首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Fecal pellets of zooplankton can be important carriers of organic matter from surface to deep waters of the oceans. The summer cruise ANTARES 4 gave us the opportunity to collect zooplankton from the frontal subantarctic zone (station 7 or s-ant) and adjacent subtropical waters (station 8 or s-trop). Triglyceride fatty acid profiles were used to assess the trophic position of two copepods (Metridia lucens and Pleuromamma spp.), three euphausiids (Euphausia spinifera, Nematoscelis megalops, and Thysanoessa sp) and a decapod Acanthephyra sp. The euphausiid E. spinifera was studied at the two sites and its reaction to contrasting trophic environments and hydrology was highlighted by variations in its lipid composition. Most species showed various degree of omnivory: E. spinifera from subantarctic showed the highest degree of herbivory on phytoplankton (high proportion of 16:4(n-1), 18:5(n-3), 16:1(n-7)), while the same species at the subtropical station, as well as Thysanoessa sp and M. lucens from the subantarctic station displayed more omnivorous feeding characteristics, partly linked to the abundance of microzooplankton cells. Acanthephirasp, N. megalops and Pleuromammasp from station 8 (s-trop) appear to be essentially carnivorous (high 18:1n-9/18:1n-7 ratio, high levels of 20:1(n-9) or 22:1(n-11)). The trophic position influenced the composition of feces, with higher PUFA percentages in fecal pellets from carnivorous species. Hence, the surface faunal assemblage and the season controlled not only the quantity but also the quality of the food supply as PUFA exported towards the benthic domain.  相似文献   

2.
The purpose of the study is to analyze the state of the Barents Sea euphausiids populations in the warm period (2000–2005) based on the study of their structure dynamics and distribution under the influence of abiotic and biotic factors. For estimation of their aggregations in the bottom layer, the traditional method was used with the help of the modified egg net (0.2 m2 opening area, 564 μm mesh size). The net is used for collecting euphausiids in the autumn–winter period when their activity is reduced, which results in high-catch efficiency. The findings confirmed the major formation patterns of the euphausiids species composition associated with climate change in the Arctic basin. As before, in the warm years, one can see a clear-cut differentiation of space distribution of the dominant euphausiids Thysanoessa genus with localization of the more thermophilic Thysanoessa inermis in the north-west Barents Sea and Thysanoessa raschii in the east. The major euphausiids aggregations are formed of these species. In 2004, the first data of euphausiids distribution in the northern Barents Sea (77–79°N) were obtained, and demonstrated extremely high concentrations of T. inermis in this area, with the biomass as high as 1.7–2.4 g m−2 in terms of dry weight. These data have improved our knowledge of the distribution and euphausiids abundance during periods of elevated sea-water temperatures in the Barents Sea. The oceanic Atlantic species were found to increase in abundance due to elevated advection to the Barents Sea during the study period. Thus, after nearly a 30-year-long absence of the moderate subtropical Nematoscelis megalops in the Barents Sea, they were found again in 2003–2005. However in comparison with 1960, the north-east border of its distribution considerably shifted to 73°50′N 50°22′E. The portion of Meganyctiphanes norvegica also varied considerably—from 10% to 20% of the total euphausiids population in the warm 1950s–1960s almost to complete disappearing in 1970–1990s. The peak of this species’ occurrence (18–26%) took place in the beginning of warm period (1999–2000) after a succession of cold years. The subsequent reduction of the relative abundance of M. norvegica to 7% might have been mostly caused by fish predation during a period of low population densities of capelin. This high predation pressure may therefore have been mediated both by other pelagic fishes (i.e. herring, blue whiting, polar cod) but also by demersal fishes such as cod and haddock. Similar sharp fluctuations in the capelin stock (the major consumer of euphausiids) created marked perturbations in the food web in the Barents Sea in the middle 1980s and the early 1990s.  相似文献   

3.
The species composition of euphausiids was investigated in relationship to the hydrographic conditions in the North Atlantic cold-core rings (CCR) and adjacent waters to elucidate species succession in evolving water masses. Using data, dating back to the 1970s, from as many CCRs as possible and selecting typical cases where no major physical perturbations occurred, a general pattern of euphausiid succession and change in vertical distribution in rings with time was obtained. This pattern was related to the general distribution of euphausiids in the northwestern North Atlantic Ocean, aiming at providing basic information on probable response of North Atlantic marine ecosystem to global warming. Of the 34 euphausiid species identified, 5 were cold-water species, 17 were warm-water species, 6 were wide-ranging warm-water species, 1 was transitional, 4 were cosmopolitan and the remaining was Thysanoessa parva. Among cold-water species, Euphausia krohni and Nematoscelis megalops were dominant in CCRs. E. krohni became rare in rings older than 6 months, whereas N. megalops survived longer, being abundant in some rings of 9 months or older, by staying within its preferred temperature range as the CCR elevated isotherms sank to depths where they are normally found in the Sargasso Sea and because it is an omnivore–carnivore. Among warm-water species, epipelagic species appeared first in rings, corresponding to the physical change occurring most rapidly in the surface layers. Mesopelagic species appeared later. Cold-water species made up 65–85% of the total euphausiid population in number in younger rings (1–5 months old), while warm-water species contributed only 2–7%. Wide-ranging warm-water species made up about up to one fourth of the total in rings 5 and 7 months old. Warm-water species, mainly E. brevis, increased in older rings (9 months old or older) and made up 50% of the total in the oldest ring. The contribution of cold-water species decreased to 14% in older rings. T. parva made up 26–38% of the total in rings 6 months or older. CCR populations can be characterized by high species number, but intermediate evenness between the Slope Water and northern Sargasso Sea. In CCRs, only a limited number of species were dominant even if there were more species present in rings as old as 9–12 months than in the northern Sargasso Sea. In rings older than 9 months, euphausiids showed two peaks in their vertical distribution: a shallow daytime peak at about 400 m and a nighttime peak in the upper 100 m consisting of warm-water species (mainly E. brevis) and a deeper persistent peak at 800 m or deeper consisting of the species N. megalops and T. parva. This shallow peak in CCRs is shallower than that in the surrounding northern Sargasso Sea, and the deep peak is rarely observed in these waters.  相似文献   

4.
The diet of at least 28 species of mesopelagic fish from the Pacific coast of Hokkaido was examined. The dominant family was the Gonostomatidae (42%) which was represented by five species. The most abundant species wasCyclothone atraria which together with the other species of this genus preyed predominantly on copepods. Euphausiids and copepods were dominant in the diet ofGonostoma gracile. The next most abundant family was the Myctophidae (32%) which was represented by seven species. The dominant species,Stenobrachius nannochir, preyed mainly on copepods. Copepods were also the dominant food item of the other myctophids except forLampanyctus jordani which fed mainly on euphausiids. The other important family was the Bathylagidae (21%).Leuroglossus schmidti was the dominant species and its diet was more diverse with ostracods, copepods, molluscs and larvaceans being the most important food items.Bathylagus ochotensis had a similar diet. Copepods were the most important food items for all but a few species and their occurrence in the fish stomachs was related to the known vertical distribution of both predators and prey. Ostracods and euphausiids were also important prey items, the latter especially in large fish species. Molluscs and larvaceans were restricted to the two species of the family Bathylagidae.  相似文献   

5.
The relationship between euphausiid community structure and water region was studied during a 2-year seasonal survey in the northwestern (NW) Pacific Ocean. The euphausiid community structure and its associated species were analyzed from 38 micronekton samples collected during eight cruises. The euphausiid community structure and its distribution patterns clearly corresponded to physical oceanographic features in the Oyashio region, Oyashio–Kuroshio Mixed Water Region (OKMWR), and Kuroshio region. In contrast, community structure was unrelated to seasonality. The 19 species out of 40 identified in this area were grouped and named after their habitats. The six cold-water species were grouped into three regional types: two coastal Oyashio species, three Oyashio–OKMWR species, and one Oyashio–Kuroshio species. The four species dominating in the OKMWR were categorized into each specific types: Nematoscelis difficilis as OKMWR–Oyashio species, Euphausia gibboides as OKMWR species, Euphausia similis as OKMWR–Oyashio & OKMWR–Kuroshio species, and Euphausia recurva as OKMWR–Kuroshio species. The seven warm-water species were categorized as Kuroshio–OKMWR species or Kuroshio species. The other two species were categorized as cosmopolitan species. In particular, regarding the result in the OKMWR, our study suggest that (1) the OKMWR has high species diversity, and (2) the dominant species, such as Euphausia pacifica, N. difficilis, E. similis, and E. gibboides, are considered to be key species in the food webs in this region.  相似文献   

6.
秋季南黄海浮游动物分布及其影响因素   总被引:3,自引:1,他引:2  
王晓  姜美洁  刘萍  张学雷  王燕  王宗灵 《海洋学报》2016,38(10):125-134
基于2007年秋季在南黄海(32°20'~37°00'N;124°E以西)进行的浮游动物及环境因子大面调查;分析了秋季南黄海浮游动物种类组成、分布特征及其影响因素;主要结果如下:共鉴定浮游动物113种(不包括25种浮游幼体);中华哲水蚤(Calanus sinicus)、强壮滨箭虫(Aidanosagitta crassa)、磷虾幼体(Euphausia larvae)和小齿海樽(Doliolum denticulatum)是秋季优势种;浮游动物丰度为(156.37±12.04)ind/m3;生物量为(172.57±10.41)mg/m3;与历史调查数据相比;本航次浮游动物丰度和生物量相对处于较高水平;磷虾幼体分布趋势与中华假磷虾(Psudeuphausia sinica)一致;说明秋季是中华假磷虾种群的一个重要的补充时期;小齿海樽在南黄海的大量出现系自身种群补充的结果;精致真刺水蚤(Euchaeta concinna)和肥胖软箭虫(Flaccisagitta enflata)主要分布在深水区;在近岸海区很少出现。中华哲水蚤、强壮滨箭虫丰度高值区倾向分布于海洋锋附近;进一步佐证了海洋锋对浮游动物的积聚作用。  相似文献   

7.
Samples collected during four cruises on board R.S. Africana were used to study the trophic ecology and feeding behaviour of Engraulis capensis in the southern Benguela region. Previous work had indicated that this species was a non-selective filter-feeding omnivore, diatoms comprising the bulk of the diet. The results of the present study reveal that anchovies selectively feed on mesozooplankton, especially calanoid copepods and euphausiids. Investigation of the feeding behaviour of the species indicates that raptorial feeding is dominant over filter-feeding and that prey appears to be selected primarily on the basis of size.  相似文献   

8.
北黄海獐子岛海域浮游动物群落年际变化   总被引:1,自引:0,他引:1  
本文比较了海洋普查期间(1959年1-12月)和2009-2010年獐子岛海域附近站位的浮游动物的种类组成、优势种、丰度、生物多样性,结果显示,北黄海区域浮游动物群落物种组成未发生较大的变化,在獐子岛海域以及整个北黄海,中华哲水蚤和强壮箭虫的优势种地位没有发生变化,细足法虫戎也一直出现且为冬春季的优势种;太平洋磷虾在2009-2010年獐子岛海域虽然全年均有出现,但是全年均不是优势种,而在1959年的獐子岛海域,作为优势种出现在4月和11月;1959年与2009年相较,腹针胸刺水蚤在春夏季优势种的地位被沃氏纺锤水蚤所取代。2009年浮游动物丰度(131.26 ind/m3)比1959年(78.90 ind/m3)高;浮游动物多样性指数(H')均在夏秋季高于冬春季节,且年平均多样性指数也有所提高。  相似文献   

9.
台湾省两个港湾污损生物初步研究   总被引:6,自引:2,他引:6  
研究台湾岛北端八斗子港和南部大鹏湾的污损生物,其湿重两个港均偏小(142和168kg/m2).共记录60个物种,两个港的共有种仅7种.八斗子港的28种中,优势种花石莼、变化短齿蛤、缘齿牡蛎、纹藤壶和冠瘤海鞘.大鹏湾29种动物中,优势种是3种管栖端足类(C.insidiosum,E.brasiliensis,E.hoobeno)、3种海鞘(P.constellotum,D.areolatum,S.canopus)、多室草苔虫和沙筛贝,后者是外来物种,还有双凸双眉藻等12种硅藻.两处的污损生物群落各自反映了亚热带和热带两类半封闭港湾污损生物的生态特点.  相似文献   

10.
A considerable number ofEuphausia similis G. O. Sars were found to be infected with a parasite in the samples collected in the summer of 1969 in Suruga Bay. The same species was also parasitized by an ellobiopsid,Thalassomyces fagei (Boschma), but it was rare in occurrence. The former parasite is slightly oval in shape with the longer diameter ranging between 1.0 and 1.5 mm, average diameter 1.35 mm. It infests cardiac region, rarely gastric region, of the host. It has been preliminarily identified by Drs.T. Oshima andT. Shimazu of the Shinshu University as the progenetic metacercaria of a trematode species very closely related toPseudopecoelus japonicus; its adult was originally reported to infest several bathypelagic fishes and the encysted stage was also found in jack mackerel from Suruga Bay byYamaguti (1938). The occurrence of the metacercaria inE. similis from the area may be new to science, althoughG. O. Sars (1885) has reported the immature forms ofDistomum filiferum G. O. Sars inNematoscelis megalops G. O. Sars andThysanoessa gregaria G. O. Sars and the crustaceans of wide variety have been proved to serve as the second intermediate host of various trematodes. The euphausiids infected with the metacercaria were concentrated in the innermost part of the bay. This might suggest the presence of the euphausiid population which is confined to the geographical area for some period. The metacercaria may be used as a “biological tag” to trace the migratory range of the host when the life history of the parasite is elucidated. The finding ofT. fagei in the area may be the first record of occurrence of the species in the western North Pacific, andE. similis is now recorded as the fourteenth known host euphausiid of the ellobiopsid.  相似文献   

11.
2014年冬季对西太平洋雅浦Y3海山区和从西太平洋暖池区到黑潮源区之间的大洋海域的浮游动物进行了调查研究,分析了海山区和大洋海域大型浮游动物群落的物种组成、丰度和分布,并比较了两个海域大型浮游动物群落的差异,结合温度、盐度和叶绿素a浓度等环境因子数据,分析了海山对大型浮游动物群落的影响。结果表明,Y3海山区和大洋海域的大型浮游动物群落物种组成存在差异,二者的群落相似度系数为68.4%,两个海域的优势种/类群也不尽相同,海山区的优势种/类群是磷虾各期幼体、尖额磷虾和蛮𧊕,而大洋海域的优势种/类群分别是磷虾后期幼体、手磷虾、蛮𧊕、尖额磷虾和莹虾。大型浮游动物群落在海山区的平均丰度和最大丰度都要高于大洋海域,但海山区的生物多样性指数、均匀度指数和生物量占比都低于大洋海域,因而Y3海山对大型浮游动物群落的海山效应不明显。通过相关性分析和主成分分析结果可以看出,海山区的首要影响环境因子是盐度,而大洋海域则是温度;海山区和大洋海域的大型浮游动物丰度分别与200m层盐度和平均温度呈负相关关系,并且在两个调查海域均未发现大型浮游动物的丰度和生物量分布与叶绿素a浓度之间存在显著的相关关系。  相似文献   

12.
To understand the adaptation of euphausiid (krill) species to oxygen minimum zones (OMZs), respiratory response and stress experiments combining hypoxia‐reoxygenation exposure with warming were conducted. Experimental krill species were obtained from the Antarctic (South Georgia area), the Humboldt Current System (HCS, Chilean coast) and the Northern California Current System (NCCS, Oregon). Euphausia mucronata from the HCS showed oxyconforming pO2‐dependent respiration below 80% air saturation (18 kPa). Normoxic subsurface oxygenation in winter posed a ‘high oxygen stress’ for this species. The NCCS krill, Euphausia pacifica, and the Antarctic krill, Euphausia superba, maintained respiration rates constant down to low critical pO2 values of 6 kPa (30% air saturation) and 11 kPa (55% air saturation), respectively. Antarctic krill had low antioxidant enzyme activities, but high concentrations of the molecular antioxidant glutathione (GSH) and was not lethally affected by 6 h exposure to moderate hypoxia. The temperate krill species (E. pacifica) had higher superoxide dismutase (SOD) values in winter than in summer, which relates to a higher winter metabolic rate. In all species, antioxidant enzyme activities remained constant during hypoxic exposure at the typical temperature for their habitat. Warming by 7 °C above habitat temperature in summer increased SOD activities and GSH levels in E. mucronata (HCS), but no oxidative damage occurred. In winter, when the NCCS is well mixed and the OMZ is deeper, +4 °C of warming combined with hypoxia represents a lethal condition for E. pacifica. In summer, when the OMZ expands upwards (100 m subsurface), antioxidant defences counteracted hypoxia and reoxygenation effects in E. pacifica, but only at mildly elevated temperature (+2 °C). In this season, experimental warming by +4 °C reduced antioxidant activities and the combination of warming with hypoxia again caused mortality of exposed specimens. We conclude that a climate change scenario combining warming and hypoxia represents a serious threat to E. pacifica and, as a consequence, NCCS food webs.  相似文献   

13.
The euphausiid community structure and grazing dynamics were investigated in the West Indian sector of the Polar Frontal Zone during the austral autumn 2004. Subsurface (200m) temperature profiles indicated that an intense frontal feature, formed by the convergence of the Subantarctic Front and the Antarctic Polar Front bisected the survey area into two distinct zones, the Subantarctic Zone (SAZ) and the Antarctic Zone (AAZ). Total integrated chlorophyll a (Chl a) biomass was typical for the region (<25mg Chl a m?2), and was dominated by picophytoplankton. Total euphausiid abundance and biomass ranged from 0.1 m?3 to 3.1 m?3 and from 0.1mg dry weight m?3 to 8.1mg dry weight m?3 respectively, and did not differ significantly between the stations occupied in the SAZ and AAZ (p > 0.05). A multivariate analysis identified two interacting mechanisms controlling the distribution patterns, abundance and biomass of the various euphausiid species, namely (1) diel changes in abundance and biomass, and (2) restricted distribution patterns associated with the different water masses. Ingestion rates were determined for five euphausiid species. Euphausia triacantha had the highest daily ingestion rate, ranging from 1 226.1ng pigment (pigm) ind?1 day?1 to 6 029.1ng pigm ind?1 day?1, whereas the lowest daily ingestion rates were observed in the juvenile Thysanoessa species (6.4–943.0ng pigm ind?1 day?1). The total grazing impact of selected euphausiids ranged from <0.1μg pigm m?2 day?1 to 20.1μg pigm m?2 day?1, corresponding to <0.15% of the areal Chl a biomass. The daily ration estimates of autotrophic carbon for the euphausiids suggest that phytoplankton represent a minor component in their diets, with only the sub-adult E. vallentini consuming sufficient phytoplankton to meet their daily carbon requirements.  相似文献   

14.
15.
Zooplankton was sampled through eight depth intervals above about 500 m along a transect of the eastern tropical Pacific (ETP), 23°N to 3°S, encompassing four environments. (1) The California Current—ETP transition off Baja California and the mouth of the Gulf of California is inhabited by California Current species at their southern limits, and by the galatheid ‘red crab’ Pleuroncodes planipes together with euphausiids (e.g. Euphausia eximia) of an abundance-based recurrent group of species, distinguished using the criterion of > x abundance (Numbers under unit area of sea surface) at common localities, adapted to productive zones marginal to the O2-deficient part of the ETP. Tropical species appear here where water with surface temperature > 26°C and [O2] of < 0.1 ml l?1 beneath a shoaling thermocline replaces the upwelling environment off Baja California. (1) The zone 22° to 10°N harbors euphausiids of two groups: the vertically migrating tropical species (e.g. Euphausia diomedeae) which tolerate intense O2-deficiency at their daytime depths and enter the oxygenated mixed layer at night, and non-migrating Stylocheiron species which have vertical ranges extending up into the mixed layer. Nevertheless, most of these ‘ETP-adapted’ species are denser farther south, in the north equatorial countercurrent, but three ETP endemics (e.g. E. distinguenda), all vertical migrators belonging in one subgeneric division of Euphausia, are densest in the O2-deficient regions. (3) The zone of the North Equatorial Countercurrent maintains high densities of three groups: the widely-ranging, ETP-adapted tropical species, the four common Stylocheiron species which, while recurring in abundance at the same localities, differ in depth and the mesopelagic tropical-subtropical species, not tolerant of O2-deficiency, which occur here in easterly tongues of range. (4) At the equator (93°W), easterly ranging species (e.g. E. paragibba) and westerly Nyctiphanes simplex appear to migrate between equatorial currents which differ in direction with depth, thereby maintaining their narrow ranges along the equator. The ‘marginal proliferators’ such as E. eximia, prominent off Baja California, are again abundant here, availing of the equatorial divergence for high productivity and of the oppositely-directed currents for geographical stability.A second recurrent grouping of species, based on presence of their larvae at common localities, yielded groups also distinguishable by whether the larvae lived within or beneath the mixed layer.Ontogenetic strengthening of vertical migration capability is demonstrated by many species, with older larvae, juveniles and adults showing ranges, respectively, increasing from a few meters to up to 400 m. The pattern is the same in O2-deficient regions as elsewhere.Regional distribution of euphausiid volume (wet displacement biomass) tended to agree with zooplankton volume, with maxima at the equator, 8°N, and at some localities off Baja California and the Gulf of California where red crab volume peaked. The depth at which euphausiid volume is equal in amount day and night, across which vertical migration takes place, is designated the equilibrium depth (EqD) for euphausiid volume. EqD for euphausiids generally agreed with EqD for zooplankton volume, indicating that euphausiids play a role in determining depth of EqD for zooplankton volume. Euphausiids comprised 13% (x) of zooplankton volume. 80% (x) of euphausiid volume migrated across EqD, the value showing no significant regional differences. 37% (x) of zooplankton volume engaged in such migration, but in the region south of 14°N encompassing the broad O2-deficient zone, the value was 26%, which compares with 18% previously determined for biomass transferring in a comparable way between epiplankton and planktostad in the same region.  相似文献   

16.
We compared wintertime depth distributions of the mesozooplankton community and dominant copepods between the subtropical (S1) and subarctic (K2) Pacific Oceans to evaluate the relative importance of actively transported carbon by vertical migrants to sinking particulate organic carbon flux. Primary production was higher and the ratio of sinking particulate organic carbon flux to primary production was lower at S1 compared with those at K2. The mesozooplankton community was lower in abundance and biomass at S1 compared to K2. Copepods were the dominant group among both mesozooplankton abundance and biomass throughout the water column down to 1000 m at both sites. The depth distribution showed that diel vertical migration was obvious for the mesozooplankton abundance and biomass at S1 but was not apparent for the abundance at K2, because the dominant component was diurnally migrating species at S1 and overwintering species residing at mesopelagic depths at K2. The major components of diel migrants were copepods and euphausiids at S1 and only euphausiids at K2. Respiratory flux by the diurnally migrating mesozooplankton was estimated to be 2 mgC m−2 day−1 at S1 and 7 mgC m−2 day−1 at K2. The respiratory flux was equivalent to 131% of sedimentary fecal pellet flux at S1 and 136% of that at K2. Because pathways of downward carbon flux are facilitated by the mesozooplankton community, the actively transported carbon (respiration of dissolved inorganic carbon, excretion of dissolved organic carbon and egestion of fecal pellets at depth) might be larger during winter than the flux of sinking fecal pellets.  相似文献   

17.
Although mojarra species usually demonstrate a wide distribution in tropical and subtropical estuaries, relatively little is known about the process influencing the spatial resource partitioning to nearshore habitats. Therefore, the aim of this study was check the existence of habitat and food partitioning among confamiliar species in a hypersaline estuary. The dietary compositions of three co‐occurring species of mojarras were determined, using samples collected with a beach seine from an inverse tropical estuary in Northeastern Brazil, during the rainy and the dry seasons of 2012. Eucinostomus argenteus and Ulaema lefroyi were abundant throughout the year, while Eugerres brasilianus was most abundant during the rainy season. Although these mojarras were found together in all areas of the estuary, there was evidence of habitat partitioning: E. argenteus and E. brasilianus were dominant in areas with submerged vegetation, while U. lefroyi was most abundant in areas with little habitat complexity and minimal shelter. All mojarras consumed, to different degrees, zooplankton, Bivalvia and Polychaeta. However, E. brasilanus also consumed a considerable amount of algae. Although the niches of the mojarra species appeared to significantly overlap, some resource partitioning patterns were apparent. While E. brasilanus was clearly different along the trophic niche, segregation of the other species was more important with respect to the spatial dimension. The different feeding strategies appear to minimize inter‐specific overlap and allow the co‐occurrence of these species in this hypersaline tropical estuary.  相似文献   

18.
福建三沙湾网箱养殖对多毛纲动物群落结构的影响   总被引:3,自引:0,他引:3  
唐盟  周进 《海洋与湖沼》2017,48(3):543-552
利用东海近海典型网箱养殖海湾三沙湾9个航次数据,基于群落结构时空差异,阐释网箱养殖活动对多毛纲(Polychaeta)动物群落的影响。就群落组成而言,网箱养殖和非网箱养殖水域多毛纲物种组成存在差异,丝鳃虫科(Cirratulidae)和多鳞虫科(Polynoidae)分别是两种水域最占优势的类群;网箱养殖水域多毛纲优势物种的丰度及丰度比值略高于非网箱养殖区(104.06ind./m248.29ind./m2,57.59%46.96%)。双因素方差分析(采样时间和养殖方式)结果表明,两种因素对物种数(S)、丰度(N)、生物量(B)、Shannon-Wiener多样性指数(H′)、Pielou均匀度指数(J′)、Margalef丰富度指数(d)等典型群落参数的交互作用不显著(P0.05);考虑两种因素独立效应时,群落参数均无显著空间差异(P0.05),但存在极显著时间差异(P0.01)。双因素群落结构相似性分析(two-way ANOSIM analysis)表明群落结构无显著空间差异(P0.05),但存在极显著时间差异(P0.01)。典型对应分析(canonical correspondence analysis,CCA)显示pH、水深和溶解氧是影响三沙湾多毛纲动物分布格局的主要环境因子。上述结论显示,三沙湾网箱养殖活动对多毛纲动物群落结构已产生一定影响,主要表现在群落组成方面,群落结构和部分典型底栖环境因子具较强相关性。  相似文献   

19.
Zooplankton sampling at Station 18 off Concepción (36°30′S and 73°07′W), on an average frequency of 30 days (August 2002 to December 2005), allowed the assessment of seasonal and inter-annual variation in zooplankton biomass, its C and N content, and the community structure in relation to upwelling variability. Copepods contributed 79% of the total zooplankton community and were mostly represented by Paracalanus parvus, Oithona similis, Oithona nana, Calanus chilensis, and Rhincalanus nasutus. Other copepod species, euphausiids (mainly Euphausia mucronata), gelatinous zooplankton, and crustacean larvae comprised the rest of the community. Changes in the depth of the upper boundary of the oxygen minimum zone indicated the strongly seasonal upwelling pattern. The bulk of zooplankton biomass and total copepod abundance were both strongly and positively associated with a shallow (<20 m) oxygen minimum zone; these values increased in spring/summer, when upwelling prevailed. Gelatinous zooplankton showed positive abundance anomalies in the spring and winter, whereas euphausiids had no seasonal pattern and a positive anomaly in the fall. The C content and the C/N ratio of zooplankton biomass significantly increased during the spring when chlorophyll-a was high (>5 mg m−3). No major changes in zooplankton biomass and species were found from one year to the next. We concluded that upwelling is the key process modulating variability in zooplankton biomass and its community structure in this zone. The spring/summer increase in zooplankton may be largely the result of the aggregation of dominant copepods within the upwelling region; these may reproduce throughout the year, increasing their C content and C/N ratios given high diatom concentrations.  相似文献   

20.
根据2013/2014年夏季在南极南设得兰群岛周边海域使用北太平洋网采样品及同步环境调查资料,分析了南极大磷虾(Euphausia superba)、拟长臂樱磷虾(Thysanoessa macrura)、尖角似哲水蚤(Calanoides acutus)和近缘哲水蚤(Calanus propinquus)这四种优势浮游动物的丰度和分布特征。结果表明,南极大磷虾和拟长臂樱磷虾在南设得兰海域均有较为广泛的分布,其中南极大磷虾丰度较高,且它们的水平分布存在一定程度的空间分离。在研究海域东部的南奥克尼群岛(South Orkneys)邻近海域发现了大量的南极大磷虾原蚤状C期幼体,表明大磷虾曾于1月中上旬左右产卵繁殖。研究海域的东部南极大磷虾种群结构以幼体前期为主,而西部的种群结构则以幼体后期、未成体和成体为主。尖角似哲水蚤和近缘哲水蚤的空间分布也较为广泛,且两者分布基本一致。东部南奥克尼群岛临近海域的浮游植物浓度较低,这可能是大量南极大磷虾幼体和桡足类摄食活动的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号