首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Total magnetic intensity and bathymetric surveys were carried out in the northern Bay of Bengal between 6° to 11° 45 N latitudes and east of 84° to 93° 30 E longitudes. The hitherto known 85° E Ridge is characterised as a subsurface feature by a large amplitude, positive magnetic anomaly surrounded by Mesozoic crust. A newly identified NE to NNESSW trending magnetic anomaly between 7° N, 87° 30 E and 10° 30 N, 89–90° E may be one of the unidentified Mesozoic lineations in the northern Bay of Bengal. The Ninetyeast Ridge is not associated with any recognizable magnetic anomaly. The Sunda Trough to the east of the Ninetyeast Ridge is characterised by a positive magnetic anomaly. A combined interpretation, using Werner deconvolution and analytical signal methods, yields basement depths ~ 10 km below sea level. These depths are in agreement with the seismic results of Curray (1991).Deceased 24 December 1991  相似文献   

2.
PCBs, DDT compounds and HCH isomers were detected in the air and surface waters of the North Pacific and Indian Oceans, including the Bering Sea, East China Sea, South China Sea, Bay of Bengal and the Arabian Sea. The general concentrations of each chlorinated hydrocarbon were as follows: water PCBs 0.1 to 1.0, DDT 0.01 to 1.0, HCH 1.0 to 10 ngl –1; air DDT 0.01 to 1.0, HCH 0.1 to 10 ng m–3. PCB concentrations in surface waters were slightly lower than those of the North Atlantic and North Sea previously reported, while DDT concentrations in the air and water were higher. Remarkably high concentrations of DDT and HCH were found in the air off the western coast of India. Also in the Pacific site off Central America, a fairly high concentration of DDT was observed in an air sample. These data suggest that large amounts of DDT and HCH are being used in the tropical zone, especially in southern Asia. Furthermore, high concentrations were observed both in the air and water of the Northwest Pacific between 30°N and 40°N latitude. There is a possibility that both pesticides are not only still being used in lower latitude countries but also in the mid-latitude ones of the Asian continent excluding Japan. In addition to this atmospheric circulation may also contribute to the concentration of these pesticides in the mid-latitudinal zone.  相似文献   

3.
Studies to date indirectly indicate that only a small percentage of the sediment discharged by the Huanghe (Yellow River) is presently transported from the Gulf of Bohai to the Huanghai (Yellow Sea). Direct measurements in early summer 1985 show low concentrations of suspended sediment east of 119°45E but high concentrations in Bohai Bay. Stokes drift associated with an amphidrome of the M2 tide may contribute to a northwestward transport of Huanghe sediment.  相似文献   

4.
Hekinian  R.  Juteau  T.  Gràcia  E.  Sichler  B.  Sichel  S.  Udintsev  G.  Apprioual  R.  Ligi  M. 《Marine Geophysical Researches》2000,21(6):529-560
The St. Paul F.Z. is a large structural domain made up of multiple transform faults interrupted by several Intra-Transform Ridge (ITR) spreading segments. Two regions were studied in details by submersible: (1) The ITR short (<20 km in length) segment near 0° 37N–25° 27W and 1° N–27° 42W and (2) The St. Peter and St. Paul's Rocks (SPPR) massif located at 29° 25W (¡3700 m depth). (1) The short ITR segments consist of a magma starved rift valley with recent volcanic activities at 4700 m depth. A geological profile made along the rift valley wall showed localized volcanics (basalts and dykes) which are believed to overlay and intrude the ultramafics. The geological setting and the high ultramafic/volcanic ratio suggest an extremely low magmatic supply and crustal-mantle uplift during lithospheric stretching and denudation. (2) The St. Peter and St. Paul's Rocks (SPPR) massif consists of a sigmoidal ridge within the active transform zone. The SPPR is divided into two different geological domains called the North and the South Ridges. The North Ridge consists of strongly tectonized fault scarps composed of banded and mylonitized peridotite, sporadic gabbros (3900–2500 m) and metabasalts (2700–1700 m). The South Ridge is less tectonized with undeformed, serpentinized spinel lherzolite (2000–1400 m) and basalts. Extensional motion and denudation accompanied by diapirism affected the South Ridge within a transform domain. Instead, the North Ridge was formed during an important strike-slip and faulting motion resulting in the uplifted portion of the St. Paul F.Z. transverse ridge. There is a regional compositional variation of the volcanics where E-MORBs and alkali basalts are produced on the SPPR massif and are comparable to the adjacent northern segments of the Mid-Atlantic Ridge. On the other hand, N and T- MORBs collected from the eastern part of the St. Paul F.Z. (25° 27W IRT) are similar to the volcanics from the southern segments of the MAR. The peridotites exposed in these provinces (SPPR and ITR) are similar in their REE and trace element distribution. Different degrees (3–15%) of partial melting of a mixed composite mantle consisting of spinel and amphibole bearing lherzolite veined with 5–40% clinopyroxenite gave rise to the observed MORBs and alkali basalts.  相似文献   

5.
In 1983 a combined SeaMARC I, Sea Beam swath mapping expedition traversed the East Pacific Rise from 13°20 N to 9°50 N, including most of the Clipperton Transform Fault at 10°15 N, and a chain of seamounts at 9°50 N which runs obliquely to both the ridge axis and transform fault trends. We collected temperature, salinity and magnetic data along the same track. These data, combined with Deep-Tow data and French hydrocasts, are used to construct a thermal section of the rise axis from 13°10 N to 8°20 N.Thermal data collected out to 25 km from the rise axis and along the Clipperton Transform Fault indicate that temperatures above the rise axis are uniformly warmer by 0.065°C than bottom water temperatures at equal depths off the axis. The rise axis thermal structure is punctuated by four distinct thermal fields with an average spacing of 155 km. All four of these fields are located on morphologic highs. Three fields are characterized by lenses of warmed water 20 km in length and 300 m thick. Additional clues to hydrothermal activity are provided in two cases by high concentrations of CH4, dissolved Mn and 3He in the water column and in another case by concentrations of benthic animals commonly associated with hydrothermal regions.We use three methods to estimate large-scale heat loss. Heat flow estimates range from 1250 MW to 5600 MW for one thermal field 25 km in length. Total convective heat loss for the four major fields is estimated to lie between 2100 MW and 9450 MW. If we add the amount of heat it takes to warm the rest of the rise axis (489 km in length) by 0.065.°C, then the calculated axial heat loss is from 12,275 to 38,525 MW (19–61% of the total heat theoretically emitted from crust between 0 and 1 m.y. in age).  相似文献   

6.
A total magnetic intensity, iso-magnetic map is presented and discussed. Between East London and Durban large east-west trending anomalies are known on land and can be traced onto the continental shelf but not beyond the slope. Elsewhere the continental shelf is characterized by a remarkably quiet magnetic field. A feature of the map is the linear anomaly, named the Cape Slope Anomaly, which is parallel to the continental margin and coincides approximately with the 68° small circle about the early pole of opening for the South Atlantic as given by Le Pichon and Hayes (1971). The anomaly is traced between 30°54S, 30°48E and 37°45S, 20°31E and is interpreted as occurring over the truncated edge of a semi-infinite, sub-horizontal, remanently magnetized plate in oceanic crust beyond the continental margin.Between 37°03S, 21°49E and 37°41S, 21°12E the Slope Anomaly occurs over a ridge named the Agulhas Ridge. A continuous seismic reflection profile over the ridge shows acoustic basement occurring under a cover of sediments. A two dimensional model study indicates that the basement materials may belong to the body causing the anomaly with the exception of the basement material that forms the landward peak of the ridge, which is non-magnetic.  相似文献   

7.
The sea floor of Fram Strait, the over 2500 m deep passage between the Arctic Ocean and the Norwegian-Greenland Sea, is part of a complex transform zone between the Knipovich mid-oceanic ridge of the Norwegian-Greenland Sea and the Nansen-Gakkel Ridge of the Arctic Ocean. Because linear magnetic anomalies formed by sea-floor spreading have not been found, the precise location of the boundary between the Eurasian and the North American plate is unknown in this region. Systematic surveying of Fram Strait with SEABEAM and high resolution seismic profiling began in 1984 and continued in 1985 and 1987, providing detailed morphology of the Fram Strait sea floor and permitting better definition of its morphotectonics. The 1984 survey presented in this paper provided a complete set of bathymetric data from the southernmost section of the Svalbard Transform, including the Molloy Fracture Zone, connecting the Knipovich Ridge to the Molloy Ridge; and the Molloy Deep, a nodal basin formed at the intersection of the Molloy Transform Fault and the Molloy Ridge. This nodal basin has a revised maximum depth of 5607 m water depth at 79°8.5N and 2°47E.  相似文献   

8.
A surface buoy was moored from 20 April to 2 November 1988 at 28°48 N and 135°01 E where the water depth was 4900 m to measure temperature and velocity in the upper 150 m. The Typhoon 8824 passed at 0300 (JST) on 8 October about 50 km north to the mooring station with a maximum wind speed of 43.5 m s–1. The buoy was shifted about 30 km to southwest, and the instruments were damaged. The records of temperature at 0.5 m and velocity at 50 m were obtained. The inertial oscillation caused by the typhoon is described using the current record. The oscillation endured for about 20 days. Deep mixing and vertical, heart transport by the typhoon are discussed based on the data from the Ocean Data Buoy of the Japan Meteorological Agency moored at 29°N and 135°E.  相似文献   

9.
Seasonal fields of tangenital wind stress over the Black Sea   总被引:1,自引:0,他引:1  
Tangential wind stress fields with a 40×60 spatial step are calculated from the data on atmospheric pressure distribution over the Black Sea over a decade. Their space-time variability is studied. It is shown that maximum values of the tangential wind stress in all seasons are located in the areas southwest of the Crimea and south of the Taman Peninsula. The tangenital wind stress retrieved from wind measurements is compared with the one determined from the atmospheric pressure data.Translated by V. Puchkin.  相似文献   

10.
The yearly variations of mean sea levels at various locations along the coasts of Japan have been investigated, based upon the data of observation taken at 55 tide-gauge stations from 1953 to 1970, and some discussions have been made on the relationships between those variations and meteorological and oceanographical conditions, etc. The results obtained are as follows:
  1. In cases covering 90% of all the tide-gauge stations, the magnitude of the annual mean rate of variation of ground level is less than 10 mm/year, and the mean value of the magnitude for all the stations is ?3.17 mm/year, while that exclusive of Osaka is ?1.7 mm/year.
  2. The effect of atmospheric pressure variation on the height of annual mean sea level is of the order of several centimeters in view from both time and place.
  3. In view of the characteristic types of variations, the coasts of Japan may be divided into five regions of similar mean sea level deviations. And in the yearly variations of mean sea levels, there can be seen a kind of variation which corresponds to the variation of oceanographical conditions such as abnormal fall of seawater temperature.
  4. The mean sea level deviations at various locations along the coasts of Japan, referred to the standard sea level “T.P.” are different for different places. Namely, (1) on the coast of the Japan Sea, the west coast of Kyushu, the coast of Sanriku and the coast of Hokkaido, the mean sea level is higher than on the Pacific coasts from Southern Kyushu to Southern Honshu. (2) Along the coast of the Seto-Inland Sea, the mean sea level is generally higher.
As for the leading causes of the above deviations, we may safely enumerate the following ones, viz. (a) the effect of the deflecting force of the earth's rotation on currents, and (b) the effect of variation of seawater density. However, as regards the relative importance of these two effects, no decisive conclusion can yet be given for the present.  相似文献   

11.
The morphological characteristics of the segmentation of the Central Indian Ridge (CIR) from the Indian Ocean Triple Junction (25°30S) to the Egeria Transform Fault system (20°30S) are analyzed. The compilation of Sea Beam data from R/VSonne cruises SO43 and SO52, and R/VCharcot cruises Rodriguez 1 and 2 provides an almost continuous bathymetric coverage of a 450-km-long section of the ridge axis. The bathymetric data are combined with a GLORIA side-scan sonar swath to visualize the fabric of the ridge and complement the coverage in some areas. This section of the CIR has a full spreading rate of about 50 mm yr–1, increasing slightly from north to south. The morphology of the CIR is generally similar to that of a slow-spreading center, despite an intermediate spreading rate at these latitudes. The axis is marked by an axial valley 5–35 km wide and 500–1800 m deep, sometimes exhibiting a 100–600 m-high neovolcanic ridge. It is offset by only one 40km offset transform fault (at 22°40S), and by nine second-order discontinuities, with offsets varying from 4 to 21 km, separating segments 28 to 85 km long. The bathymetry analysis and an empirical orthogonal function analysis performed on across-axis profiles reveal morphologic variations in the axis and the second-order discontinuities. The ridge axis deepens and the relief across the axial valley increases from north to south. The discontinuities observed south of 22°S all have morphologies similar to those of the slow-spreading Mid-Atlantic Ridge. North of 22°S, two discontinuities have map geometries that have not been observed previously on slow-spreading ridges. The axial valleys overlap, and their tips curve toward the adjacent segment. The overlap distance is 2 to 4 times greater than the offset. Based on these characteristics, these discontinuities resemble overlapping spreading centers (OSCs) described on the fast-spreading EPR. The evolution of one such discontinuity appears to decapitate a nearby segment, as observed for the evolution of some OSCs on the EPR. These morphological variations of the CIR axis may be explained by an increase in the crustal thickness in the north of the study area relative to the Triple Junction area. Variations in crustal thickness could be related to a broad bathymetric anomaly centered at 19°S, 65°E, which probably reflects the effect of the nearby Réunion hotspot, or an anomaly in the composition of the mantle beneath the ridge near 19°S. Other explanations for the morphological variations include the termination of the CIR at the Rodriguez Triple Junction or the kinematic evolution of the triple junction and its resultant lengthening of the CIR. These latter effects are more likely to account for the axial morphology near the Triple Junction than for the long-wavelength morphological variation.  相似文献   

12.
The Siqueiros transform fault system, which offsets the East Pacific Rise between 8°20N–8°30N, has been mapped with the Sea MARC II sonar system and is found to consist of four intra-transform spreading centers and five strike-slip faults. The bathymetric and side-looking sonar data define the total width of the transform domain to be 20km. The transform domain includes prominent topographic features that are related to either seafloor spreading processes at the short spreading centers or shearing along the bounding faults. The spreading axes and the seafloor on the flanks of each small spreading center comprise morphological and structural features which suggest that the two western spreading centers are older than the eastern spreading centers. Structural data for the Clipperton, Orozco and Siqueiros transforms, indicate that the relative plate motion geometry of the Pacific-Cocos plate boundary has been stable for the past 1.5 Ma. Because the seafloor spreading fabric on the flanks of the western spreading centers is 500 000 years old and parallels the present EPR abyssal hill trend (350°) we conclude that a small change in plate motion was not the cause for intra-transform spreading center development in Siqueiros. We suggest that the impetus for the development of intra-transform spreading centers along the Siqueiros transform system was provided by the interaction of small melt anomalies in the mantle (SMAM) with deepseated, throughgoing lithospheric fractures within the shear zone. Initially, eruption sites may have been preferentially located along strike-slip faults and/or along cross-faults that eventually developed into pull-apart basins. Spreading centers C and D in the eastern portion of Siqueiros are in this initial pull-apart stage. Continued intrusion and volcanism along a short ridge within a pull-apart basin may lead to the formation of a stable, small intra-transform spreading center that creates a narrow swath of ridge-parallel structures within the transform domain. The morphology and structure of the axes and flanks of spreading centers A and B in the western and central portion of Siqueiros reflect this type of evolution and suggest that magmatism associated with these intra-transform spreading centers has been active for the past 0.5–1.0 Ma.  相似文献   

13.
The Alaskan Stream is the westward boundary current of the North Pacific subarctic gyre. In the central region of the North Pacific, the Alaskan Stream serves as a connection between the Alaskan gyre, Western subarctic gyre and Bering Sea gyre. Its volume transport is very important in estimating the magnitude of the subarctic circulation in the North Pacific. In order to clarify its seasonal and interannual variation, we conducted observations along a north-south section at 180° during June from 1990 to 1997. Moorings were deployed from 1995 to 1997. Hydrographic casts were made at intervals of 37 km to a depth of 3000 m. Moorings were set between CTD stations, with Moor1 (Moor2) at the center (southern edge) of the Alaskan Stream. Geostrophic volume transport (referred to 3000 m) revealed large interannual variability in the Alaskan Stream. Average volume transport over the 8 years was 27.5 × 106 m3s-1 with a standard deviation of 6.5 × 106 m3s-1. Maximum transport was 41.0 × 106 m3s-1 (1997) and minimum was 21.7 × 106 m3s-1 (1995). Stable westward flows were observed at Moor1 1500 m (259°, 11.7 cm s-1) and 3000 m (240°, 3.7 cm s-1, 1996–1997 year average). The ratio of eddy to mean kinetic energy (KE/ ) was very small (<0.6) throughout the year. A relatively weak and unstable westward flow was observed at Moor2 at 3000 m depth. Conversely, the average flow direction at Moor2 5000 m was eastward.  相似文献   

14.
The bacterial populations of mangrove swamps of Killai backwaters (11°21–11°29N, 79°46–79°50E, South India) were studied during August 1968 (Pre monsoon period) and December (post monsoon period). The presence of these groups such as agar digesters, algin digesters, cellulose digesters, sulphate reducers etc., bring about transformation of organic matter in the mangrove swamps. The presence of denitrifiers in mangrove swamps and in association with the molluscs may bring about the precipitation of calcium carbonate by removing the acid radicals such as sulphate and nitrite, increasing alkalinity. The luminiscent bacteria such asVibrio andAeromonas were also isolated in mangrove swamps of Killai backwaters. The iron bacteria likeLeptothrix sp. andGallionella sp. were also isolated from mangrove swamps of Killai backwaters.  相似文献   

15.
A numerical experiment using a three dimensional level model was performed to clarify the mechanism generating a strong coastal current, Kyucho, induced by the passage of Typhoon 0406 around the tip of the Tango Peninsula, Japan in June 2004. Wind stress accompanied by Typhoon 0406 was applied to the model ocean with realistic bottom topography and stratification condition. The model well reproduced the characteristics of Kyucho observed by Kumaki et al. (2005), i.e., the strong alongshore current with maximum velocity of 53 cm s−1 and its propagation along the peninsula with propagation speed of about 0.6 m s−1 one half-day after the typhoon’s passage. Coastal-trapped waves (CTW) accompanied by downwelling were induced along the northwest coast of the peninsula by the alongshore wind stress. The energy density flux due to the CTW flowed eastward along the coast, and indicated scattering of the CTW around the eastern coast of the peninsula. In addition, significant near-inertial internal gravity waves were also caused in the offshore region from the west of the Noto Peninsula to the north of the Tango Peninsula by the typhoon’s passage. The energy flux density of the near-inertial fluctuations flowed southward off the Fukui coast, and part of the energy flux was trapped on the tip of the Tango Peninsula, flowing with the coast on its right. It was found that the strong current, Kyucho, at the northeastern tip of the Tango Peninsula was generated by superposition of the near-inertial internal gravity waves and subinertial CTW.  相似文献   

16.
We report the results of a study of the magnetic properties of basalts recovered from the axis and from 0.7 m.y. old crust at 21° N and 19°30 S on the East Pacific Rise as well as from the 9°03 N overlapping spreading centers. The natural remanent magnetization of the samples from 21° N and 19°30 S decreases from the axis to 0.7 m.y. old crust as a result of low-temperature oxidation. In addition, the magnetic properties of the samples from the 21° N sites indicate that: (1) the magnetic susceptibility and the Koenigsberger ratio decrease with low-temperature alteration, (2) the Curie temperature, the median demagnetizing field and the remanent coercivity increase with maghemitization, (3) the saturation magnetization measured at room temperature does not change significantly with age. The magnetic properties of the basalt samples from the 9°03 N overlapping spreading centers indicate the presence of a high magnetization zone at the tip of the eastern spreading center. This high magnetization zone is the result of the high percentage of unaltered, fine-grained titanomagnetites present in the samples. These measurements are consistent with the results of the three-dimensional inversion of the magnetic field over the 9°03 N overlapping system [Sempere et al., 1984] as well as with detailed tectonic and geochemical investigations of overlapping spreading centers (Sempere and Macdonald, 1986a; Langmuir et al., 1986; Natland et al., 1986). The high magnetization zone appears to be the result of the eruption of highly fractionated basalts enriched in iron associated with the propagation of one of the limbs of the overlapping system into older lithosphere and not just to rapid decay, due to low-temperature oxidation, of the initially high magnetization of pillows extruded in the neovolcanic zone.  相似文献   

17.
The junction between oceanic crust generated, within the Antarctic plate, at the Southeast Indian Ridge and the Southwest Indian Ridge has been studied using a SEABEAM swathe bathymetry mapping system and other geophysical techniques between the Indian Ocean Triple Junction (approximately 25°S, 70° E), and a point some 500 km to the southwest (at 28°25 S, 66°35 E). The morphotectonic boundary which marks this trace of the ridge-ridge-ridge triple junction is complex and varies with age. Recent theories proposing a cyclicity of volcanic and tectonic processes at this mode of triple junctions appear to be supported by a series of regularly spaced, en echelon escarpments facing the slowly spreading (0.6 to 0.8 cm a-1, half rate) Southwest Indian Ridge axis. The en echelon escarpments intersect at approximately right angles with the regularly spaced oceanic spreading fabric formed on the Antarctic plate at the Southeast Indian Ridge and together locally flank uplifted northward-pointing corner sections of ocean floor. The origins for the localised elevations are unclear, but may relate to intermittent and/or alternating rifting and volcanic episodes. Variations of degree of asymmetry and/or obliquity in spreading on the Central Indian Ridge and the Southwest Indian Ridge are suggested to explain detailed structural changes along the triple junction trace. It is suggested that discontinuities of the trace may be related to an intermittent development of new spreading centres beneath the most easterly part of the Southwest Indian Ridge, coupled with a more continuous process beneath the faster spreading Central Indian Ridge (2 to 2.5 cm a-1) and the Southeast Indian Ridge (2.5 to 3 cm a-1). A detailed history of triple junction evolution may be thus inferred from basic morphological and structural mapping along the three triple junction traces.  相似文献   

18.
The north/south-trending Panama Fracture Zone forms the present eastern boundary of the Cocos Plate, with the interplate motion being right-lateral strike-slip. This fracture zone is composed of at least four linear troughs some hundreds of kilometers in length. Separate active or historic faults undoubtedly coincide with each trough. The greatest sediment fill is found in the easternmost trough. Surface and basement depths of the western trough are generally greater than those of the other three; the western trough contains the least sediment, and is most continually linear. Morphology and sediments suggest that the principal locus of strike-slip movement within the fracture zone probably migrated incrementally westward from one fault-trough to another. From north to south, the fracture zone apparently narrows from the continental intersection to approximately 5°30N, and again widens from about 5°N to at least 3°N. Residual E/W-trending magnetic anomalies are centered between two of the four troughs; sea floor spreading in a north-south direction is interpreted to have occurred between 5°30N and 7°N from 4.5 m.y. ago to 2 m.y. ago, with the symmetric center roughly coinciding with a rift valley at 6°10N, 82°30W.  相似文献   

19.
The distribution of the colour index is considered in the region bounded by 8–11°N and 13°30–18°30W based on the results of measurements made on board vessels of the Marine Hydrophysical Institute of the Ukrainian SSR Academy of Sciences (MHI) in 1977–1985. Mean values and statistical characteristics are calculated for the colour index variability over one-degree squares. A map of its multi-yearly average distribution is plotted.Translated by M. M. Trufanov.  相似文献   

20.
By using data obtained at about 120 XBT stations, cold water regions in the vicinity of the shoal, Kokushô-sone (30°00N, 128°30E), which is located in the current zone of the Kuroshio in the East China Sea, were investigated.The temperature cross-sections obtained were compared with corresponding cross-sections obtained from the four former cruises which were already reported. On the present cruise forced upwelling area was found along the south slope of the shoal, instead of the north slope as was found on the former cruises.The area of the cold water region found along the south slope tends to decrease with decrease in depth, and at depths shallower than 250 m the cold water region extends northward passing the shoal. The area at a depth of 400 m is comparable to that of the shoal itself, and is about 35 km2.Physical parameters and their scales which seem to be related to the dynamics near the shoal are given in the Appendix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号