首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Hetianhe gasfield in Bachu region of the Tarim Basin is mainly composed of three reservoir-caprock assembly, namely regional caprock of upper mudstone, middle mudstone and lower mudstone of the Carboniferous and reservoir of Bachu bioclastic limestone, glutenite and the Ordovician carbonate buried hill. Natural gas in Hetianhe gasfield sourced from the Cambrian source rock. It is thought that gases in Ma4 well block in the east of Hetianhe gasfield are mainly crude-oil cracked gases, while those in Ma3 and Ma8 well blocks in the west are the mixture gases of kerogen cracked gases and crude-oil cracked gases. Natural gas is rich in H2S and accumulated in multiply stages as the result of TSR. The accumulation history is divided into three stages, namely accumulation and breakage in the late Caledonian-early Hercynian, migration and dissipation in the late Hercynian and accumulation in Himalayan. The main accumulation of reformed gas reservoir is in Himalayan.  相似文献   

2.
Hetianhe gasfield in Bachu region of the Tarim Basin is mainly composed of three reservoir-caprock assembly,namely regional caprock of upper mudstone,middle mudstone and lower mudstone of the Carboniferous and reservoir of Bachu bioclastic limestone,glutenite and the Ordovician carbonate buried hill.Natural gas in Hetianhe gasfield sourced from the Cambrian source rock.It is thought that gases in Ma4 well block in the east of Hetianhe gasfield are mainly crude-oil cracked gases,while those in Ma3 and Ma8 well blocks in the west are the mixture gases of kerogen cracked gases and crude-oil cracked gases.Natural gas is rich in H2S and accumulated in multiply stages as the result of TSR.The accumulation history is divided into three stages,namely accumulation and breakage in the late Caledonian-early Hercynian,migration and dissipation in the late Hercynian and accumulation in Himalayan. The main accumulation of reformed gas reservoir is in Himalayan.  相似文献   

3.

Well Yingnan 2, an important exploratory well in the east of Tarim Basin, yields high commercial oil and gas flow in Jurassic. Natural gas components and carbon isotopic composition indicate that it belongs to sapropel type gas. Because this region presents many suits of hydrocarbon source rocks, there are some controversies that natural gases were generated from kerogen gas or crude oil cracking gas at present. By using the kinetics of hydrocarbon generation and carbon isotope, natural gas of Well Yingnan 2 is composed mainly of crude oil cracking gas, about 72%, it is generated from secondary kerogen gas of Cambrian-Lower Ordovician source rock and crude oil cracking gas of Mid-Upper Ordovician oil reservoir. The main oil and gas filling time is 65 Ma later in the Jurassic gas reservoir of Well Yingnan 2, so the gas reservoir belongs to late accumulation and continuous filling type.

  相似文献   

4.
Well Yingnan 2, an important exploratory well in the east of Tarim Basin, yields high commercial oil and gas flow in Jurassic. Natural gas components and carbon isotopic composition indicate that it belongs to sapropel type gas. Because this region presents many suits of hydrocarbon source rocks, there are some controversies that natural gases were generated from kerogen gas or crude oil cracking gas at present. By using the kinetics of hydrocarbon generation and carbon isotope, natural gas of Well Yingnan 2 is composed mainly of crude oil cracking gas, about 72%, it is generated from secondary kerogen gas of Cambrian-Lower Ordovician source rock and crude oil cracking gas of Mid-Upper Ordovician oil reservoir. The main oil and gas filling time is 65 Ma later in the Jurassic gas reservoir of Well Yingnan 2, so the gas reservoir belongs to late accumulation and continuous filling type.  相似文献   

5.
Well Yingnan 2,an important exploratory well in the east of Tarim Basin,yields high commercial oil and gas flow in Jurassic.Natural gas components and carbon isotopic composition indicate that it belongs to sapropel type gas.Because this region presents many suits of hydrocarbon source rocks,there are some controversies that natural gases were generated from kerogen gas or crude oil cracking gas at present.By using the kinetics of hydrocarbon generation and carbon isotope,natural gas of Well Yingnan 2 is composed mainly of crude oil cracking gas,about 72%,it is generated from secondary kerogen gas of Cambrian-Lower Ordovician source rock and crude oil cracking gas of Mid-Upper Ordovician oil reservoir.The main oil and gas filling time is 65 Ma later in the Jurassic gas reservoir of Well Yingnan 2,so the gas reservoir belongs to late accumulation and continuous filling type.  相似文献   

6.
Jin  Qiang  Cheng  FuQi  Su  AiGuo  Zhu  GuangYou  Wang  Li  Cao  Qian 《中国科学:地球科学(英文版)》2008,51(1):36-44

The Sebei gasfield is the largest biogas accumulation found in China and many reservoirs and seal rocks superposed on a syndepositional anticline in Quaternary. The biogas charging and dissipating process and its distribution have been a research focus for many years. The authors suggest a diffusing and accumulating model for the biogas, as they find that the shallower the gas producer, the more methane in the biogas, and the lighter stable carbon isotope composition of methane. Based on the diffusing model, diffused biogas is quantitatively estimated for each potential sandy reservoir in the gasfield, and the gas charging quantity for the sandy reservoir is also calculated by the diffused gas quantity plus gas reserve in-place. A ratio of diffusing quantity to charging quantity is postulated to describe biogas accumulating state in a sandy reservoir, if the ratio is less than 0.6, the reservoir forms a good gas-pool and high-production layer in the gasfield, which often occurs in the reservoirs deeper than 900 m; if the ratio is greater than 0.6, a few gas accumulated in the reservoir, which frequently exists in the reservoirs shallower than 900 m. Therefore, a biogas accumulation model is built up as lateral direct charging from gas source for the sands deeper than 900 m and indirect charging from lower gas-bearing sands by diffusion at depth shallower than 900 m. With this charging and diffusion quantitative model, the authors conducted re-evaluation on each wildcat in the central area of the Qaidam Basin, and found many commercial biogas layers.

  相似文献   

7.
The Sebei gasfield is the largest biogas accumulation found in China and many reservoirs and seal rocks superposed on a syndepositional anticline in Quaternary. The biogas charging and dissipating process and its distribution have been a research focus for many years. The authors suggest a diffusing and accumulating model for the biogas, as they find that the shallower the gas producer, the more methane in the biogas, and the lighter stable carbon isotope composition of methane. Based on the diffusing model, diffused biogas is quantitatively estimated for each potential sandy reservoir in the gasfield, and the gas charging quantity for the sandy reservoir is also calculated by the diffused gas quantity plus gas reserve in-place. A ratio of diffusing quantity to charging quantity is postulated to describe biogas accumulating state in a sandy reservoir, if the ratio is less than 0.6, the reservoir forms a good gas-pool and high-production layer in the gasfield, which often occurs in the reservoirs deeper than 900 m; if the ratio is greater than 0.6, a few gas accumulated in the reservoir, which frequently exists in the reservoirs shallower than 900 m. Therefore, a biogas accumulation model is built up as lateral direct charging from gas source for the sands deeper than 900 m and indirect charging from lower gas-bearing sands by diffusion at depth shallower than 900 m. With this charging and diffusion quantitative model, the authors conducted re-evaluation on each wildcat in the central area of the Qaidam Basin, and found many commercial biogas layers.  相似文献   

8.
The Sebei gasfield is the largest biogas accumulation found in China and many reservoirs and seal rocks superposed on a syndepositional anticline in Quaternary.The biogas charging and dissipating process and its distribution have been a research focus for many years.The authors suggest a diffusing and accumulating model for the biogas,as they find that the shallower the gas producer,the more methane in the biogas,and the lighter stable carbon isotope composition of methane.Based on the diffusing model,diffused biogas is quantitatively estimated for each potential sandy reservoir in the gasfield,and the gas charging quantity for the sandy reservoir is also calculated by the diffused gas quantity plus gas reserve in-place.A ratio of diffusing quantity to charging quantity is postulated to describe biogas accumulating state in a sandy reservoir,if the ratio is less than 0.6,the reservoir forms a good gas-pool and high-production layer in the gasfield,which often occurs in the reservoirs deeper than 900 m;if the ratio is greater than 0.6,a few gas accumulated in the reservoir,which frequently exists in the reservoirs shallower than 900 m.Therefore,a biogas accumulation model is built up as lateral direct charging from gas source for the sands deeper than 900 m and indirect charging from lower gas-bearing sands by diffusion at depth shallower than 900 m.With this charging and diffusion quantitative model,the authors conducted re-evaluation on each wildcat in the central area of the Qaidam Basin,and found many commercial biogas layers.  相似文献   

9.
Gyirong basin and its adjacent area are located at a special position in the Himalayan orogen, where the south Tibetan detachment system (STDS) and N-S trending rift converged. The north Himalayan orogen here can be divided into five petrologic-tectonic units successively from south to north: 1) the Greater Himalayan crystalline complex (GHC); 2) the STDS shear zone; 3) the Tethyan Himalayan sedimentary sequence (THS); 4) the late Cenozoic sedimentary basins, such as Gyirong and Oma basins; and 5) the Malashan gneiss dome. Structural studies show that this area experienced four stages of deformation: 1) the earlier south-directed thrusting, preserved both in the GHC and THS; 2) top-down-to-north slip along the STDS, normal faults related to this slip formed the early controlling structures of the Cenozoic basins, and the tilted pattern of the blocks between the basins indicated a north-directed slip; 3) east-west extension, the resultant N-S trending normal fault formed the eastern boundary of the basins; and 4) late gravitational collapse. Zircon SHRIMP U-Pb dating on the syn-deformational (leuco-) granite along the STDS indicates that the major activity of the STDS occurred at ca. 26 Ma, but its onset may have begun as early as ca. 36 Ma. Supported by National Natural Science Foundation of China (Grant Nos. 40821002, 40572115)  相似文献   

10.

There exists a petroleum system rich of oil and gas around Halahatang depression, where the oil and gas possess obvious local distinctions of properties in different parts. The research proved that the discovered crude oil and natural gas in the region derived mainly from O2+3 source rock, and the differences of its properties were controlled by the oil and gas filling intensity. The comprehensive study result shows the oil and gas reservoirs of the region mainly underwent three important accumulation phases: late Caledonian-Early Hercynian epoch, late Hercynian epoch, and Yanshan-Himalayan epoch. In the first phase, the oil and gas derived mostly from Cambrian source rock, which formed the primary ancient oil reservoirs, then suffered strong degradation and remained a great quantity of pyrobitumen in the high position of Tabei uplift in the present. In the second phase, the O2+3 source rock of Manjia’er depression started its generation of hydrocarbon, which accumulated in the high position of Tabei up-lift afterwards, and then biodegradated to heavy oil in the late Hercynian epoch. In the last phase, the O2+3 source rock of southern Halahatang depression and margin of Manjia’er depression started its peak of generating liquid hydrocarbon, which mostly accumulated in the trap formed before the Indo-China and Yanshan epoch, and in somewhere the heavy oil suffered dilutions in various degrees or serious gas invading, to lead to obvious crude oil divergence.

  相似文献   

11.
Based on the analyses of generation, migration and accumulation of oil and gas in the structures of Kela 1, Kela 2 and Kela 3 in Kasangtuokai anticlinal belt using a series of geological and geochemical evidence, this paper proposes that the rapid rate of hydrocarbon generation, main drain path for over-pressured fluid flow and converging conduit system are indispensable conditions for the rapid, late-stage gas accumulation in the Kelasu thrust belt in the Kuqa depression. Due to structural over-lapping and the resultant rapid burial, the maturity of the source rocks had been increased rapidly from 1.3 to 2.5% Ro within 2.3 Ma, with an average rate of Ro increase up to 0.539% Ro/Ma. The rapid matura-tion of the source rocks had provided sufficient gases for late-stage gas accumulation. The kelasu structural belt has a variety of faults, but only the fault that related with fault propagation fold and cut through the gypsiferous mudstone cap could act as the main path for overpressured fluid release and then for fast gas accumulation in low fluid potential area. All the evidence from surface structure map, seismic profile explanation, authigenic kaolinite and reservoir property demonstrates that the main drain path related with faults for overpressured fluid and the converging conduit system are the key point for the formation of the giant Kela 2 gas field. By contrast, the Kela 1 and Kela 3 structures lo-cated on both sides of Kela 2 structure, are not favourable for gas accumulation due to lacking con-verging conduit system.  相似文献   

12.
Hu  GuoYi  Li  Jin  Cui  HuiYing  Ran  QiGui  Zhang  Li  Wang  XiaoBo  Wang  YiFeng 《中国科学:地球科学(英文版)》2010,52(1):96-105

Focusing on the two natural gas exploration geological problems with abundant source of oil cracking gas in the late stage and the sealing condition of the oil cracking gas reservoir, the kinetics of oil cracking gas and the evaluation parameters of gas cap rock are adopted to the study on the natural gas accumulation conditions in the Tadong area. Both the study on the kinetics of oil cracking gas and the statistical results of reservoir bitumen reveal that the geological formation of oil cracking gas in the Tadong area is located in the top of Cambrian. Two kinds of oil cracking gas geological models at least, namely well Mandong-1’s early rapid generation model (Middle Ordovician-end Silurian) and peak cracking model (with the natural gas conversion rate >90%), namely well Yingnan-2’s two-stage generation model of oil cracking gas, have been set up. The oil cracking gas of Yingnan-2 in the late stage is very significant in the evaluation of natural gas exploration in the Tadong area. The evaluation results of the cap rock show that the microscopic parameters of cap rock from the lower assemblage of Cambrian-Ordovician are better than those from the upper assemblage. The former has strong capillary sealing ability and higher cap rock breakthrough pressure than the upper assemblage, with strong sealing ability, so that natural gas dissipates mainly by diffusion. According to the above investigations, the lower assemblage Cambrian-Ordovician natural gas of Kongquehe slope, Tadong low uplift and Yingjisu depression in the Tadong area prospects well.

  相似文献   

13.
There exists a petroleum system rich of oil and gas around Halahatang depression, where the oil and gas possess obvious local distinctions of properties in different parts. The research proved that the discovered crude oil and natural gas in the region derived mainly from O2+3 source rock, and the differences of its properties were controlled by the oil and gas filling intensity. The comprehensive study result shows the oil and gas reservoirs of the region mainly underwent three important accumulation phases: late Caledonian-Early Hercynian epoch, late Hercynian epoch, and Yanshan-Himalayan epoch. In the first phase, the oil and gas derived mostly from Cambrian source rock, which formed the primary ancient oil reservoirs, then suffered strong degradation and remained a great quantity of pyrobitumen in the high position of Tabei uplift in the present. In the second phase, the O2+3 source rock of Manjia’er depression started its generation of hydrocarbon, which accumulated in the high position of Tabei up-lift afterwards, and then biodegradated to heavy oil in the late Hercynian epoch. In the last phase, the O2+3 source rock of southern Halahatang depression and margin of Manjia’er depression started its peak of generating liquid hydrocarbon, which mostly accumulated in the trap formed before the Indo-China and Yanshan epoch, and in somewhere the heavy oil suffered dilutions in various degrees or serious gas invading, to lead to obvious crude oil divergence.  相似文献   

14.
The mineralization ages reported in the past in the Tuwu-Yandong copper district not only are different,but also fall into the Hercynian epoch.This study has achieved 9 zircon and 7 apatite fission track analysis results.The zircon fission track ages range from 158 Ma to 289 Ma and the apatite ages are between 64 Ma and 140 Ma.The mineralization accords with the regional tectonics in the copper district.We consider that the zircon fission track age could reveal the mineralization age based on annealing zone temperature of 140―300℃ and retention temperature of ~250℃ for zircon fission track,and metallogenetic temperature of 120―350℃ in this ore district.Total three mineralization epochs have been identified,i.e.,289―276 Ma,232―200 Ma and 165―158 Ma,and indicate occurrence of the min-eralization in the Indosinian and Yanshan epochs.Corresponding to apatite fission track ages,the three tectonic-mineralizing epochs are 140―132 Ma,109―97 Ma and 64 Ma,which means age at about 100℃ after the mineralization.The three epochs lasted 146 Ma,108 Ma and about 100 Ma from ~250℃ to ~100℃ and trend decrease from early to late.It is shown by the fission track modeling that this district underwent three stages of geological thermal histories,stable in Cretaceous and cooling both before Cretaceous and after 20 Ma.  相似文献   

15.

The components and carbon isotope of gases in inclusions are one of the most important geochemical indexes for gas pools. The analysis results of the components and carbon isotope of gases from inclusions in reservoir layers of Upper Palaeozoic gas pools in the Ordos Basin show that most inclusions grown in reservoir sandstone are primary inclusions. There is only a little difference about the components and carbon isotope between the well gases and the secondary inclusions gases. This indicated that the epigenetic change of gas pools is little. This difference between the well gases and the secondary inclusions gases is caused by two reasons: (i) The well gases come from several disconnected sand bodies buried in a segment of depth, while the inclusion gases come from a point of depth. (ii) The secondary inclusions trapped the gases generated in the former stage of source rock gas generation, and the well gases are the mixed gases generated in all the stages. It is irresponsible to reconstruct the palaeo-temperature and palaeo-pressure under which the gas pool formed using carbon dioxide inclusions.

  相似文献   

16.

Oils, condensates and natural gases in the Kekeya Field, southeast depression of the Tarim Basin were studied for their geochemical characteristics. According to the distribution analysis of the C2/C3 values with C1/C2 values, C2/C3 values with C1/C3 values, as well as C2/C3 values with dryness index, there are two different types of natural gases in the studied field, which are spatially regularly distributed. One is the oil cracking gas, located on shallow reservoirs over X 25 reservoir, namely Upper oil legs; the other is kerogen cracking gas, located on X 27 reservoirs, X8 reservoirs and E2 k reservoirs, namely Lower oil legs. In addition, the distribution patterns of molar concentration of oils and condensates with different carbon numbers of the n-alkanes in the Kekeya Field indicate that the crude oils have experienced several kinds of secondary alterations, which were closely related to the charging of gaseous hydrocarbons after petroleum accumulation. These results indicate that, based on the research of δ 13C values of individual hydrocarbons, heptane values and isoheptane values of light hydrocarbons and aromatic maturity parameters for oils, condensates and natural gases, oils and gases were charged at different geological time in the Kekeya Field.

  相似文献   

17.
渤海新构造运动及其对晚期油气成藏的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
自中新世晚期(大约5.2 Ma B.P.)以来,渤海海域盆地进入裂后构造活动最活跃的新构造运动时期,致使渤海海域沉降沉积中心迁移、玄武岩喷发、地震频繁活动、深大断裂继承性活动和大量晚期断裂的生成.该期构造运动海域强度明显高于相邻陆域,呈现出幕式活动的特征.在新构造运动的影响和控制作用下,渤海海域含油气盆地形成了一批大型浅层背斜圈闭,油气输导体系得到优化,烃源岩晚期快速生烃,油气幕式充注成藏.本文以PL19-3油气藏为例,初步总结了渤海新构造运动控制油气晚期快速动态成藏的模式.  相似文献   

18.

The composition of fluid inclusions (FI) often represents the initial geochemical characteristics of palaeo-fluid in reservoir rock. Influence on composition and carbon isotopic composition of gas during primary migration, reservoir-forming and subsequent secondary alterations are discussed through comparing fluid inclusion gas with coal-formed gas and natural gas in present gas reservoirs in the Ordos Basin. The results show that primary migration of gas has significant effect on the molecular but not on the carbon isotopic composition of methane. Migration and diffusion fractionation took place during the secondary migration of gas in Upper Paleozoic gas reservoir according to carbon isotopic composition of methane in Fls. Composition and carbon isotopic composition of natural gas were nearly unchanged after the gas reservoir forming through comparing the FI gases with the natural gas in present gas reservoir.

  相似文献   

19.
The components and carbon isotope of gases in inclusions are one of the most important geochemical indexes for gas pools. The analysis results of the components and carbon isotope of gases from inclusions in reservoir layers of Upper Palaeozoic gas pools in the Ordos Basin show that most inclusions grown in reservoir sandstone are primary inclusions. There is only a little difference about the components and carbon isotope between the well gases and the secondary inclusions gases. This indicated that the epigenetic change of gas pools is little. This difference between the well gases and the secondary inclusions gases is caused by two reasons: (i) The well gases come from several disconnected sand bodies buried in a segment of depth, while the inclusion gases come from a point of depth. (ii) The secondary inclusions trapped the gases generated in the former stage of source rock gas generation, and the well gases are the mixed gases generated in all the stages. It is irresponsible to reconstruct the palaeo-temperature and palaeo-pressure under which the gas pool formed using carbon dioxide inclusions.  相似文献   

20.
The components and carbon isotope of gases in inclusions are one of the most important geochemical indexes for gas pools.The analysis results of the components and carbon isotope of gases from inclusions in reservoir layers of Upper Palaeozoic gas pools in the Ordos Basin show that most inclusions grown in reservoir sandstone are primary inclusions.There is only a little difference about the components and carbon isotope between the well gases and the secondary inclusions gases.This indicated that the epigenetic change of gas pools is little.This difference between the well gases and the secondary inclusions gases is caused by two reasons:(i)The well gases come from several disconnected sand bodies buried in a segment of depth,while the inclusion gases come from a point of depth.(ii)The secondary inclusions trapped the gases generated in the former stage of source rock gas generation,and the well gases are the mixed gases generated in all the stages.It is irresponsible to reconstruct the palaeo-temperature and palaeo-pressure under which the gas pool formed using carbon dioxide inclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号