capability of spring climate in China is assessed mainly from the aspects of precipitation, 2-m air temperature, and atmospheric circulations. The ENSEMBELS can reproduce the climatology and dominant empirical orthogonal function(EOF) modes of precipitation and 2-m air temperature, with some differences arising from different initialization months. The multi-model ensemble(MME) forecast of interannual variability is of good performance in some regions such as eastern China with February initialization.The spatial patterns of the MME interannual and inter-member spreads for precipitation and 2-m air temperature are consistent with those of the observed interannual spread, indicating that internal dynamic processes have major impacts on the interannual anomaly of spring climate in China. We have identified two coupled modes between intermember anomalies of the 850-hPa vorticity in spring and sea surface temperature(SST) both in spring and at a lead of 2 months, of which the first mode shows a significant impact on the spring climate in China, with an anomalous anticyclone located over Northwest Pacific and positive precipitation and southwesterly anomalies in eastern China.Our results also suggest that the SST at a lead of two months may be a predictor for the spring climate in eastern China. A better representation of the ocean–atmosphere interaction over the tropical Pacific, Northwest Pacific, and Indian Ocean can improve the forecast skill of the spring climate in eastern China.  相似文献   

7.
Using observations and 1-month lead hindcast data from six coupled atmosphere–ocean climate models, this study investigates the interdecadal change in the leading maximum covariance analysis mode (MCA1) of atmospheric circulation in response to the changes in the El Niño and Southern Oscillation (ENSO) occurred around late 1970s. We focus on boreal winter climate variability and predictability over the North Pacific–North American (NPNA) region using December–January–February prediction initiated from November 1st in the period of 1960–1980 (P1) and 1981–2001 (P2). Observed analysis reveals that ENSO variability, the related tropical convective activity, and thus the MCA1 are considerably enhanced from P1 to P2. As a result, surface climate anomalies over the NPNA are more significantly correlated with the MCA1 in P2 than P1, particularly over North America. The six coupled models and their multi-model ensemble not only are capable of capturing the interdecadal change of the MCA1 and its relationship with surface air temperature and precipitation over the NPNA regions but also have significantly higher forecast skills for the MCA1 and the surface climate anomalies in P2 than P1. However, models have systematic biases in the spatial distribution of the MCA1. It is demonstrated that the interdecadal change in the MCA1 should contribute to the improved forecast skill of the NPNA climate during recent epoch.  相似文献   

8.
The impact of ocean–atmosphere coupling on the simulation and prediction of the boreal summer intraseasonal oscillation (ISO) has been investigated by diagnosing 22-year retrospective forecasts using the Seoul National University coupled general circulation model (CGCM) and its atmospheric GCM (AGCM) forced with SSTs derived from the CGCM. Numerous studies have shown that the ocean–atmosphere coupling has a significant effect on the improvement of ISO simulation and prediction. Contrary to previous studies, this study shows similar results between CGCM and AGCM, not only in regard to the ISO simulation characteristics but also the predictability. The similarities between CGCM and AGCM include (1) the ISO intensity over the entire Asian-monsoon region; (2) the spatiotemporal evolution of the northward propagating ISO (NPISO); and (3) the potential and practical predictability. A notable difference between CGCM and AGCM is the phase relationship between precipitation and SST anomalies. The CGCM and observation exhibits a near-quadrature relationship between precipitation and SST, with the former lagging about two pentads. The AGCM shows a less realistic phase relationship. The similar structure and propagation characteristics of ISO between the CGCM and AGCM suggest that the internal atmospheric dynamics could be more essential to the ISO than the ocean–atmosphere interaction over the Indian monsoon region.  相似文献   

9.
The interdecadal change in seasonal predictability and numerical models’ seasonal forecast skill in the Northern Hemisphere are examined using both observations and the seasonal hindcast from six coupled atmosphere-ocean climate models from the 21 period of 1960–1980 (P1) to that of 1981–2001 (P2). It is shown that the one-month lead seasonal forecast skill of the six models’ multi-model ensemble is significantly increased from P1 to P2 for all four seasons. We identify four possible reasons accounting for the interdecadal change of the seasonal forecast skill. Firstly, the numerical model’s ability to simulate the mean state, the time variability and the spatial structures of the sea surface temperature and precipitation over the tropical Pacific is improved in P2 compared to P1. Secondly, an examination of the potential predictability of the atmosphere, estimated by the ratio of the total variance to the variance due to the internal dynamics of the model atmosphere, reveals that the atmospheric potential predictability is significantly increased after 1980s which is mainly due to an increased influence of El Niño-Southern Oscillation signal over the North Pacific and North American regions. Thirdly, the long-term climate trends in the atmosphere are found to contribute, to some extent, to the increased seasonal forecast skill especially over the Eurasian regions. Finally, the improved ocean observations in P2 may provide better initial conditions for the coupled models’ seasonal forecast.  相似文献   

10.
施洪波  张英娟 《气象科技》2014,42(6):1023-1027
利用国家气候中心全球海气耦合模式CGCM_NCC的输出结果驱动区域气候模式RegCM_NCC对华北地区1991—2010年冬季气温和降水进行了数值回报试验,并采用国家气候中心的业务预报评分(P)等5个评估参数对模式的回报结果进行了评估分析。结果表明:RegCM_NCC回报的华北地区20年冬季气温的P评分多年平均值为70.4分,其中大部分年份平均气温的P评分在60分以上,80分以上的有11年,11年的预报相对于随机预报和气候预报有正技巧;20年冬季降水的P评分多年平均值为66.3分,13年冬季降水的P评分在60分以上,在80分以上的有5年,8年的预报相对于随机预报有正技巧,有11年的预报相对于气候预报有正技巧。冬季Nino3.4区海温距平为负和东大西洋-俄罗斯西部型遥相关指数为负,均有利于回报的华北冬季气温P评分提高。  相似文献   

11.
Decadal prediction skill in a multi-model ensemble   总被引:4,自引:3,他引:1  
Decadal climate predictions may have skill due to predictable components in boundary conditions (mainly greenhouse gas concentrations but also tropospheric and stratospheric aerosol distributions) and initial conditions (mainly the ocean state). We investigate the skill of temperature and precipitation hindcasts from a multi-model ensemble of four climate forecast systems based on coupled ocean-atmosphere models. Regional variations in skill with and without trend are compared with similarly analysed uninitialised experiments to separate the trend due to monotonically increasing forcings from fluctuations around the trend due to the ocean initial state and aerosol forcings. In temperature most of the skill in both multi-model ensembles comes from the externally forced trends. The rise of the global mean temperature is represented well in the initialised hindcasts, but variations around the trend show little skill beyond the first year due to the absence of volcanic aerosols in the hindcasts and the unpredictability of ENSO. The models have non-trivial skill in hindcasts of North Atlantic sea surface temperature beyond the trend. This skill is highest in the northern North Atlantic in initialised experiments and in the subtropical North Atlantic in uninitialised simulations. A similar result is found in the Pacific Ocean, although the signal is less clear. The uninitialised simulations have good skill beyond the trend in the western North Pacific. The initialised experiments show some skill in the decadal ENSO region in the eastern Pacific, in agreement with previous studies. However, the results in this study are not statistically significant (p?≈?0.1) by themselves. The initialised models also show some skill in forecasting 4-year mean Sahel rainfall at lead times of 1 and 5?years, in agreement with the observed teleconnection from the Atlantic Ocean. Again, the skill is not statistically significant (p?≈?0.2). Furthermore, uninitialised simulations that include volcanic aerosols have similar skill. It is therefore still an open question whether initialisation improves predictions of Sahel rainfall. We conclude that the main source of skill in forecasting temperature is the trend forced by rising greenhouse gas concentrations. The ocean initial state contributes to skill in some regions, but variations in boundary forcings such as aerosols are as important in decadal forecasting.  相似文献   

12.
This study investigates the effects of air–sea interaction upon simulated tropical climatology, focusing on the boreal summer mean precipitation and the embedded intra-seasonal oscillation (ISO) signal. Both the daily coupling of ocean–atmosphere and the diurnal variation of sea surface temperature (SST) at every time step by accounting for the ocean mixed layer and surface-energy budget at the ocean surface are considered. The ocean–atmosphere coupled model component of the global/regional integrated model system has been utilized. Results from the coupled model show better precipitation climatology than those from the atmosphere-only model, through the inclusion of SST–cloudiness–precipitation feedback in the coupled system. Cooling the ocean surface in the coupled model is mainly responsible for the improved precipitation climatology, whereas neither the coupling itself nor the diurnal variation in the SST influences the simulated climatology. However, the inclusion of the diurnal cycle in the SST shows a distinct improvement of the simulated ISO signal, by either decreasing or increasing the magnitude of spectral powers, as compared to the simulation results that exclude the diurnal variation of the SST in coupled models.  相似文献   

13.
We perform a systematic study of the predictability of surface air temperature and precipitation in Southeastern South America (SESA) using ensembles of AGCM simulations, focusing on the role of the South Atlantic and its interaction with the El Niño-Southern Oscillation (ENSO). It is found that the interannual predictability of climate over SESA is strongly tied to ENSO showing high predictability during the seasons and periods when there is ENSO influence. The most robust ENSO signal during the whole period of study (1949–2006) is during spring when warm events tend to increase the precipitation over Southeastern South America. Moreover, the predictability shows large inter-decadal changes: for the period 1949–1977, the surface temperature shows high predictability during late fall and early winter. On the other hand, for the period 1978–2006, the temperature shows (low) predictability only during winter, while the precipitation shows not only high predictability in spring but also in fall. Furthermore, it is found that the Atlantic does not directly affect the climate over SESA. However, the experiments where air–sea coupling is allowed in the south Atlantic suggest that this ocean can act as a moderator of the ENSO influence. During warm ENSO events the ocean off Brazil and Uruguay tends to warm up through changes in the atmospheric heat fluxes, altering the atmospheric anomalies and the predictability of climate over SESA. The main effect of the air–sea coupling is to strengthen the surface temperature anomalies over SESA; changes in precipitation are more subtle. We further found that the thermodynamic coupling can increase or decrease the predictability. For example, the air–sea coupling significantly increases the skill of the model in simulating the surface air temperature anomalies for most seasons during period 1949–1977, but tends to decrease the skill in late fall during period 1978–2006. This decrease in skill during late fall in 1978–2006 is found to be due to a wrong simulation of the remote ENSO signal that is further intensified by the local air–sea coupling in the south Atlantic. Thus, our results suggest that climate models used for seasonal prediction should simulate correctly not only the remote ENSO signal, but also the local air–sea thermodynamic coupling.  相似文献   

14.
Predictability of the subtropical dipole modes is assessed using the SINTEX-F coupled model. Despite the known difficulty in predicting subtropical climate due to large internal variability of the atmosphere and weak ocean–atmosphere coupling, it is shown for the first time that the coupled model can successfully predict the South Atlantic Subtropical Dipole (SASD) 1 season ahead, and the prediction skill is better than the persistence in all the 1–12 month lead hindcast experiments. There is a prediction barrier in austral winter due to the seasonal phase locking of the SASD to austral summer. The prediction skill is lower for the Indian Ocean Subtropical Dipole (IOSD) than for the SASD, and only slightly better than the persistence till 6-month lead because of the low predictability of the sea surface temperature anomaly in its southwestern pole. However, for some strong IOSD events in the last three decades, the model can predict them 1 season ahead. The co-occurrence of the negative SASD and IOSD in 1997/1998 austral summer can be predicted from July 1st of 1997. This is because the negative sea level pressure anomalies over the South Atlantic and the southern Indian Ocean in September–October (November–December) that trigger the occurrence of the negative SASD and IOSD are related to the well predicted tropical Indian Ocean Dipole (El Niño/Southern Oscillation). Owing to the overall good performances of the SINTEX-F model in predicting the SASD, some strong IOSD, and El Niño/Southern Oscillation, the prediction skill of the southern African summer precipitation is high in the SINTEX-F model.  相似文献   

15.
Observational analysis and purposely designed coupled atmosphere–ocean (AOGCM) and atmosphere-only (AGCM) model simulations are used together to investigate a new mechanism describing how spring Arctic sea ice impacts the East Asian summer monsoon (EASM). Consistent with previous studies, analysis of observational data from 1979 to 2009 show that spring Arctic sea ice is significantly linked to the EASM on inter-annual timescales. Results of a multivariate Empirical Orthogonal Function analysis reveal that sea surface temperature (SST) changes in the North Pacific play a mediating role for the inter-seasonal connection between spring Arctic sea ice and the EASM. Large-scale atmospheric circulation and precipitation changes are consistent with the SST changes. The mechanism found in the observational data is confirmed by the numerical experiments and can be described as follows: spring Arctic sea ice anomalies cause atmospheric circulation anomalies, which, in turn, cause SST anomalies in the North Pacific. The SST anomalies can persist into summer and then impact the summer monsoon circulation and precipitation over East Asia. The mediating role of SST changes is highlighted by the result that only the AOGCM, but not the AGCM, reproduces the observed sea ice-EASM linkage.  相似文献   

16.
Twenty-one-year hindcasts of sea surface temperature (SST) anomalies in the tropical Pacific were performed to validate the influence of ocean subsurface entrainment on SST prediction.A new hybrid coupled model was used that considered the entrainment of subsurface temperature anomalies into the sea surface.The results showed that predictions were improved significantly in the new coupled model.The predictive correlation skill increased by about 0.2 at a lead time of 9 months,and the root-mean-square (RMS) errors were decreased by nearly 0.2°C in general.A detailed analysis of the 1997-98 El Nio hindcast showed that the new model was able to predict the onset,peak (both time and amplitude),and decay of the 1997-98 strong El Nio event up to a lead time of one year,factors that are not represented well by many other forecast systems.This implies,in terms of prediction,that subsurface anomalies and their impact on the SST are one of the controlling factors in ENSO cycles.Improving the presentation of such effects in models would increase the forecast skill.  相似文献   

17.
This study examines the prediction skill of the contiguous United States (CONUS) precipitation in summer, as well as its potential sources using a set of ensemble hindcasts conducted with the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 and initialized from four independent ocean analyses. The multiple ocean ensemble mean (MOCN_ESMEAN) hindcasts start from each April for 26 summers (1982–2007), with each oceanic state paired with four atmosphere-land states. A subset of hindcasts from the NCEP CFS Reanalysis and Reforecast (CFSRR) project for the same period, from the same initial month and with the same total ensemble size, is also analyzed. Compared with CFSRR, MOCN_ESMEAN is distinguished by its oceanic ensemble spread that introduces potentially larger perturbations and better spatial representation of the oceanic uncertainty. The prediction skill of the CONUS precipitation in summer shows a similar spatial pattern in both MOCN_ESMEAN and CFSRR, but the results suggested that initialization from multiple ocean analyses may bring more robust signals and additional skills to the seasonal prediction for both sea surface temperature and precipitation. Among the predictable areas for precipitation, the northwestern CONUS (NWUS) is the most robust. A further analysis shows that the enhanced summer precipitation prediction skill in NWUS is mainly associated with the El Niño/Southern Oscillation, with possible influence also from the Pacific Decadal Oscillation. Through this work, we argue that a large ensemble is necessary for precipitation forecast in mid-latitudes, such as the CONUS, and taking into account of the oceanic initial state uncertainty is an efficient way to build such an ensemble.  相似文献   

18.
Given observed initial conditions, how well do coupled atmosphere–ocean models predict precipitation climatology with 1-month lead forecast? And how do the models’ biases in climatology in turn affect prediction of seasonal anomalies? We address these questions based on analysis of 1-month lead retrospective predictions for 21 years of 1981–2001 made by 13 state-of-the-art coupled climate models and their multi-model ensemble (MME). The evaluation of the precipitation climatology is based on a newly designed metrics that consists of the annual mean, the solstitial mode and equinoctial asymmetric mode of the annual cycle, and the rainy season characteristics. We find that the 1-month lead seasonal prediction made by the 13-model ensemble has skills that are much higher than those in individual model ensemble predictions and approached to those in the ERA-40 and NCEP-2 reanalysis in terms of both the precipitation climatology and seasonal anomalies. We also demonstrate that the skill for individual coupled models in predicting seasonal precipitation anomalies is positively correlated with its performances on prediction of the annual mean and annual cycle of precipitation. In addition, the seasonal prediction skill for the tropical SST anomalies, which are the major predictability source of monsoon precipitation in the current coupled models, is closely link to the models’ ability in simulating the SST mean state. Correction of the inherent bias in the mean state is critical for improving the long-lead seasonal prediction. Most individual coupled models reproduce realistically the long-term annual mean precipitation and the first annual cycle (solstitial mode), but they have difficulty in capturing the second annual (equinoctial asymmetric) mode faithfully, especially over the Indian Ocean (IO) and Western North Pacific (WNP) where the seasonal cycle in SST has significant biases. The coupled models replicate the monsoon rain domains very well except in the East Asian subtropical monsoon and the tropical WNP summer monsoon regions. The models also capture the gross features of the seasonal march of the rainy season including onset and withdraw of the Asian–Australian monsoon system over four major sub-domains, but striking deficiencies in the coupled model predictions are observed over the South China Sea and WNP region, where considerable biases exist in both the amplitude and phase of the annual cycle and the summer precipitation amount and its interannual variability are underestimated.  相似文献   

19.
《大气与海洋》2013,51(3):204-223
Abstract

The performance of seasonal hindcasts produced with four global atmospheric models in the second phase of the Canadian Historical Forecasting Project is evaluated. Deterministic and probabilistic forecast skill assessments are carried out using common verification measures. Several methods of combining multi‐model output to produce deterministic and probabilistic forecasts of near‐surface air temperature, 500 hPa geopotential height, and 700 hPa temperature for zero‐month and one‐month leads are considered. A variance‐based weighting modestly improves the skill of deterministic and probabilistic hindcasts in some cases. A parametric Gaussian probability estimator is superior to a non‐parametric count‐method estimator for producing multi‐model probability forecasts. Statistical adjustment is beneficial for deterministic and probabilistic hindcasts of near‐surface temperature over the ocean but not always over land. Skill improves with the number of different models used for a given total ensemble size. The four‐model ensemble is shown to be a reasonable multi‐model configuration.  相似文献   

20.
Many coupled ocean–atmosphere general circulation models (GCMs) suffer serious biases in the tropical Atlantic including a southward shift of the intertropical convergence zone (ITCZ) in the annual mean, a westerly bias in equatorial surface winds, and a failure to reproduce the eastern equatorial cold tongue in boreal summer. The present study examines an ensemble of coupled GCMs and their uncoupled atmospheric component to identify common sources of error. It is found that the westerly wind bias also exists in the atmospheric GCMs forced with observed sea surface temperature, but only in boreal spring. During this time sea-level pressure is anomalously high (low) in the western (eastern) equatorial Atlantic, which appears to be related to deficient (excessive) precipitation over tropical South America (Africa). In coupled simulations, this westerly bias leads to a deepening of the thermocline in the east, which prevents the equatorial cold tongue from developing in boreal summer. Thus reducing atmospheric model errors during boreal spring may lead to improved coupled simulations of tropical Atlantic climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号