首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Karoo Supergroup outcropst in the mid-Zambezi Valley, southern Zambia. It is underlain by the Sinakumbe Group of Ordovician to Devonian age. The Lower Karoo Group (Late Carboniferous to Permian age) consists of the basal Siankondobo Sandstone Formation, which comprises three facies, overlain by the Gwembe Coal Formation with its economically important coal deposits, in turn overlain by the Madumabisa Mudstone Formation which consists of lacustrine mudstone, calcilutite, sandstone, and concretionary calcareous beds. The Upper Karoo Group (Triassic to Early Jurassic) is sub-divided into the coarsely arenaceous Escarpment Grit, overlain by the fining upwards Interbedded Sandstone and Mudstone, Red Sandstone; and Batoka Basalt Formations.Palynomorph assemblages suggest that the Siankondobo Sandstone Formation is Late Carboniferous (Gzhelian) to Early Permian (Asselian to Early Sakmarian) in age, the Gwembe Coal Formation Early Permian (Artinskian to Kungurian), the Madumabisa Mudstone Late Permian (Tatarian), and the Interbedded Sandstone and Mudstone Early or Middle Triassic (Late Scythian or Anisian). The marked quantitative variations in the assemblages are due partly to age differences, but they also reflect vegetational differences resulting from different paleoclimates and different facies.The low thermal maturity of the formations (Thermal Alteration Index 2) suggests that the rocks are oil prone. However, the general scarcity of amorphous kerogen, such as the alga Botryococcus sp., and the low proportion of exinous material, indicates a low potential for liquid hydrocarbons. Gas may have been generated, particularly in the coal seams of the Gwembe Coal Formation, that are more deeply buried.  相似文献   

2.
Sediments of the Upper Carboniferous to Lower Jurassic Karoo Supergroup (∼ 4.5 km thick) were deposited in the mid-Zambezi Valley Basin, southern Zambia. The Upper Palæozoic Lower Karoo Group in this area ends with a Late Permian sedimentary unit called the Madumabisa Mudstone Formation. The formation is 700 m thick and comprises four lithofacies grouped into two facies assemblages, collectively interpreted as lacustrine deposits. Sediments of a massive mudrock facies assemblage were deposited from suspension, probably from sediment-laden rivers entering a lake. Concretionary calcilutite beds probably mark the positions of palæosediment-water interfaces where calcite was precipitated. A laminated mudrock facies assemblage is attributed to lacustrine deposition from inflowing rivers at the lake margins and shallow parts of the lake. Repeated thickening-upward cycles are evidence of upward shallowing, interrupted by events of more abrupt deepening. Sandstone interbeds are interpreted as fluvial deposits laid down during low lake stands, with cross-lamination and asymmetrical ripples indicating current rather than wave deposition. A fossil assemblage of ostracods, bivalves, gastropods, fish scales, the alga Botryococcus sp. and fossil burrows is consistent with a lacustrine origin for the formation.  相似文献   

3.
The Lough Foyle Basin is a half-graben that straddles the border between Northern Ireland and the Republic of Ireland and contains sediments that range in age from Lower Carboniferous to Holocene. The basin’s post-rift succession is represented by sediments of the Penarth Group and Lias Group. The lithostratigraphy and biostratigraphy of that interval are revised using new borehole material and existing outcrop. Palaeontological data provide a chronostratigraphic framework and aid palaeoenvironmental interpretations. Foraminifera, ostracods, palynomorphs indicate a nearshore, marginal marine depositional setting throughout much of the Rhaetian with a more marine, shelf and nearshore depositional setting for the Lias Group. The Penarth Group succession is similar to that elsewhere in Northern Ireland but the Lias Group (Waterloo Mudstone Formation) differs in that five distinct members can be recognised (Clooney Mudstone, Drummans Siltstone, Gortmore Mudstone, Tircreven Sandstone and Ballyleighery Mudstone), four of which are newly described. The deltaic and shelf sandstones of the Tircreven Sandstone Member are the only such examples preserved in the Jurassic strata of Northern Ireland and are some of the oldest in the Jurassic of the UK and Ireland, providing evidence of the proximity of the nearby Irish Landmass and representing a useful comparison for Early Jurassic sandstone reservoirs in offshore basins.  相似文献   

4.
The depositional megasequence of the Tanzanian Karoo resulted from an intracratonic phase of sedimentation prevailing during the maximum extension of Pangea in Late Palaeozoic and Triassic times. Karoo rocks are contained in a number of basins, extending from northeastern-most Tanzania to Lake Nyasa and beyond into neighbouring countries. The type section of the Tanzanian Karoo is the Songea Group of the Ruhuhu Basin, situated at the NE-shoulder of the Nyasa Rift. The succession, which reaches a thickness of more than 3000 m, is of Late Carboniferous to Mid-Triassic age. It exhibits five distinctive sequences, each commencing with rudaceous sediments and fining up towards the top. A sixth sequence of Middle to Late Triassic age is recognized in the Selous Basin, NE of the Ruhuhu Basin. The climate ranged from cold, semi-arid conditions in the Stephanian and Asselian to generally warm to hot climates, with fluctuating precipitation in the remaining Permian and Triassic. A marked peak in precipitation is evidenced in the Early Triassic. Each of the sedimentary sequences reflects tectonic movements related to the formation of non-volcanic rift systems during the Permian, and to detachment faults and crustal foundering during the Triassic. The intracratonic Karoo rifts were part of the Malagassy Trough, a large chasm emanating from the Tethyan margin of Gondwana in early Permian times. The Karoo rifts were terminated by their transformation to a pericratonic, passive margin in the Early Jurassic.  相似文献   

5.
Stable carbon isotopes were used together with molecular markers to constrain genetic relationships between sandstone extracts and potential source rocks in the pre-Tertiary in the Huanghua Depression, North China. Comparison of the extracts from Permo-Carboniferous terrigenous mudstones and Ordovician marine carbonates indicated that their prominent differences are in stable carbon isotopes, molecular markers and thermal maturity. Although the extracts of the Mesozoic and Lower Permian Xiashihezi Formation sandstones have some similar iso-topic characteristics, molecular markers data provide a good correlation between the Upper Jurassic-Lower Cretaceous oils and the Upper Carboniferous Taiyuan Formation mudstones, and between the Lower Permian Xiashihezi Formation oils and the Lower Permian mudstones. The results showed that the Upper Jurassic-Lower Cretaceous sandstone oils were derived chiefly from the Upper Carboniferous Taiyuan Formation terrigenous mudstones and that the Lower Permian Xiashihezi Formation oils were sourced from the Lower Permian Shanxi Formation and Xiashihezi Formation terrigenous mudstones.  相似文献   

6.
The flora of Gondwanan southern Africa is represented in the rock record by micro-fossils, macro-fossils and petrified woods. All these types of fossils are seldom preserved together in any one particular facies because of taphonomic and preservational biases. In order to obtain as accurate a picture as possible of the woody vegetation, both the fossil woods and other macroplant fossils, such as leaf impressions, fructifications and cuticle, of woody plants, have been correlated. This was done for each Formation in the Karoo Supergroup in order to illustrate the changes in diversity of woody vegetation over time. Sediments of the Karoo Supergroup represent the terrestrial fossil record of the period Upper Carboniferous to the Lower Cretaceous when Africa finally separated from South America. In the Upper Carboniferous to Lower Permian (Dwyka Formation) there are at least five described genera of woods from South Africa and Namibia. Early to Middle Permian woods (Ecca Group) are a little more diverse with six genera, representing the glossopterids, cordaitaleans and possibly other seed fern groups. Late Permian to Early Triassic (Beaufort Group) woods show very little change in diversity in spite of the major floral and biotic turnover evident from the rest of the fossil record. Although the Late Triassic (Molteno Formation) macro-flora has been shown to be an example of explosive diversification, the generally poorly preserved woods do not reflect this. Lower Jurassic fossils (Clarens Formation) are also poorly preserved but have araucarian characteristics. Early Cretaceous woods represent the Araucariaceae, Cheirolepidiaceae and Podocarpaceae with a number of species. The diversity of the woods has not changed as much as the rest of the floral components in southern Africa from the Late Carboniferous to the Early Cretaceous. Possible reasons for this apparent stasis are the conservative nature of wood, functional restrictions, limitations of suitable conditions for petrifications and the fact that very little research has been done on southern African woods.  相似文献   

7.
通过岩心、薄片观察,从岩石学特征入手,结合测井资料,对塔里木盆地巴楚—麦盖提地区石炭系的陆源碎屑—碳酸盐混积岩和混积层系进行了研究。根据混积强度将混积岩划分为混积型碎屑岩、混积型碳酸盐岩和高度混积岩。巴楚组下泥岩段和中泥岩段发育混积型碎屑岩,巴楚组生屑灰岩段、中泥岩段和小海子组发育混积型碳酸盐岩,卡拉沙依组上泥岩段、巴楚组下泥岩段及巴什托局部地区的中泥岩段发育高度混积岩。高度混积岩出现在海退期沉积的碎屑岩段,代表了陆源碎屑—碳酸盐强烈混合的过渡性沉积环境。研究区石炭系可识别出4个三级层序,混积层系主要发育在海侵体系域早期和高位体系域晚期,以间断混合和相缘混合为主。研究认为混积强度是评价混合沉积环境性质的主要参数,并将其划分为4级。下泥岩段存在混积强度达3级以上的混积界面,能用于地层对比。最后,结合混合沉积特征讨论了构造运动和海平面变化对研究区石炭系层序组以上的混合沉积的控制作用。  相似文献   

8.
阳泉矿区煤系地层形成于海陆交互相的过渡环境,其煤层的形成、赋存、厚度变化、分布均受沉积环境的控制和影响。根据分析成煤环境、预测煤层赋存变化情况,为煤炭资源补勘和开采生产提供指导  相似文献   

9.
The sequence of approximately 1300 m is divided by a major unconformity (Middle Devonian) into the thick Lower Old Red Sandstone (Siluro-Devonian), resting disconformably on Ludlovian (Silurian) marine strata, and the much thinner Upper Old Red Sandstone (Upper Devonian) overlain by the Carboniferous.The Lower Old Red Sandstone commences with littoral sediments (Downton Castle Formation) followed by tidal mud-flat deposits (Temeside Formation) formed after a brief marine transgression. The predominant remainder of the sequence (Ledbury Formation, Ditton Group, Abdon Group, Woodbank Group), characterized by fining-upwards cyclothems, records the establishment during a marine regression of extensive and persistent alluvial plains. Prior to Ditton Group times, detritus came from relatively distant regionally metamorphosed rocks lying to the north or west of the Clee Hills. Subsequently, apparently as the result of river-capture or drainage-reversal consequent on the commencement of the final (mid-Devonian) phase of Caledonian movement, high-level crustal rocks closer at hand (largely Wales) replaced the metamorphics as the sources of sediment, the earlier Lower Old Red Sandstone itself being recycled. To judge from the calcretes preserved in the alluvial formations, the area lay near the Equator and experienced a relatively dry hot climate.The Upper Old Red Sandstone likewise reveals fining-upwards cyclothems. The overlying Carboniferous rocks evidence the renewed marine transgression of the area, after the removal of the effects of the mid-Devonian movements.  相似文献   

10.
晚石炭世末期-三叠纪东澳大利亚的鲍恩-冈尼达-悉尼(Bowen- Gunnedah-Sydney)盆地系是位于拉克伦(Lachlan)褶皱带和新英格兰(New England)褶皱带之间的一个长条形的构造盆地。从北部的冈尼达(Gunnedah)到南部的巴特曼斯(Batemans)湾,悉尼盆地是鲍恩-冈尼达-悉尼盆地系南端的一个次级盆地。悉尼盆地的二叠系包括河流、三角洲、滨浅海沉积岩和火山岩地层。南悉尼盆地的西南部二叠系不整合覆盖于变形变质的拉克伦(Lachlan)褶皱带之上。二叠系由下部的塔拉特郎(Tallaterang)群、中部的肖尔黑文群(Shoalhaven Group)和上部的伊勒瓦拉煤系(Illawarra Coal Measures)组成。从晚石炭世末到中三叠世悉尼盆地经历了弧后扩张到典型的前陆盆地的不同阶段:弧后扩张阶段、被动热沉降阶段和挤压挠曲负载阶段。  相似文献   

11.
The Karoo Supergroup in Madagascar is subdivided into three lithostratigraphical units: the Late Carboniferous-Early Permian Sakoa Group; the Late Permian-Middle Triassic Sakamena Group; and the Triassic-Early Jurassic Isalo Group. The Sakamena Group is fairly well exposed in the southern Morondava Basin, where it is approximately 4000 m thick. The Sakamena Group is separated from the Sakoa Group by an angular unconformity. The Lower Sakamena Formation is characterised by two major facies associations: (1) interbedded muddy conglomerates and coarse sandstones; and (2) interbedded sandstones and mudstones, which were deposited in a rejuvenated rift setting by coarse-grained fluvial systems and debris flows on the rift margins. In the Vatambe area, facies represent fandelta deposition in a saline lake or tongue of the ocean. The Middle Sakamena Formation comprises three major facies: (1) laminated mudstones and sandstones; (2) sandstones; and (3) mudstones. The Middle Sakamena facies were deposited by low gradient meandering streams and in shallow lakes. The Upper Sakamena Formation was deposited in similar environments, except that it is comprised predominantly of red beds. The Isalo Group consists predominantly of coarse-grained sandstones (up to 6000 m thick). These sandstones were deposited by braided streams with the coarse detritus derived from a structural uplift in the east.  相似文献   

12.
With the aim of constraining the influence of the surrounding plates on the Late Paleozoic–Mesozoic paleogeographic and tectonic evolution of the southern North China Craton (NCC), we undertook new U–Pb and Hf isotope data for detrital zircons obtained from ten samples of upper Paleozoic to Mesozoic sediments in the Luoyang Basin and Dengfeng area. Samples of upper Paleozoic to Mesozoic strata were obtained from the Taiyuan, Xiashihezi, Shangshihezi, Shiqianfeng, Ermaying, Shangyoufangzhuang, Upper Jurassic unnamed, and Lower Cretaceous unnamed formations (from oldest to youngest). On the basis of the youngest zircon ages, combined with the age-diagnostic fossils, and volcanic interlayer, we propose that the Taiyuan Formation (youngest zircon age of 439 Ma) formed during the Late Carboniferous and Early Permian, the Xiashihezi Formation (276 Ma) during the Early Permian, the Shangshihezi (376 Ma) and Shiqianfeng (279 Ma) formations during the Middle–Late Permian, the Ermaying Group (232 Ma) and Shangyoufangzhuang Formation (230 and 210 Ma) during the Late Triassic, the Jurassic unnamed formation (154 Ma) during the Late Jurassic, and the Cretaceous unnamed formation (158 Ma) during the Early Cretaceous. These results, together with previously published data, indicate that: (1) Upper Carboniferous–Lower Permian sandstones were sourced from the Northern Qinling Orogen (NQO); (2) Lower Permian sandstones were formed mainly from material derived from the Yinshan–Yanshan Orogenic Belt (YYOB) on the northern margin of the NCC with only minor material from the NQO; (3) Middle–Upper Permian sandstones were derived primarily from the NQO, with only a small contribution from the YYOB; (4) Upper Triassic sandstones were sourced mainly from the YYOB and contain only minor amounts of material from the NQO; (5) Upper Jurassic sandstones were derived from material sourced from the NQO; and (6) Lower Cretaceous conglomerate was formed mainly from recycled earlier detritus.The provenance shift in the Upper Carboniferous–Mesozoic sediments within the study area indicates that the YYOB was strongly uplifted twice, first in relation to subduction of the Paleo-Asian Ocean Plate beneath the northern margin of the NCC during the Early Permian, and subsequently in relation to collision between the southern Mongolian Plate and the northern margin of the NCC during the Late Triassic. The three episodes of tectonic uplift of the NQO were probably related to collision between the North and South Qinling terranes, northward subduction of the Mianlue Ocean Plate, and collision between the Yangtze Craton and the southern margin of the NCC during the Late Carboniferous–Early Permian, Middle–Late Permian, and Late Jurassic, respectively. The southern margin of the central NCC was rapidly uplifted and eroded during the Early Cretaceous.  相似文献   

13.
四川盆地是一个大型复合含气为主、含油为辅的叠合盆地。多旋回的沉积演化过程,孕育了多套海相、陆相烃源岩,且不同区域发育不同成因类型的烃源岩。目前下寒武统、志留系、下二叠统、上二叠统和上三叠统五套主要烃源岩均已进入高演化阶段,并以成气为主。由于多阶成烃、混源聚集和后期遭受TSR次生蚀变等成藏过程的复杂性使得天然气组分较干、碳同位素组成复杂,常规方法进行气源对比较困难。文中在对四川盆地沉积演化背景分析的基础上,通过对有效烃源岩发育特征和分布规律的探讨,分区域进行了气藏的分析,特别是对天然气组分、非烃组成(H2S、CO2、N2等)和碳同位素等资料综合研究的基础上,基本确定了各区块各含气层系的主力源岩。认为川东主力产层石炭系、三叠系和二叠系的气源分别为志留系、上二叠统龙潭组和下二叠统;川南气区震旦系灯影组、寒武系、二叠系和三叠系产层的气源分别主要来自下寒武统,上、下二叠系源岩;川西气区侏罗系和三叠系须家河组主产层的气源主要来自三叠系须家河组煤系烃源岩,下二叠统和嘉陵江组产层气源则可能主要来自二叠系;川中主要为产油区,下侏罗统自流井群原油应来自侏罗系源岩,浅部层系气源为上三叠统须家河组的陆相烃源岩,深部气藏则为寒武系烃源岩。由于川东北部烃源岩发育层数最多,且质量都较好,因此川东北部是烃类最富集的地区,也是勘探潜力最大的地区。  相似文献   

14.
我国腐植煤的还原性质及其与沉积环境的关系   总被引:3,自引:2,他引:3  
赵师庆 《沉积学报》1984,2(2):53-65
一、不同还原性腐植煤的基本特征在研究华北聚煤区东部晚古生代太原组(C3)和山西组(P11)煤性质差别及显微特征的基础上,作者认为除煤岩成分和变质程度外,还存在着影响煤质的第三个成因因素--还原性质。  相似文献   

15.
藏南康马地区石炭系及其下伏变质构造地层序列   总被引:1,自引:0,他引:1  
西藏康马地区位于拉轨岗日构造带南缘中部。前人对该地区的康马穹窿及周围地层进行了大量研究,但长期以来对该区石炭系及以下变质构造地层的层序及时代认识不清,致使拉轨岗日构造带前石炭纪的地质演化史成为空白。根据1∶25万江孜县幅、亚东县幅区域地质调查工作取得的地层学资料及古生物、岩石组合特征,对康马附近石炭系及其以下地层进行了重新厘定。厘定后的地层单元分别为前奥陶系郎巴群(POl)、奥陶系则果群(Oz)、下石炭统雇孜组(C1g)。下石炭统雇孜组(C1g)与上覆早二叠世破林浦组(P1p)之间为伸展不整合接触,与奥陶系则果群(Oz)之间为伸展拆离断层接触,前奥陶系郎巴组(POl)与奥陶系则果群(Oz)之间为伸展不整合接触,与下伏康马岩体为伸展拆离断层接触。  相似文献   

16.
通过野外地质露头和钻孔岩心观察以及对大量钻孔岩心编录和测井解释资料的综合统计分析,笔者将伊犁盆地南缘西段中下侏罗统水西沟群划分出4个大的沉积体系:八道湾组(J1b)的冲积扇沉积体系、三工河组—西山窑组一段的辫状河三角洲沉积体系、西山窑组二段至三段的浅湖沼泽沉积体系和西山窑组四段至五段的曲流河三角洲沉积体系。文中详细讨论了伊犁盆地南缘西段水西沟群各沉积体系的沉积相特征,研究了水西沟群沉积体系及沉积相与砂岩型铀矿的成矿关系,指出辫状河三角洲沉积体系是砂岩型铀矿成矿最有利的沉积体系,三角洲前缘河口坝及席状砂亚相、三角洲平原辫状河流亚相、扇中-扇端亚相及三角洲平原分流河道亚相是砂岩型铀矿主要的控矿沉积相。  相似文献   

17.
论塔里木盆地“东河砂岩”的地质时代   总被引:15,自引:2,他引:15  
系统总结了关于近年来塔里木盆地重要储油层——“东河砂岩”年代研究所取得的主要进展 ,包括 1)“东河砂岩”中发现晚泥盆世孢子和胴甲鱼化石 ;  2 )含砾砂岩段发现晚泥盆世盾皮鱼化石 ;  3)下泥岩段下部发现晚泥盆世孢子 ;  4 )下泥岩段上部和生屑灰岩段分别发现石炭纪初期第一、二孢子组合带 ;  5 )生屑灰岩段发现石炭纪初期的牙形刺 ;  6 )化学 -生物地层学研究结果指示 ,泥盆系 -石炭系界线应在“东河砂岩”顶面之上。据此 ,“东河砂岩”的时代应为泥盆纪。  相似文献   

18.
北天山上石炭统奇尔古斯套组中发现早二叠世珊瑚化石   总被引:3,自引:1,他引:3  
新近于北天山艾维尔沟北原划为上石炭统的奇尔古斯套组火山岩系所夹灰岩中,采到了结节脊板杯珊瑚Cy-athocariniatuberculataSoshkina,其时代属于早二叠世,表明该区奇尔古斯套组的一部分应属下二叠统。另外,于头屯河原划为上石炭统的奇尔古斯套组火山-碎屑岩系所含灰岩砾石中,采到伊万诺夫格鲁特珊瑚GrootiaivanoviDubrolyubova,时代属于晚石炭世,与达拉阶(即莫斯科阶)相当,故地层时代应晚于晚石炭世达拉期,根据区域对比推测该地层的一部分也应属于下二叠统。艾维尔沟一带早二叠世珊瑚化石的发现,表明北天山石炭纪强烈的拉张事件可以持续到早二叠世。  相似文献   

19.
甘蒙北山地区下石炭统绿条山组 时代修正及其构造意义   总被引:9,自引:1,他引:8  
甘肃—内蒙古北山地区位于中亚造山带中段,其晚古生代洋盆最终闭合时间倍受关注且久有争议。早石炭世是该区洋陆转换的关键时期之一,下石炭统下部绿条山组与下伏的下、中泥盆统之间的角度不整合被认为是该区构造隆升的主要证据之一。但由于研究程度限制,绿条山组的时代尚有争议,一定程度上制约了该区构造演化的深入分析。北山北部甜水井北与碎石山剖面绿条山组火山岩的LA-ICP-MS锆石U-Pb年龄分别为296.8±3.5Ma与311.1±3.2Ma,产出晚石炭世巴什基尔期(Bashkirian)菊石Gastrioceras和Branneroceras,时代应修订为晚石炭世—早二叠世早期。研究区下泥盆统—上石炭统沉积充填及生物群落特征表明该区可能在晚石炭世由大陆边缘浅海演化至裂谷盆地,上石炭统与下、中泥盆统之间的角度不整合代表洋陆转化造成的长时间隆升剥蚀。  相似文献   

20.
Abstract

This article reports the depositional environment and provenance for the Tianquanshan Formation in the Longmuco–Shuanghu–Lancangjiang suture zone, and uses these to better understand the tectonic evolution of this region. Zircons in the andesite of the Tianquanshan Formation yielded concordia ages of 246, 247, and 254 Ma, indicating that the Tianquanshan Formation formed during the late Permian–Early Triassic. The Tianquanshan Formation consists of flysch and ocean island rock assemblages, indicating that the Longmuco–Shuanghu–Lancangjiang Palaeo-Tethys Ocean continued to exist as a mature ocean in the late Permian–Early Triassic. The detrital zircons in the greywackes of the Tianquanshan Formation yielded peak ages of 470–620, 710–830, 910–1080, 1450–1660, and 2400–2650 Ma, indicating the provenance of the Tianquanshan Formation was either Indian Gondwana or terranes that have an affinity with Indian Gondwana in the Tibetan Plateau (i.e. the Southern Qiangtang, Lhasa, and Himalayan terranes). The Ordovician quartzites, Carboniferous sandstones, Carboniferous–Permian diamictites, and the Upper Permian–Lower Triassic greywackes in the Southern Qiangtang, Lhasa, and Himalayan terranes all contain detrital zircons with youngest ages of ca. 470 Ma, indicating their source areas have been in a stable tectonic environment since the Ordovician, and this inference is supported by the continuous deposition in a littoral–neritic passive margin in these regions from the Ordovician to the lower Permian. Combining the present results with regional geological data, we infer that the Southern Qiangtang, Lhasa, and Himalayan terranes were all in a stable passive continental margin along the northern part of Indian Gondwana during the long period from the Ordovician to the early Permian. At early Permian, because of the opening of the Neo-Tethys Ocean, the tectonic framework of this region underwent a marked change to a rifting and active environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号