首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Zinc mineralization in Devonian carbonates of the Lennard Shelf, northern Canning Basin is similar in many respects to that of the Mississippi Valley‐type including estimated minimum temperatures of sulphide precipitation between 70 and 110°C. Apparent apatite fission track ages for Precambrian granitic basement and for detrital apatites in Devonian carbonates in and near Pb‐Zn mineralization generally range between 260 and 340 Ma, with Precambrian samples tending to have slightly older apatite fission track ages than the Devonian carbonates. These apparent ages are younger than the stratigraphic age of the material analysed, indicating that appreciable annealing of fission tracks in apatite has occurred in post‐Devonian times. Mean horizontal confined track lengths are 12–13 μm for most samples and preclude attaching any ‘event’ significance to the fission track ages. Studies of well sequences (Grevillea 1 and Kennedia 1) indicate a period of rapid uplift in the area during the Late Triassic/Early Jurassic. Assuming a constant geothermal gradient of 30°C/km, approximately 1.5 km of uplift and erosion is estimated. Immediate thermal effects related to Miocene lamproite intrusion into Precambrian basement appear to be restricted to within 200 m of the contact zone.

For outcropping Devonian carbonates, a thermal history is proposed involving burial in the Late Palaeozoic/Early Mesozoic, followed by uplift and cooling from peak temperatures around 70–80°C in mid‐Mesozoic times. With reference to this period of burial, Pb‐Zn occurrences represent thermal anomalies when reported fluid inclusion homogenization temperatures are compared with the estimated peak temperatures. However the possibility of a phase of higher temperatures during the Late Devonian/ Early Carboniferous is suggested by the apatite fission track results, in which case sulphide mineralization may reflect ambient regional temperatures if it formed at that time. The absence of enhanced annealing effects in detrital apatites proximal to Pb‐Zn deposits suggests that either sulphide mineralization preceded or accompanied peak regional temperatures suspected during the Late Devonian/Early Carboniferous, or that the mineralizing episodes were of too short a duration to significantly anneal fission tracks in apatite.  相似文献   

2.
This work presents fission‐track ages and thermal history modelling of apatite samples from two Brazilian alkaline formations: Alto Paranaíba and Ponta Grossa Arches. The apatite fission‐track ages obtained for Alto Paranaíba Arch agree with those determined by other radiometric dating methods presenting higher closure temperatures. The ages given by the fission‐track thermochronometer suggest that no strong tectonic event has occurred after Alto Paranaíba Formation during Upper Cretaceous. This event is also supported by thermal history modelling of this arch, which is characterized by fast cooling followed by residence at lower temperatures. On the other hand, apatite fission‐track ages from Ponta Grossa Arch are systematically lower than other radiometric ages, suggesting that at least one tectonic event occurred after Ponta Grossa Formation, around 130 Ma. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
相山铀矿田铀多金属成矿时代与成矿热历史   总被引:1,自引:1,他引:0  
林锦荣  胡志华  王勇剑  张松  陶意 《岩石学报》2019,35(9):2801-2816
相山铀矿田的铀多金属矿化主要可划分为碱性铀矿化、酸性铀矿化、铅锌银铜矿化和金矿化四种类型。通过沥青铀矿和矿化岩石U-Pb等时线、黄铁矿Rb-Sr等时线、绢云母~(40)Ar-~(39)Ar同位素年龄测定,结合铀多金属成矿特征研究,厘定了相山铀矿田铀多金属成矿时代,确定铀多金属矿化的成矿时序为:碱性铀矿化、铅锌银铜矿化、金矿化、酸性铀矿化。锆石裂变径迹研究表明,相山矿田铀多金属矿化样品的锆石裂变径迹峰值年龄与U-Pb、Rb-Sr和~(40)Ar-~(39)Ar同位素年龄一致性良好,裂变径迹年龄(峰值年龄)可以限定热液铀多金属成矿热事件时代。碱性铀成矿热事件的锆石裂变径迹峰值年龄为119. 8~125. 6Ma;金成矿热事件和铅锌银铜多金属成矿热事件的锆石裂变径迹峰值年龄为106. 1~113. 8Ma;酸性铀成矿热事件的锆石裂变径迹峰值年龄为86. 7~100. 0Ma;新发现一期锆石裂变径迹峰值年龄为66. 4~78. 6Ma的热事件,该期热事件可能为相山矿田最晚一期酸性铀成矿热事件。相山矿田66. 4~78. 6Ma的铀成矿热事件,与华南花岗岩型热液铀矿床的区域成矿热事件时代耦合,该发现对华南火山岩型铀矿成矿时代的重新认识,对火山岩型、花岗岩型铀矿床成矿统一性认识具有重要意义。  相似文献   

4.
Abstract. Ages for thirty adularia samples collected from various veins were in the Hishikari gold deposit determined by 40Ar/39Ar dating to constrain the timing of adularia‐quartz vein formation and to determine the temporal change in temperature of hydrothermal fluid. Plateau ages were obtained from all adularia samples, and significant excess 40Ar is not recognized from inverse isochrones. The duration of mineralization within individual veins was determined by adularia ages from the early and late stages of mineralization within the same vein. The durations of mineralization in the Daisen‐1, Daisen‐3, Hosen‐2 and Keisen‐3 veins in the Honko‐Sanjin zone were 7,000, 140,000, 160,000 and 170,000 years, respectively. The durations of mineralization in the Seisen‐2 and Yusen‐1–2 veins in the Yamada zones were 360,000 and 320,000 years, respectively. Mineralization lasted for a relatively longer period in individual veins at the Yamada zone. Mineralization ages from the Honko‐Sanjin zone range from 1.04 to 0.75 Ma, and most mineralization ages are concentrated in a short period from 1.01 to 0.88 Ma. In contrast, mineralization ages for the Yamada zone range from 1.21 to 0.64 Ma. These results indicate that fracturing and subsequent vein formation lasted for a longer period in the Yamada zone (about 570,000 years) compared with those events in the Honko‐Sanjin zone (about 290,000 years). The homogenization temperatures of liquid‐rich fluid inclusions in columnar adularia used for age determination were determined to be 223°C on average, and most of these temperatures range from 180 to 258d?C. No significant temporal change in homogenization temperature is recognized in this study. However, adularia in the Keisen veins indicated higher homogenization temperatures compared with elsewhere in the deposit, suggesting that the principal ascent of mineralizing hydrothermal fluid was via the Keisen veins.  相似文献   

5.
The Lavanttal Fault Zone (LFZ) is generally considered to be related to Miocene orogen-parallel escape tectonics in the Eastern Alps. By applying thermochronological methods with retention temperatures ranging from ~450 to ~40°C we have investigated the thermochronological evolution of the LFZ and the adjacent Koralm Complex (Eastern Alps). 40Ar/39Ar dating on white mica and zircon fission track (ZFT) thermochronology were carried out on host rocks (HRs) and fault-related rocks (cataclasites and fault gouges) directly adjacent to the unfaulted protolith. These data are interpreted together with recently published apatite fission track (AFT) and apatite (U-Th)/He ages. Sample material was taken from three drill cores transecting the LFZ. Ar release spectra in cataclastic shear zones partly show strongly rejuvenated incremental ages, indicating lattice distortion during cataclastic shearing or hydrothermal alteration. Integrated plateau ages from fault rocks (~76 Ma) are in parts slightly younger than plateau ages from HRs (>80 Ma). Incremental ages from fault rock samples are in part highly reduced (~43 Ma). ZFT ages within fault gouges (~65 Ma) are slightly reduced compared to the ages from HRs, and fission tracks show reduced lengths. Combining these results with AFT and apatite (U-Th)/He ages from fault rocks of the same fault zone allows the recognition of distinct faulting events along the LFZ from Miocene to Pliocene times. Contemporaneous with this faulting, the Koralm Complex experienced accelerated cooling in Late Miocene times. Late-Cretaceous to Palaeogene movement on the LFZ cannot be clearly proven. 40Ar/39Ar muscovite and ZFT ages were probably partly thermally affected along the LFZ during Miocene times.  相似文献   

6.
伊犁盆地白垩纪剥露事件的裂变径迹证据   总被引:6,自引:0,他引:6  
本文利用砂岩中磷灰石的裂变径迹方法, 研究了伊犁盆地中生代抬升-剥露事件。根据磷灰石裂变径迹测年结果, 开展了温度-时间热模拟反演研究, 结果揭示出伊犁盆地在115~95Ma期间存在一期重要的抬升-剥露冷却事件, 剥蚀量至少可达1.8km, 剥蚀速率至少为0.09mm/a。区域资料对比分析表明中晚白垩世的抬升剥露事件, 在天山地区乃至整个新疆的造山带普遍存在。   相似文献   

7.
塔里木盆地北部萨瓦甫齐及塔里克地区4个样品的磷灰石裂变径迹测年以及热史反演结果显示,两个地区的隆升时代不同,其中萨瓦甫齐地区裂变径迹年龄为3.5~3.9Ma,而塔里克地区的裂变径迹年龄为53~59Ma。热史分析揭示出岩体至少记录了自晚白垩世以来的3个显著冷却阶段。同时,结合前人对塔北中新生代隆升剥蚀研究结果,重点对塔北地区中新生代构造隆升阶段进行了详细研究与划分,结合新疆中新生代砂岩型铀成矿年龄,提出了对塔北地区中新生代构造演化与砂岩型铀成矿作用的新认识。  相似文献   

8.
Fission track dating was applied to analyze the 20 samples from Nyainrong microcontinent, and we obtained 20 apatite and 15 zircon fission track ages. The results show single population grain ages with a single mean age and associated central ages mainly ranging from 108±7Ma to 35±4Ma.Their mean track lengths are 12.2–13.9 μm with a single peak. Zircon fission track age range from 78±3 Ma to 117±4 Ma. The results represented the two tectonic uplift events in the study area, namely the Cretaceous and Paleogene periods. According to thermal history modeling results, uplifting rates of two tectonic events is 0.31–0.1 mm/a and 0.07–0.04 mm/a respectively. Combined with field condition and study results, it is suggested that the Cretaceous tectonic uplift event was related to the closure ocean basin caused by Qaingtang–Lhasa collision, and the Paleogene tectonic uplift event was related to the south to thrust system caused by Indo–Asian collision.  相似文献   

9.
Life spans and thermal evolution of hydrothermal systems are of fundamental metallogenic importance. We were able to establish the chronology and cooling history of the Zaldívar porphyry copper deposit (Northern Chile) by applying a combination of different isotopic dating methods in minerals with different closure temperatures, including 40Ar/39Ar geochronology and zircon fission track thermochronology, together with fluid inclusion thermometry and previous published U–Pb zircon geochronology. The hydrothermal mineralization in the Zaldívar deposit is genetically related to the Llamo Porphyry unit. Samples of igneous biotites from this intrusion yielded 40Ar/39Ar plateau ages between 35.5 ± 0.7 and 37.7 ± 0.4 Ma defining a weighted average of 36.6 ± 0.5 Ma (2σ). In contrast, one sample from the Zaldívar porphyry, one from the andesites, and two from the Llamo porphyry yielded considerably younger fission track ages of approximately 29 Ma with a weighted mean for all ages of 29.1 ± 1.7 Ma (2σ). Thermal and compositional constraints for the hydrothermal system in the Zaldívar deposit from fluid inclusions thermometry show that at least three fluid types broadly characterize two main hydrothermal episodes during the evolution of the deposit. The main mineralization and alteration event is characterized by high temperature (above 320°C) hypersaline fluids (salinity between 30 and 56 wt.% NaCl equivalents) coexisting with low-density gas-rich inclusions (salinity less than 17 wt.% NaCl equivalents) that homogenizing into the gas phase at temperatures above 350°C. The second episode corresponds to a low-temperature event which is characterized by liquid-rich fluid inclusions that homogenize into the liquid phase at temperatures ranging from 200°C to 300°C with salinities lower than 10 wt.% NaCl equivalents. The 40Ar/39Ar data (36.6 ± 0.5 Ma, weighted average) obtained from igneous biotites represent the minimum age for the last high-temperature (above 300°C) hydrothermal pulse. When compared with previously published U–Pb ages (38.7 ± 1.3 Ma) in zircons from the Llamo porphyry, a close temporal relationship between crystallization of the parental intrusion and the thermal collapse of the last high-temperature hydrothermal event is evident. Cooling took place from approximately 800°C (crystallization of the intrusive complex defined by zircon U–Pb ages) to below 300 ± 50°C (biotite 40Ar/39Ar closure temperature) within approximately 1.5 m.y. Because the thermal annealing of fission tracks in zircons occurs at temperatures of 240 ± 30°, the zircon fission track (ZFT) ages of 29.1 ± 1.7 Ma (2σ) mark the end of the thermal activity in the Zaldívar area, specifically the time when the whole area cooled below this temperature, well after the collapse of the main hydrothermal event in the Zaldívar porphyry copper deposit. This cooling age roughly coincides with the age defined for the emplacement of dacitic dikes at 31 ± 2.8 Ma (2σ) (published K–Ar whole rock), 5 km south of the Zaldívar deposit, in the Escondida area. This late magmatic pulse probably is responsible for high heat flow in the Zaldívar deposit as late as 29 Ma. There is no evidence that the low temperature hydrothermal pulse recognized by fluid inclusion studies is related to this thermal event. The zircon fission track cooling ages are interpreted to be related to the time lag required for complete relaxation of the perturbation of the isotherms in the geothermal field imposed by the intrusion of magmatic bodies, with or without any association with low temperature hydrothermal activity.  相似文献   

10.
Movement within the Earth’s upper crust is commonly accommodated by faults or shear zones, ranging in scale from micro-displacements to regional tectonic lineaments. Since faults are active on different time scales and can be repeatedly reactivated, their displacement chronology is difficult to reconstruct. This study represents a multi-geochronological approach to unravel the evolution of an intracontinental fault zone locality along the Danube Fault, central Europe. At the investigated fault locality, ancient motion has produced a cataclastic deformation zone in which the cataclastic material was subjected to hydrothermal alteration and K-feldspar was almost completely replaced by illite and other phyllosilicates. Five different geochronological techniques (zircon Pb-evaporation, K–Ar and Rb–Sr illite, apatite fission track and fluorite (U-Th)/He) have been applied to explore the temporal fault activity. The upper time limit for initiation of faulting is constrained by the crystallization age of the primary rock type (known as “Kristallgranit”) at 325 ± 7 Ma, whereas the K–Ar and Rb–Sr ages of two illite fractions <2 μm (266–255 Ma) are interpreted to date fluid infiltration events during the final stage of the cataclastic deformation period. During this time, the “Kristallgranit” was already at or near the Earth’s surface as indicated by the sedimentary record and thermal modelling results of apatite fission track data. (U–Th)/He thermochronology of two single fluorite grains from a fluorite–quartz vein within the fault zone yield Cretaceous ages that clearly postdate their Late-Variscan mineralization age. We propose that later reactivation of the fault caused loss of helium in the fluorites. This assertion is supported by geological evidence, i.e. offsets of Jurassic and Cretaceous sediments along the fault and apatite fission track thermal modelling results are consistent with the prevalence of elevated temperatures (50–80°C) in the fault zone during the Cretaceous.  相似文献   

11.
12.
Geochronology of oil-gas accumulation (OGA) is a challenging subject of petroleum geology in multi-cycle superimposed basins.By K-Ar dating of authigenic illite (AI) and fluid inclusion (FI) analysis combined with apatite fission track (AFT) thermal modeling,a case study of constraining the OGA times of the Permian reservoirs in northeast Ordos basin (NOB) has been conducted in this paper.AI dating of the Permian oil-gas-bearing sandstone core-samples shows a wide time domain of 178-108 Ma.The distribution of the AI ages presents 2-stage primary OGA processes in the Permian reservoirs,which developed in the time domains of 175-155 Ma and 145-115 Ma with 2-peak ages of 165 Ma and 130 Ma,respectively.The FI temperature peaks of the samples and their projected ages on the AFT thermal path not only present two groups with a low and a high peak temperatures in ranges of 90-78℃ and 125-118℃,respectively corresponding to 2-stage primary OGA processes of 162-153 Ma and 140-128 Ma in the Permian reservoirs,but also appear a medium temperature group with the peak of 98℃ in agreement with a secondary OGA process of c.~30 Ma in the Upper Permian reservoirs.The integrated analysis of the AI and FI ages and the tectono-thermal evolution reveals that the Permian reservoirs in the NOB experienced at least 2-stage primary OGA processes of 165-153 Ma and 140-128 Ma in agreement with the subsidence thermal process of the Mid-Early Jurassic and the tectono-thermal event of the Early Cretaceous.Then,the Upper Permian reservoirs further experienced at least 1-stage secondary OGA process of c.~30 Ma in coincidence with a critical tectonic conversion between the slow and the rapid uplift processes from the Late Cretaceous to Neogene.  相似文献   

13.
Apatite fission track thermochronology reveals that uplift and erosion occurred during the mid‐Cretaceous within the Bathurst Batholith region of the eastern highlands, New South Wales. Apatite fission track ages from samples from the eastern flank of the highlands range between ca 73 and 139 Ma. The mean lengths of confined fission tracks for these samples are > 13 μm with standard deviations of the track length distributions between 1 and 2 μm. These data suggest that rocks exposed along the eastern flank of the highlands were nearly reset as the result of being subjected to palaeotemperatures in the range of approximately 100–110°C, prior to being cooled relatively quickly through to temperatures < 50°C in the mid‐Cretaceous at ca 90 Ma. In contrast, samples from the western flank of the highlands yield apparent apatite ages as old as 235 Ma and mean track lengths < 12.5 μm, with standard deviations between 1.8 and 3 μm. These old apatite ages and relatively short track lengths suggest that the rocks were exposed to maximum palaeotemperatures between approximately 80° and 100°C prior to the regional cooling episode. This cooling is interpreted to be the result of kilometre‐scale uplift and erosion of the eastern highlands in the mid‐Cretaceous, and the similarity in timing of uplift and erosion within the highlands and initial extension along the eastern Australian passive margin prior to breakup (ca 95 Ma) strongly suggests these two occurrences are related.  相似文献   

14.
The Iwami epithermal silver deposit consists of Ag-Cu veins in a dacitic intrusive body at the deep portion of the Eikyu area, and veinlets with disseminated Ag mineralization in dacitic tuff breccia at a shallow portion of the Fukuishi area. Hydrothermal alteration associated with the silver mineralization is characterized by intense potassium metasomatism with oxidizing conditions. An illite zone occurs around the pathways of uprising fluids in both the Eikyu and Fukuishi areas. It grades laterally into the illite/smectite zone, which is surrounded by a broad smectite zone. Because of boiling, abundant adularia associated with silver mineralization overlaps on the altered tuff breccia in the Fukuishi area. The alteration zoning suggests that the western Eikyu area and the eastern Fukuishi area belong to a single hydrothermal system. The data of fluid inclusion microthermometry indicate that the temperatures range 220–270°C, and salinities range 5–7 wt percent NaCl equivalent for the silver mineralization at the upper portion in the Eikyu area and the lower portion in the Fukuishi area. Radiometric ages for volcanic rocks in the area range from 2.19 to 1.64 Ma, and the dacitic intrusion formed at approximately 1.6 Ma. The silver-dominant mineralizing hydrothermal fluids system was active around 1.44 to 1.07 Ma, which formed the Eikyu Ag-Cu veins at depth, and the Fukuishi Ag ores at the shallower portion.  相似文献   

15.
The Bayan Obo REE‐Nb‐Fe deposit in Inner Mongolia, China, consists of later REE‐mineralizing fluorocarbonate veins cutting the earlier banded and massive ores in the deposit. Samarium–neodymium dating using the minerals including huanghoite and rubidium–strontium dating using single‐grain biotites both from the later veins show concordant isochrons corresponding to 442 ± 42 Ma (2σ uncertainty) and 459 ± 41 Ma, respectively. The isochron ages suggest that the later REE vein mineralization took place during the middle Paleozoic at Bayan Obo, consistent with geological observations and age data previously reported.  相似文献   

16.
喜马拉雅造山带晚新生代构造隆升的裂变径迹证据   总被引:14,自引:2,他引:12  
喜马拉雅造山带的隆升,在地质学研究中是一个非常让人感兴趣的问题,为了对其进行定量研究,揭示隆升历史及幅度等相关问题,运用磷灰石、锆石裂变径迹法对研究区淡色花岗岩进行了分析,所取样品的裂变径迹年龄位于17.0~5.7 Ma之间,小于其地层时代或侵入年龄(40~17 Ma),表明研究区喜马拉雅造山带的强烈隆升开始于晚新生代.用磷灰石裂变径迹年龄来计算可知,研究区内花岗岩5.7 Ma以来的冷却速率和剥蚀速率分别为18.421 ℃/Ma和0.526 mm/a.5.7~9.2 Ma间的相对抬升与剥蚀速率为0.229 mm/a,9.2~17.0 Ma间的相对抬升与剥蚀速率为0.032 mm/a.用锆石裂变径迹年龄来计算知,研究区内花岗岩16.2 Ma以来的冷却速率和剥蚀速率分别为12.963 ℃/Ma和0.370 mm/a,冷却速率和剥蚀速率均小于用磷灰石计算的结果.因此说喜马拉雅造山带从9.2 Ma到现在隆升和剥蚀的速率是处于加快的状态.   相似文献   

17.
Using low‐temperature thermochronology on apatite and zircon crystals, we show that the western Reguibat Shield, located in the northern part of the West African Craton, experienced significant cooling and heating events between Jurassic and present times. The obtained apatite fission track ages range between 49 and 102 Ma with mean track lengths varying between 11.6 and 13.3 μm and Dpar values between 1.69 and 3.08 μm. Zircon fission track analysis yielded two ages of 159 and 118 Ma. Apatite (U–Th)/He uncorrected single‐grain ages range between 76 and 95 Ma. Thermal inverse modelling indicates that the Reguibat Shield was exhumed during the Early Cretaceous, Late Cretaceous, Palaeocene–Eocene and Quaternary. These exhumation events were coeval with regional tectonic and geodynamic events, and were probably driven by a combined effect of plate tectonics and mantle dynamics.  相似文献   

18.
The Sanqiliu uranium deposit belongs to a uranium ore system in Motianling district. It is the oldest uranium deposit in South China. Primary uranium mineralization occurred almost simultaneously with the emplacement of the host granites and subsequent dykes, and it has a relatively high grade of uranium (0.421%). We clarify the age of mineralization and investigate the cooling history through new pitchblende U–Pb and apatite fission‐track thermochronology. The pitchblende U–Pb results indicate that uranium mineralization occurred at ~801–759 Ma. Fractionation of uranium and lead at ~374–295 Ma is interpreted as remobilization and resetting of the original uranium. The Motianling area has apatite fission‐track ages of 57 to 18 Ma. By combining our results with previous work, we conclude that the deposit cooled slowly and was exposed at the surface during the Cenozoic. The timing and depth of exhumation helped to preserve and avoid erosion of the uranium deposit, and highlight the potential for regional uranium exploration.  相似文献   

19.
1 IntroductionThe Yan-Liao orogenic belt lies in the northern segmentof the North China Block (NCB) (Fig. 1). During Mesozoicto Cenozoic time, it experienced intense tectono-magmaticactivation, accompanied by the formation ofintracontinental basins and widespread magmatism and is avery important area to study continental dynamics andMeso-Cenozoic tectonic evolution in eastern China. Mostof previous work in this area has focused on the formationof basement, structural style and volcano-se…  相似文献   

20.
Iron oxide–apatite deposits are present in Upper Eocene pyroxene-quartz monzonitic rocks of the Zanjan district, northwestern Iran. Mineralization occurred in five stages: (1) deposition of disseminated magnetite and apatite in the host rock; (2) mineralization of massive and banded magnetite ores in veins and stockwork associated with minor brecciation and calcic alteration of host rocks; (3) deposition of sulfide ores together with potassic alteration; (4) formation of quartz and carbonate veins and sericite, chlorite, epidote, silica, carbonate, and tourmaline alteration; and (5) supergene alteration and weathering. U–Pb dating of monazite inclusions in the apatite indicates an age of 39.99?±?0.24 Ma, which is nearly coeval with the time of emplacement of the host quartz monzonite, supporting the genetic connection. Fluid inclusions in the apatite have homogenization temperatures of about 300 °C and oxygen isotopic compositions of the magnetite support precipitation from magmatic fluids. Late-stage quartz resulted from the introduction of a cooler, less saline, and isotopically depleted fluid. The iron oxide–apatite deposits in the Tarom area of the Zanjan district are typical of a magmatic–hydrothermal origin and are similar to the Kiruna-type deposits with respect to mineral assemblages, fabric and structure of the iron ores, occurrence of the ore bodies, and wall rock alteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号