首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一种改进后的海上风机动力特性理论分析方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
海上风机是一种高柔性海洋结构物,其支撑结构的动力响应对风、浪、流等环境因素、风机荷载及基础刚度的影响异常敏感。建立基础-塔架-顶部集中质量为一体的风机简化计算模型,在底部弹性约束条件下考虑水平刚度和转动刚度之间的耦合。基于改进后的计算模型、经典微分方程及其边界条件,通过对方程的求解,系统研究底部基础刚度和顶部竖向轴压等设计参数对结构前四阶自振频率的影响规律。本文研究结论在一定程度上可揭示风机运行过程中因基础刚度变化而引起的支撑结构动力特性变化规律,可为今后实际工程中风机基础、支撑结构的选型及设计提供相关启示。  相似文献   

2.
系统自振频率限制是海上风机结构设计中的一个关键因素。运行状态下风机动力荷载会引起基础的水平侧移,较大的水平侧移会导致基础刚度的降低,进一步影响风机系统的自振频率。该文基于有限元软件ABAQUS平台,建立单桩式海上风机结构系统的自振频率数值模型,并讨论运行状态下基础水平侧移对大直径海上风机系统自振频率的影响。模型中考虑了塔筒的变截面特性;桩-土相互作用通过p-y曲线方法模拟;桩和塔采用梁单元模拟;通过Pushover分析汇总出水平侧移引起的桩顶水平刚度。研究结果表明:桩基侧向位移会降低风机结构体系的自振频率;桩基侧向位移对基频的影响较小,对高阶频率的影响显著;大直径海上风机的频率计算中可忽略风机运行状态对体系自振频率的影响。  相似文献   

3.
本文提出了圆球减振装置对风力发电高塔振动控制的工作原理和计算方法,并对其控制效果进行了理论研究。首先利用拉格朗日方程推导得到圆球减振装置的自振频率及其对单自由度系统的被动控制力,并推广至多自由度系统。进而将风力发电高塔等效为集中质点模型,建立了风塔-减振装置体系的运动微分方程。用谐波叠加法模拟得到脉动风速时程,分析比较了风力发电高塔在无控及有控状态下的动力响应及疲劳寿命。计算结果表明,圆球减振装置是一种简单、经济和实用的减振装置,能够有效减小风塔的动力响应,延长其疲劳寿命。  相似文献   

4.
海上风机结构系统频率是海上风机结构和基础设计考虑的关键因素之一,桩-土相互作用对海上风机结构系统频率影响显著。基于欧拉-伯努利梁理论和传递矩阵方法,考虑水-桩-土相互作用及塔筒变截面特性,建立单桩式海上风机结构系统横向振动自振频率特征方程;将桩-水相互作用等效为附加质量、桩-土相互作用等效为线性弹簧,变截面塔筒等效为多段均匀梁,利用MATLAB中fsolve函数求解固有频率。通过与有限元分析结果进行对比,验证本文方法精度与有效性,并将本文方法应用于实际工程中,研究桩基础埋深、上部质量、转动惯量和桩-水相互作用对单桩式海上风机结构系统自振频率的影响。  相似文献   

5.
Offshore wind turbines (OWTs) are dynamically loaded structures and therefore the estimation of the natural frequency is an important design calculation to avoid resonance and resonance related effects (such as fatigue). Monopiles are currently the most used foundation type and are also being considered in deeper waters (>30 m) where a stiff transition piece will join the monopile and the tapered tall tower. While rather computationally expensive, high fidelity finite element analysis can be carried to find the Eigen solutions of the whole system considering soil–structure interaction; a quick hand calculation method is often convenient during the design optimisation stage or conceptual design stage. This paper proposes a simplified methodology to obtain the first natural frequency of the whole system using only limited data on the WTG (Wind Turbine Generator), tower dimensions, monopile dimensions and the ground. The most uncertain component is the ground and is characterised by two parameters: type of ground profile (i.e. soil stiffness variation with depth) and the soil stiffness at one monopile depth below mudline. In this framework, the fixed base natural frequency of the wind turbine is first calculated and is then multiplied by two non-dimensional factors to account for the foundation flexibility (i.e. the effect of soil–structure interaction). The theoretical background behind the model is the Euler–Bernoulli and Timoshenko beam theories where the foundation is idealised by three coupled springs (lateral, rocking and cross-coupling). 10 wind turbines founded in different ground conditions from 10 different wind farms in Europe (e.g. Walney, Gunfleet sand, Burbo Bank, Belwind, Barrow, Kentish flat, Blyth, Lely, Thanet Sand, Irene Vorrink) have been analysed and the results compared with the measured natural frequencies. The results show good accuracy (errors below 3.5%). A step by step sample calculation is also shown for practical use of the proposed methodology.  相似文献   

6.
考虑桩-弹性地基相互作用,采用集中质量法和柔度法对泥面线以上的单桩风机结构进行多自由度动力分析,确定单桩风机的自振频率。通过算例给出单桩风机的自振频率值,并与不考虑桩-弹性地基相互作用的单桩风机的自振频率值进行比较。  相似文献   

7.
Offshore wind turbines supported on monopile foundations are dynamically sensitive because the overall natural frequencies of these structures are close to the different forcing frequencies imposed upon them. The structures are designed for an intended life of 25 to 30 years, but little is known about their long term behaviour. To study their long term behaviour, a series of laboratory tests were conducted in which a scaled model wind turbine supported on a monopile in kaolin clay was subjected to between 32,000 and 172,000 cycles of horizontal loading and the changes in natural frequency and damping of the model were monitored. The experimental results are presented using a non-dimensional framework based on an interpretation of the governing mechanics. The change in natural frequency was found to be strongly dependent on the shear strain level in the soil next to the pile. Practical guidance for choosing the diameter of monopile is suggested based on element test results using the concept of volumetric threshold shear strain.  相似文献   

8.
风电塔是一种顶部有较大偏心质量的高耸薄壁悬臂结构,以某1.5MW水平轴三叶片风电塔为研究对象,重点关注风电塔振动台试验缩尺模型设计。根据量纲分析理论和相似条件,基于模型质量分布和刚度分布等效原则,设计模型塔筒截面及附加质量,保证模型与原型结构自振频率和振型相似。通过对比分析模型动力特性测试结果与原型实测结果,验证了该模型设计方法的合理性,可为同类型风电塔振动台试验设计提供参考与依据。针对该柔性对称高塔模型在动力特性测试中出现的正交耦合振动及拍振现象也进行了详细阐述。  相似文献   

9.
This paper presents real-time monitoring data and analysis results of the non-stationary vibrations of an operational wind turbine. The advanced time-frequency spectrum analysis reveals varied non-stationary vibrations with timevarying frequencies, which are correlated with certain system natural modes characterized by finite element analysis. Under the effects of strong wind load, the wind turbine system exhibits certain resonances due to blade passing excitations. The system also exhibits certain instabilities due to the coupling of the tower bending modes and blade flapwise mode with blade passing excitations under the variation of wind speed. An analytical model is used to elaborate the non-stationary and instability phenomena observed in experimental results. The properties of the nonlinear instabilities are evaluated by using Lyapunov exponent estimation.  相似文献   

10.
Manually collected snow data are often considered as ground truth for many applications such as climatological or hydrological studies. However, there are many sources of uncertainty that are not quantified in detail. For the determination of water equivalent of snow cover (SWE), different snow core samplers and scales are used, but they are all based on the same measurement principle. We conducted two field campaigns with 9 samplers commonly used in observational measurements and research in Europe and northern America to better quantify uncertainties when measuring depth, density and SWE with core samplers. During the first campaign, as a first approach to distinguish snow variability measured at the plot and at the point scale, repeated measurements were taken along two 20 m long snow pits. The results revealed a much higher variability of SWE at the plot scale (resulting from both natural variability and instrumental bias) compared to repeated measurements at the same spot (resulting mostly from error induced by observers or very small scale variability of snow depth). The exceptionally homogeneous snowpack found in the second campaign permitted to almost neglect the natural variability of the snowpack properties and focus on the separation between instrumental bias and error induced by observers. Reported uncertainties refer to a shallow, homogeneous tundra-taiga snowpack less than 1 m deep (loose, mostly recrystallised snow and no wind impact). Under such measurement conditions, the uncertainty in bulk snow density estimation is about 5% for an individual instrument and is close to 10% among different instruments. Results confirmed that instrumental bias exceeded both the natural variability and the error induced by observers, even in the case when observers were not familiar with a given snow core sampler.  相似文献   

11.
Wind velocity assumes a critical part for measuring the power created by the wind turbines. Nonetheless, power production from wind has a few weaknesses. One significant issue is that wind is a discontinuous energy source which implies that there exists substantial variability in the generation of vigor because of different variables, for example, wind speed. Wind direction is a significant variable for proficient turbine control for getting the most energy with a given wind speed. Taking into account the conjectures on wind heading, it might be conceivable to adjust the turbine to the wind bearing to get the most energy yield. Since both forecasts of wind speed and direction are basic for effective wind energy collecting it is crucial to develop a methodology for estimation of wind speed and direction and afterwards to estimate wind farm power production as function of wind pace and heading distribution. Despite the fact that various numerical functions have been proposed for demonstrating the wind speed and direction frequency distribution, there are still disadvantages of the models like very demanding in terms of calculation time. In this investigation adaptive neuro-fuzzy inference system (ANFIS), which is a particular sort of the artificial neural networks (ANN) family, was used to anticipate the wind speed and direction frequency dispersion. Thereafter, the ANFIS system was utilized to gauge wind homestead power creation as function of wind velocity and bearing. Neural system in ANFIS modifies parameters of enrollment capacity in the fuzzy logic of the fuzzy inference system. The reenactment outcomes exhibited in this paper demonstrate the adequacy of the created technique.  相似文献   

12.
考虑离心刚化效应的旋转风力机叶片动力特性分析   总被引:3,自引:0,他引:3  
风机叶片的动力特性直接影响到风力发电机组整体的动力特性,对旋转叶片动力特性的研究是必要的。叶片在旋转过程中由于重力和离心力的作用,将会产生离心刚化效应,从而改变叶片自身的动力特性。基于空间面的概念,本文应用有限元理论计算了随时间和转速二维坐标变化的叶片节点轴力面和叶片的前三阶自振频率面,同时引入刚化系数的概念,定量地描述了叶片的刚化程度,并给出了频率修正公式,结果分析表明本文采用的方法可以模拟旋转叶片产生离心刚化效应后的动力特性,更准确地反映叶片的实际动力特性。  相似文献   

13.
Evaluation of dam overtopping probability induced by flood and wind   总被引:5,自引:4,他引:1  
This study develops a probability-based methodology to evaluate dam overtopping probability that accounts for the uncertainties arising from wind speed and peak flood. A wind speed frequency model and flood frequency analysis, including various distribution types and uncertainties in their parameters, are presented. Furthermore, dam overtopping probabilities based on monthly maximum (MMax) series models are compared with those of the annual maximum (AMax) series models. An efficient sampling scheme, which is a combination of importance sampling (IS) and Latin Hypercube sampling (LHS) methods, is proposed to generate samples of peak flow rate and wind speed especially for rare events. Reservoir routing, which incorporates operation rules, wind setup, and run-up, is used to evaluate dam overtopping probability.  相似文献   

14.
The prediction of drifting object trajectories in the ocean is a complex problem plagued with uncertainties. This problem is usually solved simulating the possible trajectories based on wind and advective numerical and/or instrumental data in real time, which are incorporated into Lagrangian trajectory models. However, both data and Lagrangian models are approximations of reality and when comparing trajectory data collected from drifter exercises with respect to Lagrangian models results, they differ considerably. This paper introduces a stochastic Lagrangian trajectory model that allows quantifying the uncertainties related to: (i) the wind and currents numerical and/or instrumental data, and (ii) the Lagrangian trajectory model. These uncertainties are accounted for within the model through random model parameters. The quantification of these uncertainties consists in an estimation problem, where the parameters of the probability distribution functions of the random variables are estimated based on drifter exercise data. Particularly, it is assumed that estimated parameters maximize the likelihood of our model to reproduce the trajectories from the exercise. Once the probability distribution parameters are estimated, they can be used to simulate different trajectories, obtaining location probability density functions at different times. The advantage of this method is that it allows: (i) site specific calibration, and (ii) comparing uncertainties related to different wind and currents predictive tools. The proposed method is applied to data collected during the DRIFTER Project (eranet AMPERA, VI Programa Marco), showing very good predictive skills.  相似文献   

15.
Estimating the natural frequencies of a wind turbine system consisting rotor, nacelle, tower, foundation and surrounding soil is one of the important design considerations. This paper experimentally investigates the behaviour of a model wind turbine supported on a particular type of foundation called a monopile. Monopile is a single large diameter (2.5–4 m) long slender column inserted deep into the ground. This can be thought of as an extension of the wind turbine tower. In particular, the role of soil/foundation in the dynamics of wind turbines has been investigated. Analytical methods are developed incorporating the rotational and translation flexibility of the foundation. Novel experimental techniques have been developed to obtain the parameters necessary for the analytical model. The analytical model is validated using a finite element approach and experimental measurements. In total, results from 17 test cases is reported in the paper. Experimental results show that the natural frequencies and the damping factors of the wind turbine tower change significantly with the type of soil/foundation. Analytical results for the natural frequencies agree reasonably well to the experimental results and finite element results.  相似文献   

16.
The wind energy industry has been growing rapidly during the past decades.Along with this growth,engineering problems have gradually emerged in the wind power industry,including those related to the structural reliability of turbine towers.This study proposes a rapid seismic analysis methodology for existing wind turbine tower structures.The method is demonstrated and validated using a case study on a 1.5 MW tubular steel wind turbine tower.Three finite element(FE)models are developed first.Field tests are conducted to obtain the turbine tower's vibrational characteristics.The tests include(1) remotely measuring the tower vibration frequencies using a long range laser Doppler Vibrometer and(2) monitoring the tower structural vibration by mounting accelerometers along the height of the tubular structure.In-situ measurements are used to validate and update the FE models of the wind turbine tower.With the updated FE model that represents the practical structural conditions,seismic analyses are performed to study the structural failure,which is defined by the steel yielding of the tubular tower.This research is anticipated to benefit the management of the increasing number of wind energy converters by providing an understanding of the seismic assessment of existing tubular steel wind turbine towers.  相似文献   

17.
对某个风电场的23座高桩-混凝土承台式海上风电塔进行了1年的强振监测,统计了其在台风、偏航冲击等作用力下的强振特性。监测数据分析发现:机舱对风向偏航时会引起塔筒强烈振动,且此类型强振现象持续时间达几十秒,有时振动加速度可超过10 m/s^2,每个月多达几百次;在某次台风作用下,塔筒的振动加速度接近10 m/s^2;施工船靠船时的碰撞引起塔筒的强振幅值接近15 m/s^2;通过分析风电塔1年运营期间的塔筒固有频率值,发现前3阶固有频率值、阻尼比未发现变化。监测结果表明:高桩-混凝土承台式风电塔在台风、机舱偏航,施工船碰撞时都会产生强烈振动。因此,机舱偏航和施工船碰撞引起风电塔的强振现象过于频繁发生,是风电塔疲劳损伤的重要因素。本文的研究成果可为此类型风电塔设计、运营安全监测及损伤诊断提供参考。  相似文献   

18.
A comprehensive study is performed on the dynamic behavior of offshore wind turbine (OWT) structure supported on monopile foundation in clay. The system is modeled using a beam on nonlinear Winkler foundation model. Soil resistance is modeled using American Petroleum Institute based cyclic p–y and t–z curves. Dynamic analysis is carried out in time domain using finite element method considering wind and wave loads. Several parameters, such as soil–monopile–tower interaction, rotor and wave frequencies, wind and wave loading parameters, and length, diameter and thickness of monopile affecting the dynamic characteristics of OWT system and the responses are investigated. The study shows soil–monopile–tower interaction increases response of tower and monopile. Soil nonlinearity increases the system response at higher wind speed. Rotor frequency is found to have dominant role than blade passing frequency and wave frequency. Magnitude of wave load is important for design rather than resonance from wave frequency.  相似文献   

19.
Preliminary design of offshore wind turbines requires high precision simplified methods for the analysis of the system fundamental frequency. Based on the Rayleigh method and Lagrange's Equation, this study establishes a simple formula for the analysis of system fundamental frequency in the preliminary design of an offshore wind turbine with a monopile foundation. This method takes into consideration the variation of cross-section geometry of the wind turbine tower along its length, with the inertia moment and distributed mass both changing with diameter. Also the rotational flexibility of the monopile foundation is mainly considered. The rigid pile and elastic middle long pile are calculated separately. The method is validated against both FEM analysis cases and field measurements, showing good agreement. The method is then used in a parametric study, showing that the tower length Lt, tower base diameter d0, tower wall thickness δt, pile diameter db and pile length Lb are the major factors influencing the fundamental frequency of the offshore wind turbine system. In the design of offshore wind turbine systems, these five parameters should be adjusted comprehensively. The seabed soil condition also needs to be carefully considered for soft clay and loose sand.  相似文献   

20.
The objective of this article is to study as extensively as possible the uncertainties affecting the annual energy produced by a windmill. In the literature, the general approach is to estimate the mean annual energy from a transformation of a Weibull distribution law. Then the issue is reduced to estimating the coefficients of this distribution. This is obtained by classical statistical methods. Therefore, the uncertainties are mostly limited to those resulting from the statistical procedures. But in fact, the real uncertainty of the random variable which represents the annual energy cannot been reduced to the uncertainty on its mean and to the uncertainties induced from the estimation procedure. We propose here a model, which takes advantage of the fact that the annual energy production is the sum of many random variables representing the 10?min energy production during the year. Under some assumptions, we make use of the central limit theorem and show that an intrinsic uncertainties of wind power, usually not considered, carries an important risk. We also explain an observation coming from practice that the forecasted annual production is always overestimated, which creates a risk of reducing the profitability of the operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号