首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A novel floating pendulum wave energy converter (WEC) with the ability of tide adaptation is designed and presented in this paper. Aiming to a high efficiency, the buoy''s hydrodynamic shape is optimized by enumeration and comparison. Furthermore, in order to keep the buoy''s well-designed leading edge always facing the incoming wave straightly, a novel transmission mechanism is then adopted, which is called the tidal adaptation mechanism in this paper. Time domain numerical models of a floating pendulum WEC with or without tide adaptation mechanism are built to compare their performance on various water levels. When comparing these two WECs in terms of their average output based on the linear passive control strategy, the output power of WEC with the tide adaptation mechanism is much steadier with the change of the water level and always larger than that without the tide adaptation mechanism.  相似文献   

2.
A novel floating pendulum wave energy converter(WEC) with the ability of tide adaptation is designed and presented in this paper.Aiming to a high efficiency,the buoy's hydrodynamic shape is optimized by enumeration and comparison.Furthermore,in order to keep the buoy's well-designed leading edge always facing the incoming wave straightly,a novel transmission mechanism is then adopted,which is called the tidal adaptation mechanism in this paper.Time domain numerical models of a floating pendulum WEC with or without tide adaptation mechanism are built to compare their performance on various water levels.When comparing these two WECs in terms of their average output based on the linear passive control strategy,the output power of WEC with the tide adaptation mechanism is much steadier with the change of the water level and always larger than that without the tide adaptation mechanism.  相似文献   

3.
针对波浪能转换装置(WEC)研究重点主要集中在能量捕获效率方面,而忽略其附带的消波功能的问题。基于Open FOAM程序,建立垂荡浮子式波浪能发电装置与桩式约束的浮式防波堤的集成系统(OBC-FB)。主要研究WEC中的重要组件动力输出系统(PTO)对集成系统波能捕获效率及消波性能的影响。分析流体黏性影响下线性PTO系统的最优PTO阻尼特性。开发非线性电磁阻尼模型与线性PTO系统性能进行比较。结果显示,考虑黏性影响下线性的最优PTO阻尼系数略大于无黏的理论值;适当增大PTO阻尼系数可以获得更大的波能捕获宽度比(CWR),从而可以保证装置单位特征尺寸的波能转换效率更高,同时可以在更宽波况范围保证消波性能;相较于线性PTO阻尼系统,非线性电磁PTO阻尼系统可以更好地兼顾波能捕获效率和消波性能。因此,在OBC-FB集成系统的优化设计中,PTO阻尼系统是一个重要的优化参数。  相似文献   

4.
波浪能发电装置的波能转换通常分为两级能量转换:第一级能量转换是波浪作用下波浪能装置部件发生相对运动驱动PTO做功捕获波浪能;第二级能量转换为将捕获的波浪能转换为电能。其中一级波浪能转换系统的优化设计是提高波浪能装置能量转换效率的重要手段和关键技术。波浪作用下波浪能装置的运动与PTO做功运动相互耦合和影响,本文通过对不同波浪要素环境下、不同PTO阻尼下波浪能装置的频域运动模拟,以迎波宽度比为尺度对波浪能装置的一级能量转换系统进行优化设计,获得波浪能装置的最优做功阻尼,为实型装置负载加载设计提供设计依据,提高波浪能装置能量转化效率。鹰式一号波浪能装置的实海况运动证明,通过对一级能量转换系统的优化设计,能够有效提高装置的发电效率和提高装置对波浪响应频带宽度。  相似文献   

5.
This paper presents a procedure to calculate the design pressure distributions on the hull of a wave energy converter (WEC). Design pressures are the maximum pressure values that the device is expected to experience during its operational life time. The procedure is applied to the prototype under development by Martifer Energy (FLOW—Future Life in Ocean Waves).A boundary integral method is used to solve the hydrodynamic problem. The hydrodynamic pressures are combined with the hydrostatic ones and the internal pressures of the large ballast tanks. The first step consists of validating the numerical results of motions by comparison with measured experimental data obtained with a scaled model of the WEC. The numerical model is tuned by adjusting the damping of the device rotational motions and the equivalent damping and stiffness of the power take-off system. The pressure distributions are calculated for all irregular sea states representative of the Portuguese Pilot Zone where the prototype will be installed and a long term distribution method is used to calculate the expected maximum pressures on the hull corresponding to the 100-year return period.  相似文献   

6.
Experimental studies were conducted on a trapezoidal pendulum wave energy converter in regular waves. To obtain the incident wave height, the analytical method (AM) was used to separate the incident and reflected waves propagating in a wave flume by analysing wave records measured at two locations. The response amplitude operator (RAO), primary conversion efficiency and the total conversion efficiency of the wave energy converter were studied; furthermore, the power take-off damping coefficients corresponding to the load resistances in the experiment were also obtained. The findings demonstrate that the natural period for a pendulum wave energy converter is relatively large. A lower load resistance gives rise to a larger damping coefficient. The model shows relatively higher wave energy conversion efficiency in the range of 1.0?1.2 s for the incident wave period. The maximum primary conversion efficiency achieved was 55.5%, and the maximum overall conversion efficiency was 39.4%.  相似文献   

7.
陈文  滕斌 《海洋工程》2014,32(6):59-67
基于势流理论,建立波浪与摆式波能转换装置作用的三维频域分析模型。应用数值模型对两种质量的摆式波能转换装置进行水动力分析,在考虑粘性阻尼作用的条件下,计算传动系统的最优扭阻系数。在最佳工况下,开展了波浪频率对摆板运动响应和俘获能量影响的系统研究,给出了波浪最佳频率范围、摆板振幅、能量俘获效率以及摆板表面的波动压强。  相似文献   

8.
This paper concerns the design of feedback control systems to maximize power generation of a wave energy converter (WEC) in a random sea. In the literature on WEC control, most of the proposed feedback controllers fall into three categories. Many are static; i.e., they extract power by imposing an equivalent damping or resistive load on the power take-off (PTO) devices. Others are dynamic and are designed to maximize power generation at all frequencies, which results in an anticausal feedback law. Other dynamic control design methods are causal, and are tuned to achieve the anticausal performance at only a single frequency. By contrast, this paper illustrates that the determination of the true optimal causal dynamic controller for a WEC can be found as the solution to a nonstandard linear quadratic Gaussian (LQG) optimal control problem. The theory assumes that the control system must make power generation decisions based only on present and past measurements of the generator voltages and/or velocities. It is shown that unlike optimal anticausal control, optimal causal control requires knowledge of the stationary spectral characteristics of the random sea state. Additionally, it is shown that the efficiency of the generator factors into the feedback synthesis. The theory is illustrated on a linear dynamical model for a buoy-type WEC with significant resonant modes in surge and pitch, and equipped with three spatially-distributed generators.  相似文献   

9.
This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.  相似文献   

10.
The hydrodynamic performance of a bottom-hinged flap wave energy converter(WEC) is investigated through a frequency domain numerical model.The numerical model is verified through a two-dimensional analytic solution,as well as the qualitative analysis on the dynamic response of avibrating system.The concept of "optimum density" of the bottom-hinged flap is proposed,and its analytic expression is derived as well.The frequency interval in which the optimum density exists is also obtained.The analytic expression of the optimum linear damping coefficient is obtained by a bottom-hinged WEC.Some basic dynamic properties involving natural period,excitation moment,pitch amplitude,and optimum damping coefficient are analyzed and discussed in detail.In addition,this paper highlights the analysis of effects on the conversion performance of the device exerted by some important parameters.The results indicate that "the optimum linear damping period of 5.0 s" is the most ideal option in the short wave sea states with the wave period below 6.0 s.Shallow water depth,large flap thickness and low flap density are advised in the practical design of the device in short wave sea states in order to maximize power capture.In the sea state with water depth of 5.0 m and wave period of 5.0 s,the results of parametric optimization suggest a flap with the width of 8.0 m,thickness of 1.6 m,and with the density as little as possible when the optimum power take-off(PTO) damping coefficient is adopted.  相似文献   

11.
The effect of water depth on the performance of a small surging wave energy converter (WEC) is investigated analytically, numerically and experimentally. It is shown that although the average annual incident wave power is significantly reduced by water depth, a large proportion of this reduction is due to the dissipation of highly energetic, but largely unexploitable seas. It is also shown that the power capture is related more closely to incident wave force than incident wave power. Experimental results demonstrate that both the surge wave force and power capture of a flap-type WEC increase in shallow water.  相似文献   

12.
Eddy current brakes provide a versatile way of simulating the power take-off system (PTO) in model testing of small scale wave energy converters (WECs). This type of PTO simulator is based on the principle that a conductive material moving in a magnetic field generates a braking force proportional to its velocity. A bottom-hinged pitching plate WEC model has been designed using an eddy current brake as a PTO simulator. A dedicated electric current source unit was developed to provide a controllable and reliable level of DC current intensity to feed the magnetic field generating coils. Using a real-time data acquisition and control, this unit can be used to impose non-linear damping PTO characteristic curves in several types of WEC models based on eddy current brakes. In the present case, this current source has been used to simulate a constant damping PTO on a small scale pitching WEC model that has been tested in the IST wave flume. Two different cases were considered: one corresponding to a surface piercing plate and another to a fully submerged plate. Experimental results are presented for plate motion and for non-dimensional capture width.  相似文献   

13.
The double-body heave wave energy converter(WEC) is one of the most conducive devices to absorb the wave energy from relative motion while the law of which is not well understood. This paper makes an in-depth study on this wave energy converter, by means of the combination of theoretical analysis and physical model experiment. The hydrodynamic characteristics and energy capture of the double-buoy under constant and linear Power Take-Off(PTO) damping are investigated. Influences of absolute mass and mass ratio are discussed in the theoretical model.Relative displacement amplitude and average power output are tested in the experiment to analyze the effect of the wave period and outer buoy's mass, while the capture width ratio(CWR) is also calculated. Results show that the wave period and mass of the buoys have a significant effect on the converter. Different forms of PTO damping have no influence on the optimal wave period and mass ratio of this device. It is recommended to select the double-buoy converter with a mass ratio of 0.80 and to place it in an area with the frequent wave period close to the natural period of the outer buoy to achieve the optimal energy capture.  相似文献   

14.
The dynamic response of the mooring line will be a dominant factor to consider in their use for the station keeping of a wave energy converter (WEC). Due to the relatively small size of WECs and their being moored in relatively shallow waters the effect of waves, tide and current can be of greater significance than for other floating offshore systems. Axial line stretching and high-frequency ‘top-end’ dynamics can importantly modify damping and top-end loading.If a ‘farm’ of devices is to be considered then limitations in sea space may necessitate that the devices be relatively densely packed. This will mean that the ‘footprint’ of the mooring should be constrained, to ensure that the moorings from each device do not interfere and this will have great significance for the loading experienced by the line. One must also consider how the mooring system might change the response of the WEC and so alter its ability to extract power from the waves. Unlike a typical offshore system, the design of moorings for a WEC device must consider reliability and survivability, and the need to ensure efficient energy conversion.The design and operation of a chain mooring for a WEC is considered here. Generic experimental measurements of mooring line damping were conducted in the Heriot-Watt University wave basin at a scale of 1:10. The measurements were conducted on a single mooring line for surge motions and include the study of axial stretching and high top-end dynamics. The laboratory procedures were designed to resemble tests undertaken earlier at ‘full’ scale in 24 m water depth. The measurements were also compared with numerical studies. The experimental findings for WEC devices, supports the conclusion that dynamic mooring line motion will be an important variable, needing to be considered carefully within the design.  相似文献   

15.
Wave energy fluctuating a great deal endangers the security of power grid especially micro grid in island. A DC nano grid supported by batteries is proposed to smooth the output power of wave energy converters (WECs). Thus, renewable energy converters connected to DC grid is a new subject. The characteristics of WECs are very important to the connection technology of HPTO type WECs and DC nano grid. Hydraulic power take-off system (HPTO) is the core unit of the largest category of WECs, with the functions of supplying suitable damping for a WEC to absorb wave energy, and converting captured wave energy to electricity. The HPTO is divided into a hydraulic energy storage system (HESS) and a hydraulic power generation system (HPGS). A primary numerical model for the HPGS is established in this paper. Three important basic characteristics of the HPGS are deduced, which reveal how the generator load determines the HPGS rotation rate. Therefore, the connector of HPTO type WEC and DC nano grid would be an uncontrollable rectifier with high reliability, also would be a controllable power converter with high efficiency, such as interleaved boost converter-IBC. The research shows that it is very flexible to connect to DC nano grid for WECs, but bypass resistance loads are indispensable for the security of WECs..  相似文献   

16.
Compared with solar and wind energy, wave energy is a kind of renewable resource which is enormous and still under development. In order to utilize the wave energy, various types of wave energy converters (WECs) have been proposed and studied. And oscillating-body WEC is widely used for offshore deployment. For this type of WEC, the oscillating motion of the floater is converted into electricity by the power take off (PTO) system, which is usually mathematically simplified as a linear spring and a damper. The linear PTO system is characteristic of frequency-dependent response and the energy absorption is less powerful for off resonance conditions. Thus a nonlinear snap through PTO system consisting of two symmetrically oblique springs and a linear damper is applied. A nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two oblique springs to the original length of both springs. JONSWAP spectrum is utilized to generate the time series of irregular waves. Time domain method is used to establish the motion equation of the oscillating-body WEC in irregular waves. And state space model is applied to replace the convolution term in the time domain motion equation. Based on the established motion equation, the motion response of both the linear and nonlinear WEC is numerically calculated using 4th Runge–Kutta method, after which the captured power can be obtained. Then the influences of wave parameters such as peak frequency, significant wave height, damping coefficient of the PTO system and the nonlinear parameter γ on the power capture performance of the nonlinear WEC is discussed in detail. Results show that compared with linear PTO system, the nonlinear snap through PTO system can increase the power captured by the oscillating body WEC in irregular waves.  相似文献   

17.
田育丰  黄焱  史庆增 《海洋工程》2012,30(3):177-184
一级转换装置是一个波浪能发电装置中的关键技术,而如何提高能量转化效率,是一级转换过程研究的重点问题。为确定一级转换装置的能量转化效率与哪些因素有关,对摆式波浪能发电装置的摆板机构进行了模型试验研究,测试了摆板模型在多种波浪条件下的动力响应参数,确定了摆板的动力输出特性及其控制因素;测试了在极限波浪作用下,摆板模型装置的受力状况。通过试验,为摆式波浪能发电装置的设计提供了必要的参考依据。  相似文献   

18.
According to Newton''s Second Law and the microwave theory, mechanical analysis of multiple buoys which form Sharp Eagle wave energy converter (WEC) is carried out. The movements of every buoy in three modes couple each other when they are affected with incident waves. Based on the above, mechanical models of the WEC are established, which are concerned with fluid forces, damping forces, hinge forces, and so on. Hydrodynamic parameters of one buoy are obtained by taking the other moving buoy as boundary conditions. Then, by taking those hydrodynamic parameters into the mechanical models, the optimum external damping and optimal capture width ratio are calculated out. Under the condition of the optimum external damping, a plenty of data are obtained, such as the displacements amplitude of each buoy in three modes (sway, heave, pitch), damping forces, hinge forces, and speed of the hydraulic cylinder. Research results provide theoretical references and basis for Sharp Eagle WECs in the design and manufacture.  相似文献   

19.
A point-absorber-type Wave-Energy Converter (WEC) consisting of a floating vertical inner cylinder and an annular outer cylinder that slides along the inner one is considered. The two cylinders heave differently under wave excitation, and wave energy can be harnessed from the relative heave motion between the two cylinders using a Permanent Magnet Linear Generator (PMLG) as the Power Take-Off unit. A mooring cable is attached to the bottom of the inner cylinder. This paper aims to examine the effect of the stiffness of the mooring cable on the performance of the coaxial-cylinder WEC system. The two limiting cases of no mooring cable (freely floating inner and outer cylinders) and an infinitely stiff mooring cable (fixed inner cylinder) were also considered. To perform the analysis, hydrodynamic and interference coefficients of the two heaving cylinders were computed semi-analytically using the method of matched eigenfunction expansions. Experimentally determined viscous corrections on damping were also included in the model in order to have more realistic predictions. The performance of the system in terms of motion responses and capture width were predicted and discussed for both regular and irregular waves. The results of the analysis indicate that both the freely floating design and the design with rigidly moored inner cylinder are viable. The two limiting cases show similar optimal performances, albeit with very different optimal generator damping. However, an ill-chosen mooring-cable stiffness may cause the inner and the outer cylinders to have the same resonance frequency, eliminating the relative heave motion and leading to almost no energy extraction. This situation needs to be avoided when designing the mooring system for a coaxial-cylinder WEC.  相似文献   

20.
Any kind of Wave Energy Converter (WEC) requires information on how optimize the device in terms of hydraulic performances and structural responses. This paper presents results on wave loading acting on an innovative caisson breakwater for electricity production. The Seawave Slot-Cone Generator (SSG) concept is based on the known principle of overtopping and storing the wave energy in several reservoirs placed one above the other. Using this method practically all waves, regardless of size and speed are captured for energy production. In the present SSG setup three reservoirs have been used. Comprehensive 2D and 3D hydraulic model tests were carried out at the Department of Civil Engineering, Aalborg University (Denmark) in the 3D deep water wave tank. The model scale used was 1:60 of the SSG prototype at the planned location of a pilot plant at the west coast of the Kvitsøy island (Stavanger, Norway).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号