首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The Chiang Khong segment of the Chiang Khong–Lampang–Tak Volcanic Belt is composed of three broadly meridional sub‐belts of mafic to felsic volcanic, volcaniclastic, and associated intrusive rocks. Associated sedimentary rocks are largely non‐marine red beds and conglomerates. Three representative Chiang Khong lavas have Late Triassic (223–220 Ma) laser ablation inductively coupled mass‐spectroscopy U–Pb zircon ages. Felsic‐dominated sequences in the Chiang Khong Western and Central Sub‐belts are high‐K calc–alkaline rocks that range from basaltic to dominant felsic lavas with rare mafic dykes. The Western Sub‐belt lavas have slightly lower high field strength element contents at all fractionation levels than equivalent rocks from the Central Sub‐belt. In contrast, the Eastern Sub‐belt is dominated by mafic lavas and dykes with compositions transitional between E‐mid‐oceanic ridge basalt and back‐arc basin basalts. The Eastern Sub‐belt rocks have higher FeO* and TiO2 and less light rare earth element enrichment than basalts in the high‐K sequences. Basaltic and doleritic dykes in the Western and Central sub‐belts match the composition of the Eastern Sub‐belt lavas and dykes. A recent geochemical study of the Chiang Khong rocks concluded that they were erupted in a continental margin volcanic arc setting. However, based on the dominance of felsic lavas and the mainly non‐marine associated sediments, we propose an alternative origin, in a post‐collisional extensional setting. A major late Middle to early Late Triassic collisional orogenic event is well documented in northern Thailand and Yunnan. We believe that the paucity of radiometric dates for arc‐like lavas in the Chiang Khong–Lampang–Tak Volcanic Belt that precede this orogenic event, coupled with the geochemistry of the Chiang Khong rocks, and strong compositional analogies with other post‐collisional magmatic suites, are features that are more typical of volcanic belts formed in a rapidly evolving post‐collisional, basin‐and range‐type extensional setting.  相似文献   

2.
Ophiolites with different magmatic characteristics are closely associated in space with one another in northern Pindos. Some have affinities with ocean-floor magmas (Group I), and others represent melts which are frequently strongly depleted in «incompatible» elements (Group II). Group I is composed of cumulates, dolerites and lavas, whereas Group II occurs mainly as pillows and dykes, and postdates Group I. The two groups have different geochemical, mineralogical and petrographic features. They exhibit different Ti, Cr, Ni, Y, Zr, P, Si and Mg contents, and clinopyroxenes and spinels of Group I have higher Ti/Al and Ti/Mn ratios, and lower Cr/(Cr + Al) values respectively than those of Group II. Many rocks of Group II are chemically similar to boninites and associated rocks as well as to low-Ti basalts from other areas and ophiolitic complexes. It is concluded that geochemical and mineralogical data alone do not allow a definitive answer about the original tectonic setting of the investigated rocks, although a genesis above a subduction zone seems to be plausible hypothesis.  相似文献   

3.
The Ogasawara Islands mainly comprise Eocene volcanic strata formed when the Izu–Ogasawara–Mariana Arc began. We present the first detailed volcanic geology, petrography and geochemistry of the Mukojima Island Group, northernmost of the Ogasawara Islands, and show that the volcanic stratigraphy consists of arc tholeiitic rocks, ultra‐depleted boninite‐series rocks, and less‐depleted boninitic andesites, which are correlatable to the Maruberiwan, Asahiyama and Mikazukiyama Formations on the Chichijima Island Group to the south. On Chichijima, a short hiatus is identified between the Maruberiwan (boninite, bronzite andesite, and dacite) and Asahiyama Formation (quartz dacite and rhyolite). In contrast, these lithologies are interbedded on Nakodojima of the Mukojima Island Group. The stratigraphically lower portion of Mukojima is mainly composed of pillow lava, which is overlain by reworked volcaniclastic rocks in the middle, whereas the upper portion is dominated by pyroclastic rocks. This suggests that volcanic activity now preserved in the Mukojima Island Group records growth of one or more volcanoes, beginning with quiet extrusion of lava under relatively deep water followed by volcaniclastic deposition. These then changed into moderately explosive eruptions that took place in shallow water or above sea level. This is consistent with the uplift of the entire Ogasawara Ridge during the Eocene. Boninites from the Mukojima Island Group are divided into three types on the basis of geochemistry. Type 1 boninites have high SiO2 (>57.0 wt.%) and Zr/Ti (>0.022) and are the most abundant type in both Mukojima and Chichijima Island Groups. Type 2 boninites have low SiO2 (<57.1 wt.%) and Zr/Ti (<0.014). Type 3 boninites have 57.6–60.7 wt.% SiO2 and are characterized by high CaO/Al2O3 (0.9–1.1). Both type 2 and 3 boninites are common on Mukojima but are rare in the Chichijima Island Group.  相似文献   

4.
Boa Vista, the easternmost island in the Cape Verde archipelago, consists of volcanic products, minor intrusions and a thin partial sedimentary cover. The first 15 age results from 40Ar/39Ar incremental heating analysis of groundmass separates from volcanic and plutonic rocks from Boa Vista are presented. The combination of age results and field observations demonstrates that the volcanic activity that formed the island occurred in three main stages: (1) > 16 Ma, (2) 15–12.5 Ma and (3) 9.5–4.5 Ma. The first stage, restricted to the north eastern part of the island, is dominated by ankaramitic lavas. The second stage, consisting of evolved lavas of phonolitic–trachytic compositions and nepheline syenites, makes up large central parts of the island. The large volume of evolved rocks and the extended eruption period of several Ma make stage 2 in Boa Vista unique to Cape Verde. Mainly basanites and nephelinites were erupted during the third stage, initially dominated by eruption of subaerial mafic lavas around 9 Ma. Pillow lavas are erupted around 7 Ma whereupon dominantly subaerial mafic lavas were erupted. Stage 3 saw volcanism in many centres distributed mainly along the present coastline and with activity partly overlapping in time. The volcanic evolution of Boa Vista constrains the initiation of volcanic activity in the Cape Verde archipelago to the eastern islands. Major and trace element geochemistry of 160 volcanic and plutonic rocks representing the entire exposed chronological sequence on Boa Vista is presented, revealing an extremely well developed Daly Gap. Only a little was modified from the mafic magmas that rose in small batches from the mantle. Compositional variation distinguishes each volcanic complex and was to a large extent present in the mantle melts. The highly evolved stage 2 phonolites and trachytes are related through the fractional crystallization of three compositionally distinct magmas. Two of these may have been derived by crystal fractionation of primitive Boa Vista melts, whereas the third was not.  相似文献   

5.
Subduction‐related volcanic rocks are widespread in the Central Pontides of Turkey, and represented by the Hamsaros volcanic succession in the Sinop area to the north. The volcanic rocks display high‐K calc‐alkaline, shoshonitic and ultra‐K affinities. 40Ar/39Ar age data indicate that the rocks occurred during the Late Cretaceous (ca 82 Ma), and the volcanic suites were coeval. Primitive mantle‐normalized trace element patterns of all the lavas are characterized by strong enrichments in large ion lithophile elements (LILE) (Rb, Ba, K, and Sr), Th, U, Pb, and light rare earth elements (LREE; La, Ce) and prominent negative Nb, Ta, and Ti anomalies, all typical of subduction‐related lavas. There is a systematic increase in the enrichment of incompatible trace elements from the high‐K calc‐alkaline lavas through the shoshonitic to the ultra‐K lavas. In addition, the shoshonitic and ultra‐K lavas have significantly higher 87Sr/86Sr (0.70666–0.70834) and lower 143Nd/144Nd (0.51227–0.51236) initial ratios than coexisting high‐K calc‐alkaline lavas (87Sr/86Sr 0.70576–0.70613, 143Nd/144Nd 0.51245–0.51253). Geochemical and isotopic data show that the shoshonitic and ultra‐K rocks cannot be derived from the high‐K calc‐alkaline suite by any shallow level differentiation process, and point to a derivation from distinct mantle sources. The shoshonitic and ultra‐K rocks were derived from metasomatic veins related to melting of recycled subducted sediments, but the high‐K calc‐alkaline rocks from a lithospheric source metasomatized by fluids from subduction zone.  相似文献   

6.
The peri‐Arabian ophiolite belt, from Cyprus in the west, eastward through Northwest Syria, Southeast Turkey, Northeast Iraq, Southwest Iran, and into Oman, marks a 3000 km‐long convergent margin that formed during a Late Cretaceous (ca 100 Ma) episode of subduction initiation on the north side of Neotethys. The Zagros ophiolites of Iran are part of this belt and are divided into Outer (OB) and Inner (IB) Ophiolitic Belts. We here report the first Nd–Hf isotopic study of this ophiolite belt, focusing on the Dehshir ophiolite (a part of IB). Our results confirm the Indian mid‐oceanic ridge basalt (MORB) mantle domain origin for the Dehshir mafic and felsic igneous rocks. All lavas have similar Hf isotopic compositions, but felsic dikes have significantly less‐radiogenic Nd isotopic compositions compared to mafic lavas. Elevated Th/Nb and Th/Yb in felsic samples accompany nonradiogenic Nd, suggesting the involvement of sediments or continental crust.  相似文献   

7.
Mesozoic volcanic rocks are widespread throughout the Great Xing'an Range of northeastern China. However, there has been limited investigation into the age and petrogenesis of the Mesozoic volcanics in the eastern Great Xing'an Range. According to our research, the volcanic rocks of the Dayangshu Basin, eastern Great Xing'an Range are composed mainly of trachybasalt, basaltic andesite, and basaltic trachyandesite, with minor intermediate–basic pyroclastic rocks. In this study, the geochemistry and geochronology of the Mesozoic volcanic rocks are presented in order to discuss the petrogenesis and tectonic setting of the Ganhe Formation in the Dayangshu Basin. Zircon U–Pb dating by laser ablation inductively coupled plasma–mass spectrometry indicates that the Mesozoic lavas formed during the late Early Cretaceous (114.3–108.8 Ma). This suite of rocks exhibits a range of geochemical signatures indicating subduction‐related genesis, including: (i) calc‐alkaline to high‐K calc‐alkaline major element compositions; (ii) enrichment of large ion lithophile elements (e.g. Rb, Ba, K) and light rare earth elements (LREEs/HREEs =7.33–9.85); and (iii) weak depletion in high field strength elements (e.g. Nb, Ta, Ti). Furthermore, Sr–Nd–Pb isotopic data yield initial 87Sr/86Sr values of 0.70450–0.70463, positive εNd(t) values of +1.8 to +3.3, and a mantle‐derived lead isotope composition. Combined with the regional tectonic evolution, the results of this study suggest that the Ganhe Group lavas are derived from decompression melting of a metasomatized (enriched) lithospheric mantle, related to asthenospheric upwelling, which resulted from lithospheric mantle delamination and produced extension of the continental margin following the subduction of the Paleo‐Pacific Plate.  相似文献   

8.
Yoga A.  Sendjaja  Jun-Ichi  Kimura  Edy  Sunardi 《Island Arc》2009,18(1):201-224
The Sunda Arc of Indonesia developed along the convergent margin between the Eurasian and the Australian Plates. More than 100 Quaternary volcanic centers occur along the arc. The West Java Arc is a segment of the Sunda Arc in which more than 10 volcanic centers are located, corresponding to the 120 to 200 km depth contours of the Wadati–Benioff zone. The geochemistry of 207 Quaternary lavas from six centers across the arc was investigated. The lavas range from basalt to dacite. Incompatible element abundances increase from the volcanic front to the rear‐arc in response to a change from low‐K to high‐K suites. Nd–Sr isotope compositions of the basalts scatter between mid‐ocean ridge basalt (MORB) source mantle and Indian Ocean sediment (SED) compositions, with volcanic front low‐K basalts having more radiogenic Nd than the rear‐arc basalts. It is suggested that mixing between slab‐derived fluids mainly from the SED and melt from MORB source mantle played a significant role in determining the geochemistry of the West Java basalts. Incompatible element patterns in primitive mantle normalized multi‐element plots are almost identical across the arc, except for greater inclination and weaker positive Sr spikes in the rear‐arc basalts. This suggests a lower degree of partial melting in the rear‐arc mantle, accompanied by change in SED fluid composition between the volcanic front and the rear‐arc. The latter is confirmed by fluid‐fluxed melting model calculations using multiple trace elements and Nd and Sr isotopes. All the West Java Arc lavas require deficit of Sr from the slab SED. This may occur due to selective breakdown of Sr‐rich hydrous silicate minerals, such as zoisite, at shallower depths before the SED component reaches the depth of dehydration effective for magma genesis. The rear‐arc basalts need further Sr deficits along with lesser fluid. These features are commonly observed in many arc basalts, and are likely attributable to the same mechanism.  相似文献   

9.
Constant observations of the eruption process of Bezymianny volcano and an incessant control of the properties and volume of ejected products enabled us to reconstruct cristallization conditions of the magma in the top parts of the volcanic vent assumedly to a depth of 6–8 km. Substantial changes in the mineralogy and petrography of lavas have been recorded during the thirteen years of the activity of the volcano. Hornblende andesites of the first portions of eruptions were replaced by bipyroxene andesites, in which the second generation of phenocrysts had appeared — subphenocrysts. The content of subphenocrysts was progressively increasing with a simultaneous drop in the amount of glass to nearly one half of the former amount. In the process of eruption the chemical composition of rocks did not change: a high viscosity of the melt prevented a differentiation in the upper parts of the magmatic column. A relative permanence of the composition and amount of phenocrysts of plagioclase and pyroxene throughout all the eruption stages indicates that already at a depth of 7–8 km the melt contains intratelluric phenocrysts. The appearance in lavas of the last eruption stage of phenocrysts belonging to the 2nd generation despite an unchanged chemical composition, indicates their cristallization in subsurface conditions in the interval of 5–10 years.  相似文献   

10.
This paper addresses formation of felsic magmas in an intra‐oceanic magmatic arc. New bathymetric, petrologic, geochemical, and isotopic data for Zealandia Bank and two related volcanoes in the south‐central Mariana arc is presented and interpreted. These three volcanoes are remnants of an older andesitic volcano that evolved for some time and became dormant long enough for a carbonate platform to grow on its summit before reawakening as a rhyodacitic volcano. Zealandia lavas are transitional between low‐ and medium‐K and tholeiitic and calc‐alkaline suites. They define a bimodal suite with a gap of 56–58 wt% SiO2; this suggests that mafic and felsic magmas have different origins. The magmatic system is powered by mantle‐derived basalts having low Zr/Y and flat rare earth element patterns. Two‐pyroxene thermometry yields equilibration temperatures of 1000–1100 °C for andesites and 900–1000 °C for dacites. Porphyritic basalts and andesites show textures expected for fractionating magmas but mostly fine‐grained felsic lavas do not. All lavas show trace element signatures expected for mantle and crustal sources that were strongly melt‐depleted and enriched by subduction‐related fluids and sediment melts. Sr and Nd isotopic compositions fall in the normal range of Mariana arc lavas. Felsic lavas show petrographic evidence of mixing with mafic magma. Zealandia Bank felsic magmatism supports the idea that a large mid‐ to lower‐crustal felsic magma body exists beneath the south‐central Mariana arc, indicating that MASH (mixing, assimilation, storage, and homogenization) zones can form beneath intra‐oceanic as well as continental arcs.  相似文献   

11.
A systematic analysis of micas contained in effusive, pyroclastic and hypabyssal rocks of the Alban Hills Volcanic District (AHVD) (Central Italy) was made in order to characterise minerals of pyroclastic units for tephrostratigraphy and to obtain as much information as possible on the activity of volatiles in this magmatic system. The phlogopite shows a large range of F contents (between 0.50 and 7.50 wt%) that make it possible to discriminate different AHVD lithologies; in particular, micas of lava groundmass are characterised by extremely high F (up to 7.50 wt%) and Ba (up to 9.70 wt%) contents, seldom or never found in other magmatic ultrapotassic rocks. Moreover, the micas of pyroclastics, ultramafic cumulates and holocrystalline inclusions made up of leucite, clinopyroxene and phlogopite (hereafter italites) show Mg/(Mg+Fe) values between 0.65 and 0.90 that are not correlated with F contents. The variations in F contents observed in the AHVD micas do not appear to be due to a “temperature” effect or pressure changes, but they may be due to variations in the H2O and CO2 activities in the magma chamber. They make it possible to differentiate three crystallisation environments in the AHVD magmatic system. The first one had elevated CO2 activity and formed the italites near the carbonate contact; these rocks represent, at least those enriched in clinopyroxene without skarn-minerals, the hypabyssal crystallisation of the AHVD magmas at the periphery of magma chamber. The second one, characterised by a higher water activity, is represented by the micas of the ultramafic cumulates and pyroclastic scorias, and is located in the inner part of magma chamber. The third environment, the groundmass of the lavas, it is not related with the previous ones and is characterised by the absence of water and by a high F activity. In general, our results suggest that the compositional variations observed in the micas (Al, Si, Ti, Ba) reflect different H2O activities (inversely correlated with F activity) in the magma chamber.  相似文献   

12.
Abstract Oxygen is the most abundant element in the earth, and isotopic analysis of this element in island arc lavas potentially provides sensitive constraints on the proportion of oxygen recycled from subducted material, relative to that extracted from the mantle. Here we report on 225 new oxygen isotopic analyses of whole‐rock and glass samples, and clinopyroxene separates, from lavas collected from the southernmost 1500 km of the Izu–Bonin–Mariana (IBM) convergent margin. Whole‐rock samples clustered around a mean of 6.11 ± 0.47‰, whereas Mariana Trough glasses and mafic melts, calculated to be in equilibrium with mafic phenocrysts, clustered narrowly around a mean of 5.7‰. These data demonstrate that unequivocal identification of magmatic oxygen requires analysis of fresh glass or mafic minerals, and that the source of southern IBM Arc melts is entirely, or almost entirely, in equilibrium with normal mantle oxygen. If the elemental enrichments characteristic of the subduction component originate in subducted materials, these oxygen isotopic data are most consistent with the interaction of a small amount of sediment melt (<4%; mostly less than 1%) with mantle peridotite to yield the hybrid mantle that melts to form IBM Arc magmas.  相似文献   

13.
The 2730-Ma-old Hunter Mine Group (HMG), a dominantly felsic subaqueous volcanic sequence, was formed during early arc construction in the Abitibi greenstone belt (Quebec, Canada). The western part of the HMG contains a felsic dyke swarm up to 1.5 km wide and traceable up-section for 2.5 km. Five distinct generations were identified: (1) aphanitic to feldspar-phyric dykes; (2) quartz-feldspar-phyric dykes with < 5% quartz phenocrysts; (3) quartz-feldspar-phyric dykes with 10–25% quartz phenocrysts; (4) dacitic feldspar-phyric dykes; and (5) mafic dykes. The felsic dykes collectively constitute more than 90% of the dyke swarm. Geochemically, they resemble modern calc-alkaline dacites and rhyolites. Their mantle-normalized incompatible trace-element patterns display a moderate enrichment of Th and light REE relative to HFSE and heavy REE as well as negative Nb, Ta, Eu and Ti anomalies. Most of the major- and trace-element abundance variations in these rocks can be explained by crystallization of feldspars. Geochemical data including depleted mantle-like Nd values suggest that an older sialic substrate was not involved in their genesis. We infer that the felsic rocks were generated by melting of mafic oceanic crust. The swarm was emplaced during nascent oceanic island-arc development and was related to rifting of the arc. The conformably overlying MORB-like basalts and basaltic komatiites of the Stoughton-Roquemaure Group used the same conduits and further indicate splitting of the arc. HMG and associated parts of the Abitibi greenstone belts bear a strong resemblance to modern rifted intraoceanic arcs of the western Pacific.  相似文献   

14.
Abstract Two new cases of association of adakites with ‘normal’ island arc lavas and transitional adakites are recognized in the islands of Batan and Negros in northern and central Philippines, respectively. The Batan lavas are related to the subduction of the middle Miocene portion of the South China Sea basin along the Manila trench; those of Negros come from the almost aseismic subduction of the middle Miocene Sulu Sea crust along the Negros trench. The occurrence of the Batan adakites is consistent with previous findings showing adakitic glass inclusions within minerals of mantle xenoliths associated with Batan arc lavas. The similarity of adakite ages (1.09 Ma) and that of the metasomatized xenoliths (1 Ma) suggests that both are linked to the same slab‐melting and metasomatic event. Earlier Sr, Pb and Nd‐isotopic studies, however, also reveal the presence of an important sediment contribution to the Batan lava geochemistry. Thus, the role played by slab melts, assumed to have mid‐ocean ridge basalts‐like (MORB) isotopic characteristics, in enriching the Batan subarc mantle is largely masked by the sediment input. The Negros adakites are present only in Mount Cuernos, the volcanic center nearest to the Negros trench. Batch partial melting calculations show that the Negros adakites could be derived from a garnet amphibolitic source with normal‐MORB (N‐MORB) geochemistry. This is supported by the MORB‐like isotopic characteristics of the Mount Cuernos lavas. The volcanic rocks from the other volcanoes consist of normal arc and transitional adakitic lavas that have slightly higher Sr‐ and Pb‐isotopic ratios, probably due to slight sediment input. Mixing of adakites and normal arc lavas to produce transitional adakites is only partly supported by trace element geochemistry and not by field evidence. The transitional adakites can be modeled as partial melts of an adakite‐enriched mantle. Trace element enrichment of non‐adakitic lavas could reflect the interaction of their mantle source with uprising slab melts, as metasomatic mantle minerals scavenge certain trace elements from the adakitic fluids. Therefore, in arcs beneath which thick (up to 2 km) continent‐derived detrital sediments are involved in subduction, like in Batan, the sediment signature can overwhelm the slab melt input. In arcs like Negros where slow subduction could cause a more efficient scraping of thinner (approximately 1 km) detrital sediments, the contribution of slab melts is easier to detect.  相似文献   

15.
Field investigation and lab analysis on samples were carried out for Quaternary volcanoes, including Xiaoshan volcano, Dashan volcano and Bianzhuang hidden volcano, in Haixing area, east of North China. Results show that Xiaoshan volcano with the eruptive material of volcanic scoria, crystal fragments and volcanic ash is a maar volcano, the eruptive pattern is pheatomagmatic eruption, and the influence scope is near the crater. Dashan volcano exploded in the early stage, and then the magma intruded, forming the volcanic neck. The eruption strength and scale are limited, and the eruptive materials are scoria, volcanic agglomerate and dense lava neck. The volcanic rocks in Bianzhuang are porosity and dense volcanic rocks and volcanic breccia, reflecting the pattern of weak explosive eruption and lava flow, and the K-Ar age dating on volcanic rocks indicates that the eruption happened in early Pleistocene. Xiaoshan volcanic scoria and Bianzhuang hidden volcanic rocks are mainly basaltic, Dashan volcanic rocks with lower SiO2 content are nephelinite in composition. Their oxide contents have no linear relationship, indicating that there is no magma evolution relationship between these magmas from the three places. Three volcanic rocks all have enrichment of light rare earth. The Bianzhuang volcanic rocks are rich in large ion lithophile elements, and have no high field strength elements Zr and Hf, Ti losses. The volcanic materials from Xiaoshan and Dashan are intensively rich in Th, U, Nb and Ta, and significantly poor in K and Ti. Although the magmas from these three places in Haixing area may all come from asthenosphere, the volcanic materials have different petrological and geochemical features, and relatively independent volcanic structures, therefore, they experienced different magma processes.  相似文献   

16.
Edwin  Ortiz  Barry P.  Roser 《Island Arc》2006,15(2):223-238
Abstract Basement rocks in the catchment of the Kando River in southwest Japan can be divided into two main groups. Paleogene to Cretaceous felsic granitoids and volcanic rocks dominate in the upstream section, and more mafic, mostly Miocene volcanic and volcaniclastic rocks occur in the downstream reaches. Geochemically distinctive Mount Sambe adakitic volcanic products also crop out in the west. X‐ray fluorescence analyses of major elements and 14 trace elements were made of two size fractions (<180 and 180–2000 µm) from 86 stream sediments collected within the catchment, to examine contrasts in composition between the fractions as a result of sorting and varying source lithotype. The <180 µm fractions are depleted in SiO2 and enriched in most other major and trace elements relative to the 180–2000 µm fractions. Na2O, K2O, Ba, Rb and Sr are either depleted relative to the 180–2000 µm fractions, or show little contrast in abundance. Sediments from granitoid‐dominated catchments are distinguished by greater K2O, Th, Rb, Ba and Nb than those derived from the Miocene volcanic rocks. Granitoid‐derived <180 µm fractions are also enriched in Zr, Ce and Y. Sediments derived from the Miocene volcanic rocks generally contain greater TiO2, Fe2O3*, Sc, V, MgO and P2O5, reflecting their more mafic source. Sediments containing Sambe volcanic rocks in their source are marked by higher Sr, CaO, Na2O and lower Y, reflecting an adakitic signature that persists into the lower main channel, where compositions become less variable as the bedload is homogenized. Normalization against source averages shows that compositions of the 180–2000 µm fractions are less fractionated from their parents than are the <180 µm fractions, which are enriched for some elements. Contrast between the size fractions is greatest for the granitoid‐derived sediments. Weathering indices of the sediments are relatively low, indicating source weathering is moderate, and typical of temperate climates. Some zircon concentration has occurred in granitoid‐derived <180 µm fractions relative to 180–2000 µm counterparts, but Th/Sc and Zr/Sc ratios overall closely reflect both provenance and homogenization in the lower reaches.  相似文献   

17.
This petrologic analysis of the Negra Muerta Volcanic Complex (NMVC) contributes to understanding the magmatic evolution of eruptive centres associated with prominent NW-striking fault zones in the southern Central Andes. Specifically, the geochemical characteristics and magmatic evolution of the two eruptive episodes of this Complex are analysed. The first one occurred as an explosive eruption at 9 Ma and is represented by a strongly welded, fiamme-rich, andesitic to dacitic ignimbrite deposit. The second commenced with an eruption of a rhyolitic ignimbrite at 7.6 Ma followed by effusive discharge of hybrid lavas at 7.3 Ma and by emplacement of andesitic to rhyodacitic dykes and domes. Both explosive and effusive eruptions of the second episode occurred within a short time span, but geochemical interpretations permit consideration of the existence of different magmas interacting in the same magma chamber. Our model involves an andesitic recharge into a partially cooled rhyolitic magma chamber, pressurising the magmatic system and triggering explosive eruption of rhyolitic magma. Chemical or mechanical evidence for interaction between the rhyolitic and andesitic magma in the initial stages are not obvious because of their difference in composition, which could have been strong enough to inhibit the interaction between the two magmas. After the initial explosive stages of the eruption at 7.6 Ma, the magma chamber become more depressurised and the most mafic magma settled in compositional layers by fractional crystallisation. Restricted hybridisation occurred and was effective between adjacent and thermally equivalent layers close to the top of the magma chamber. At 7.3 Ma, increments of caldera formation were accompanied by effusive discharge of hybrid lavas through radially disposed dykes whereby andesitic magma gained in importance toward the end of this effusive episode in the central portion of the caldera. Assimilation during turbulent ascent (ATA) is invoked to explain a conspicuous reversed isotopic signature (87Sr/86Sr and 143Nd/144Nd) in the entire volcanic series. Therefore, the 7.6 to 7.3 Ma volcanic rocks of the NMVC resulted from synchronous and mutually interacting petrological processes such as recharge, fractional crystallization, hybridisation, and Assimilation during Turbulent Ascent (ATA).Geochemical characteristics of both volcanic episodes show diverse type and/or depth in the sources and variable influence of upper crustal processes, and indicate a recurrence in the magma-forming conditions. Similarly, other minor volcanic centres in the transversal volcanic belts of the Central Andes repeated their geochemical signatures throughout the Miocene.  相似文献   

18.
A bimodal volcanic suite with KAr ages of 0.05–1.40 Ma was collected from the Sumisu Rift using alvin. These rocks are contemporaneous with island arc tholeiite lavas of the Izu-Ogasawara arc 20 km to the east, and provide a present day example of volcanism associated with arc rifting and back-arc basin initiation. Major element geochemistry of the basalts is most similar to that of basalts found in other, more mature back-arc basins, which indicates that back-arc basins need not begin their magmatic evolution with lavas bearing strong arc signatures.Volatile concentrations distinguish Sumisu Rift basalts from island arc basalts and MORB. H2O contents, which are at least four times greater than in MORB, suppress plagioclase crystallization. This suppression results in a more mafic fractionating assemblage, which prevents Al2O3 depletion and delays the initiation of Fe2O3(tot) and TiO2 enrichment. However, unlike arc basalts,Fe3+/ΣFe ratios are only slightly higher than in MORB and are insufficient to cause magnetite saturation early enough to suppress Fe2O3(tot) and TiO2 enrichment. Thus, major element trends are more similar to those of MORB than arcs.H2O, CO2 and S are undersaturated relative to pure phase solubility curves, indicating exsolution of an H2O-rich mixed gas phase. HighH2O/S, highδD, and low (MORB-like)δ34S ratios are considered primary and distinctive of the back-arc basin setting.  相似文献   

19.
Three ring-complexes are considered as possible sources for the volcanic sequences of the Lamington Group and Main Range Volcanics, all of Lower Miocene age. The Lamington Group lavas comprise transitional tholeiitic basalts and rhyolites with alkali basalts at the base; the Main Range Volcanics are an alkali olivine basalt - trachyte - soda rhyolite association. The Mt. Warning intrusive complex is thought to be the source of most of the lavas of the Lamington Group. It consists largely of plutonic rocks which have probably moved upwards by ring-faulting determining the initiation of erosion of the wide caldera in which the complex lies. Most of the members of the Mt. Barney complex preceded the Lamington Group lavas; the Mt. Alford complex was synchronous with the Main Range lavas, but is unlikely, from structural considerations, to have contributed to them. The two major volcanic groups are compared with each other and with the intrusive rocks of Mt. Warning and Mt. Alford by an alkali-silica diagram and 0 values.  相似文献   

20.
Ar–Ar dating, major and trace element analyses, and Sr–Nd–Pb isotope results of two groups of Lower Cretaceous (erupted at 126 and 119 Ma, respectively) intermediate–felsic lava from the northeastern North China Block (NCB) suggest their derivation from melting of mixtures between the heterogeneous lower crust and underplated basalts. Both groups exhibit high‐K calc‐alkaline to shoshonitic affinities, characterized by light rare earth element (LREE) and large ion lithophile element (LILE) enrichment and variable high field strength element (HFSE, e.g. Nb, Ta and Ti) depletion, and moderately radiogenic Sr and unradiogenic Nd and Pb isotopic compositions. Compared with Group 2, Group 1 rocks have relatively higher K2O and Al2O3/(CaO + K2O + Na2O) in molar ratio, higher HFSE concentrations and lower Nb/Ta ratios, and higher Sr–Nd–Pb isotope ratios. Group 1 rocks were derived from a mixture of an enriched mantle‐derived magma and a lower crust that has developed radiogenic Sr and unradiogenic Nd and Pb isotopic compositions, whereas the Group 2 magmas were melts of another mixture between the same mantle‐derived component and another type of lower crust having even lower Sr, Nd, and Pb isotopic ratios. Shift in source region from Group 1 to Group 2 coincided with a change in melting conditions: hydrous melting of both the underplated basalt and the lower crust produced the earlier high‐Nb and low‐Nb/Ta melts with little or no residual Ti‐rich phases; while the younger low‐Nb and high‐Nb/Ta magmas were melted under a water‐deficient system, in which Ti‐rich phases were retained in the source. Generation of the two groups of intermediate–felsic volcanic rocks was genetically linked with the contemporaneous magma underplating event as a result of lithospheric thinning in the eastern NCB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号