首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to effectively control vibration related problems, the development of a reliable vibration monitoring system and the proper assessment of attenuation characteristics of various vibrations are essential. Various ground vibrations caused by train loading, blasting, friction pile driving and hydraulic hammer compaction were measured using 3D geophones inside of the borehole as well as on the ground surface, and the propagation and attenuation characteristics of various source generated vibrations were investigated by analyzing particle motions. For the geometric modeling of various vibrations, the types of various sources and their induced waves were characterized and the geometric damping coefficients were determined. The measured attenuation data matched well with the predicted data when using the suggested geometric damping coefficient, and the estimated soil damping ratios were quite reasonable taking soil type of the site and experiencing strain level into consideration.  相似文献   

2.
To preserve an ancient building in Rome against traffic-induced vibrations, an anti-vibration system was introduced under the paving of the near Lungotevere road. An experimental investigation was recently carried out by ENEA in order to analyse the traffic-induced vibrations in the basement of the building and the effectiveness of the intervention. Wave propagation in the soil around the building in presence of the anti-vibration paving was compared with that in absence of the anti-vibration paving. The study showed the importance of the taking into account the contribution of other structures in the area to the dynamic behaviour of the whole system.  相似文献   

3.
In this study, the effectiveness of a tuned liquid column-gas damper, TLCGD, on the suppression of seismic-induced vibrations of steel jacket platforms is evaluated. TLCGD is an interesting choice in the case of jacket platforms because it is possible to use the structural elements as the horizontal column of the TLCGD. The objective here is to find the optimum geometric parameters, namely orientation and configuration of vertical columns, length ratio, and area ratio of the TLCGD, considering nonlinear damping of the TLCGD and water-structure interaction between the jacket platform and sea water. The effects of different characteristics of ground motion such as PGA and frequency content on the optimum geometry are also investigated and it is observed that these features have some influence on the optimum area ratio. Finally it is observed that pulse arrangement of ground acceleration is one of the most important parameters affecting the efficiency of a TLCGD. In other words, it is found that the TLCGD’s capability to reduce the RMS responses depends only on the frequency content of the ground acceleration, but its capability to reduce the maximum responses depends on both the frequency content and the pulse arrangement of the ground acceleration.  相似文献   

4.
动力机器运行和车辆行驶等会产生振动污染,危及邻近建筑物安全和干扰精密仪器设备正常运行等。这些振动污染可通过在地基中设置空沟的方式来降低或消除。针对饱和地基上明置动力机器基础的环境振动影响及空沟近场隔振问题,进行了饱和地基上空沟近场隔振的现场试验,并对试验结果进行了无量纲化分析;基于饱和土半解析边界元法,分别推导了动力机器基础环境振动影响和空沟近场隔振的边界元方程;在此基础上,详细研究了空沟对动力机器基础振动影响的隔振效果,分析了空沟深度、宽度和距振源距离对其隔振效果的影响。结果表明:空沟能够有效的降低动力机器基础的环境振动影响;空沟宽度对其隔振效果影响相对较小,而空沟深度对其隔振效果影响较大,为获得较好的隔振效果,空沟深度建议取1倍Rayleigh波波长;空沟距振源距离对其隔振效果也有较大影响,距离越远则隔振效果也越好,当被保护建筑距振源较远时,建议空沟在被保护建筑附近设置。此外,在某些特殊情况下,空沟隔振系统会由于共振现象而出现隔振效果劣化的现象,在工程设计中应予以注意。  相似文献   

5.
Although all of the main properties of a ground motion cannot be captured through a single parameter, a number of different engineering parameters has been proposed that are able to reflect either one or more ground‐motion characteristics concurrently. For many of these parameters, especially regarding Greece, there are relatively few or no predictive models. In this context, we present a set of new regionally‐calibrated equations for the prediction of the geometric mean of the horizontal components of 10 amplitude‐, frequency response‐, and duration‐based parameters for shallow crustal earthquakes. These equations supersede previous empirical relationships for Greece since their applicability range for magnitude, and epicentral distance has been extended down to Mw 4 and up to 200 km, respectively, the incorporation of a term accounting for anelastic attenuation has been investigated, while their development was based on a ground‐motion dataset spanning from 1973 to 2014. For all ground‐motion parameters, we provide alternative optimal equations relative to the availability of information on the different explanatory variables. In all velocity‐based and contrary to the acceleration‐based parameters, the anelastic attenuation coefficient was found statistically insignificant when it was combined with the geometric decay and the coefficient accounting for saturation with distance. In the regressions where the geometric decay coefficient simultaneously incorporated the contribution of anelastic attenuation, its increase was found to be much less considerable in the velocity‐based than in the acceleration‐based parameters, implying a stronger effect of anelastic attenuation on the parameters that are defined via the acceleration time history.  相似文献   

6.
The aim of this study is to show the effect of geological factors in predicting the level of blast-induced ground vibrations. The site-specific character of ground must be involved in the prediction models especially if the ground conditions have a variable character like in this case. But in a blasting environment, this is only possible by using an empirical way. Towards this aim, an in-situ experimental study in a highly jointed sandstone quarry was carried out to incorporate the variable conditions into the prediction models. Therefore, 60 shots were organized and their ground vibrations monitored in two different directions to compare the results. These shots were normal production shots involving the true technological properties as well as geological properties into the prediction model. Based on these, the empirical relations between particle velocity, the amount of explosive and distance have been developed. The results show that the performances of these estimations depend on the site-specific character of these empirical relations. The best prediction was obtained with only 2.08% error level provided that the true technological and geological properties are involved.  相似文献   

7.
The results of a numerical study on the influence of a number of structural design parameters on the fundamental frequency of reinforced-soil retaining wall models are presented and discussed. The design parameters in the study include the wall height, backfill width, reinforcement stiffness, reinforcement length, backfill friction angle and toe restraint condition. The intensity of ground motion, characterized by peak ground acceleration, is also included in the study as an additional parameter. The study shows that the fundamental frequency of reinforced-soil wall models with sufficiently wide backfill subjected to moderately strong vibrations can be estimated with reasonable accuracy from a few available formulae based on linear elastic wave theory using the shear wave speed in the backfill and the wall height. Numerical analyses showed no significant influence of the reinforcement stiffness, reinforcement length or toe restraint condition on the fundamental frequency of wall models. The strength of the granular backfill, characterized by its friction angle, also did not show any observable effect on the fundamental frequency of the reinforced-soil retaining wall. However, the resonance frequencies of wall models were dependent on the ground motion intensity and to a lesser extent, on the width to height ratio of the backfill.  相似文献   

8.
This paper deals with the numerical modelling of free field traffic-induced vibrations during the passage of a vehicle on an uneven road. The road unevenness subjects the vehicle to vertical oscillations that cause dynamic axle loads. The latter are calculated from the vehicle transfer functions and the frequency content of the road profile as experienced by the vehicle axles. A transfer function between the source and the receiver that accounts for the dynamic interaction between the road and the soil is used to calculate the free field response. Its calculation is based on a dynamic substructure method, using a boundary element method for the soil and an analytical beam model for the road. The methodology is validated with analytical results and is finally illustrated by a numerical example where the free field vibrations during the passage of a vehicle on a traffic plateau are considered.  相似文献   

9.
This paper presents the concept of using an additional generator to prevent ground vibrations. A linear, transversally isotropic three dimensional half-space with the hysteretic damping model, acted upon by a harmonic vertical excitation is assumed. Equations of motion for the transversally isotropic ground model with the absorbing boundary conditions are presented and numerically integrated using FlexPDE software, based on the finite element method. The efficiency of the solution is analysed in terms of reducing the vertical and horizontal components of ground surface vibrations. Results in the form of a dimensionless amplitude reduction factor are presented for four different locations of a generator. The influence of the soil parameters and layers locations on the additional generator's efficiency is investigated. The vibration reduction efficiency in a four-story building is also presented.  相似文献   

10.
地震动河谷场地效应研究   总被引:1,自引:0,他引:1  
本文以梯形河谷场地为研究对象,采用二维显式有限差分和透射人工边界理论,根据设计的正交表建立计算模型,计算分析了梯形河谷场地对地震动的影响因素,对其影响程度进行了排名,并采用强震记录分析法对计算结果进行了初步验证。结果表明,4个因素对梯形河谷场地的地表地震动有重要的影响,但是其影响程度随着位置的变化表现也不同,不同位置的影响因素排名不同;距河谷谷坡40m以内的场地,各影响因素排位相同,首位是河谷坡角,其次是深宽比、覆盖层厚度,最后是输入地震动强度,因此,河谷场地距谷坡一定距离时各因素对地表地震动影响程度基本相同,该段场地河谷地形的几何参数对地震动影响起较大作用;随着场地距河谷谷坡越远,影响因素的排位也发生了变化,总体上是坡角排位后移,输入地震动和覆盖层厚度排位前移,河谷几何参数对地震动影响逐渐减弱,覆盖层厚度和输入地震强度2个因素的影响逐渐加大,该段场地对地震动影响与水平成层场地类似。对安宁河河谷场地强震记录分析验证的结果表明,河谷地形对地震动有显著的放大作用,同时也验证了本文的数值模拟结果是可信的。  相似文献   

11.
高科技厂房结构微振响应分析   总被引:2,自引:1,他引:1  
高科技精密仪器厂房,对环境微振动非常敏感,要求控制结构的振动位移和速度。本文利用Kanai-Tajim i功率谱密度函数,模拟由交通工具引起的地面扰动,对某洁净室框架结构进行模态分析和微振谱分析。通过计算结构的振动特性和基频以及响应功率谱,得出振幅范围,从而获得结构在环境微振下的响应。为了研究结构微振的影响因素,分析了各种梁柱截面尺寸的振动响应,通过与微振动通用标准BBN-VC比较,评价了结构微振性能,为结构抗微振设计提供参考依据。  相似文献   

12.
列车引起场地振动的建模需要能够表达地层的动力格林函数.本文兼顾饱和土的流固两相耦合性、场地土的分层性和波动的三维传播性,构建了半解析的场地动力格林函数.首先,基于Biot方程,在傅里叶变换域求解固体骨架和流体的位移和应力.然后采用传递矩阵方法建立地表位移和应力间的关系,得到格林函数矩阵.进而讨论矩阵的一些固有特征,提出改善竖向位移计算效率的措施.最后利用推导的格林函数计算了几个典型算例.数值结果与文献中其他方法得到的结果十分接近,与场地振动的现场观测试验基本符合.软土场地振动的计算结果高于饱和砂土场地,高速列车场地振动强度高于低速列车.当车速接近场地瑞利波速,模拟结果中显示出马赫锥.数值结果还显示,即使车速略低于瑞利波速,马赫锥也可能出现.本文推导的格林函数将有助于深入理解列车等移动激励作用下层状饱和土场地的振动特征.  相似文献   

13.
Recently, ambient vibration test (AVT) is widely used to estimate dynamic characteristics of large civil structures. Dynamic characteristics can be affected by various environmental factors such as humidity, intensity of wind, and temperature. Besides these environmental conditions, the mass of vehicles may change the measured values when traffic-induced vibration is used as a source of AVT for bridges. The effect of vehicle mass on dynamic characteristics is investigated through traffic-induced vibration tests on three bridges; (1) three-span suspension bridge (128m +404m + 128m), (2) five-span continuous steel box girder bridge (59m + 3@95m + 59m), (3) simply supported plate girder bridge (46m). Acceleration histories of each measurement location under normal traffic are recorded for 30 minutes at field. These recorded histories are divided into individual vibrations and are combined into two groups according to the level of vibration ; one by heavy vehicles such as trucks and buses and the other by light vehicles such as passenger cars. Separate processing of the two groups of signals shows that, for the middle and long-span bridges, the difference can be hardly detected, but, for the short span bridges whose mass is relatively small, the measured natural frequencies can change up to 5.4%. Supported by: the Ministry of Construction and Transportation, Korea Highway Corporation and Hyundai E&C Co. Ltd. under Project No. R&D/970003-2.  相似文献   

14.
The ground motion owing to the collapse of a large-scale cooling tower under strong earthquakes was appropriately predicted using a comprehensive approach. The predicted results can be used for the safety evaluation of nuclear-related facilities adjacent to the cooling tower as well as in the planning of nuclear power plant construction in China. In this study, a cooling tower–soil model was first developed based on a falling weight–soil model, which the authors verified by falling weight tests. Then the collapse process of a cooling tower was simulated, and the collapse-induced ground vibrations were assessed by using the proposed model. Finally, the ground motion, which was a combination of the earthquake-induced ground motion and the collapse-induced ground vibrations, was estimated based on the superposition principle of waves. It was found that the cooling tower may collapse under strong earthquakes with the peak ground accelerations (PGAs) in the range of 0.35–0.45 g in x (EW) and y (NS) directions, respectively. These PGAs are far beyond the PGA range of major earthquakes in the common seismic design in China. The types of the site geologies of towers can significantly affect the collapse-induced ground vibrations. For a typical hard soil consisting of strongly weathered sandy slate, moderate ground vibrations may occur in the considered region. The collapse-induced PGAs were in the range of 0.017–0.046 g for the observed points at distances of 350 m in radial direction. For a rock-like foundation, the collapse-induced radial PGAs may be as high as 0.08 g at distances of 350 m, indicating that the effect of the collapse-induced ground vibrations on the nuclear-related facilities should be seriously assessed in certain scenarios.  相似文献   

15.
The theoretical and experimental investigation of a cable-stayed bridge after major repair is described in this paper. Strengthening mainly involved the suspension system (originally with prestressed concrete stays) which was retrofitted by means of external tendons. Full-scale tests were conducted to measure the dynamic response of the repaired system; the experimental program included both traffic-induced and free vibration measurements. A total of 16 vertical frequencies and mode shapes were identified in the frequency range of 0–10 Hz. In the theoretical study, vibration modes involving deck, towers and cables were determined by using finite element models which accounted for the strengthening effects. Two- and three-dimensional models were used so that the importance of three-dimensional modes was estimated as well. The experimental results were compared to natural frequencies and mode shapes computed using theoretical models. For most modes the measured and predicted modal parameters compare well, especially for the vertical modes involving in-phase motion of the stays. © 1997 by John Wiley & Sons, Ltd.  相似文献   

16.
Mappings of the earth surface and their representation in 3D (three‐dimensional) models are commonly used in most recent research. Modeling research, which starts with classical surveying methods, acquires new dimensions matching the modern technologies. 3D models of any object or earth surface can be used in much visual and scientific research. A digital model of the landscape is an important part within creation of geo‐information systems used in the public administration and in the commercial sphere. It is an important tool in applications such as geomorphology, hydrology, geology, cartography, ecology, mining etc. Values of volume in terrains that do not have regular geometric structure can be obtained more accurately by using 3D models of surfaces with respect to developing technology. Basic data of 3D models must indicate 3D coordinates of the surveyed object in the reference frame. Distribution and intensity of points are important factors in modeling earth surfaces. A minimum number of points is desired in defining an object in 3D. Interpolation methods employing different mathematical models are used to obtain 3D models of terrain surfaces. In this study, the effect of interpolation methods in defining a terrain surface is investigated. For this purpose, a uniform surface, hill‐shaped artificial object with a known volume is employed. The 3D surface and volume are calculated by using 12 different interpolation methods. Point distribution, point intensity and accuracy of point measurements are not considered. The same data set was used for all the interpolation methods. The interpolation methods are compared and evaluated based on the results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The seismic response of single‐degree‐of‐freedom (SDOF) systems incorporating flag‐shaped hysteretic structural behaviour, with self‐centring capability, is investigated numerically. For a SDOF system with a given initial period and strength level, the flag‐shaped hysteretic behaviour is fully defined by a post‐yielding stiffness parameter and an energy‐dissipation parameter. A comprehensive parametric study was conducted to determine the influence of these parameters on SDOF structural response, in terms of displacement ductility, absolute acceleration and absorbed energy. This parametric study was conducted using an ensemble of 20 historical earthquake records corresponding to ordinary ground motions having a probability of exceedence of 10% in 50 years, in California. The responses of the flag‐shaped hysteretic SDOF systems are compared against the responses of similar bilinear elasto‐plastic hysteretic SDOF systems. In this study the elasto‐plastic hysteretic SDOF systems are assigned parameters representative of steel moment resisting frames (MRFs) with post‐Northridge welded beam‐to‐column connections. In turn, the flag‐shaped hysteretic SDOF systems are representative of steel MRFs with newly proposed post‐tensioned energy‐dissipating connections. Building structures with initial periods ranging from 0.1 to 2.0s and having various strength levels are considered. It is shown that a flag‐shaped hysteretic SDOF system of equal or lesser strength can always be found to match or better the response of an elasto‐plastic hysteretic SDOF system in terms of displacement ductility and without incurring any residual drift from the seismic event. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Based on the example of the strong earthquake of November 24, 1971, with the earthquake source near the Petropavlovsk-Kamchatskii, the new modeling technique of the strong ground motions within the broadband is tested. In this technique, the seismologically-substantiated models of the radiation source and elastic medium are used. The source is represented by an array of point radiation sources-dislocations with the random seismic moments (amplitudes) and with the random time functions. The new method of calculation of the Green functions is developed to describe the propagation of waves and residual displacements of a layered medium. The method is used for the simulation of the horizontal ground motion, recorded by a S5S-ISO instrument for the strong earthquake that took place on November 24, 1971 with the source near the Petropavlovsk-Kamchatskii (with a depth of 105 km). The position of the hypocenter, the sizes and the position of the fault, and “fault mechanism” were considered to be known a priori. By a trial and error method of the duration of the source process and only two spectral parameters, it was possible to simulate successfully the fundamental characteristics of the ground vibrations: the amplitude of acceleration, the velocity and displacement of the ground, their Fourier spectrum, the duration of the vibrations, and the response spectrum. The surprisingly high level of high-frequency radiation, probably connected with the intraplate position of the source, is a specific feature of the source.  相似文献   

19.
A trapezoid valley site is chosen as a research site, and according to numerical models based on orthogonal design, the factors influencing ground motion in the valley site are studied with two-dimensional finite difference method. The influencing factors are ranked, and then the calculation results are verified by ground motion analysis. The conclusions are as follows: there are four factors that have important effects on ground motion of trapezoid valley sites, but the effects are different as the location of sites changes, the influencing factors rank differently with different site locations;The ranking of the influencing factors is the same for all the sites located within a distance of 40m from the valley''s side, among them, the most effective one is the valley slope angle ranks,followed by depth-to-width ratio, overburden thickness, at last the input ground motion intensity. The impact of the factors on surface ground motion is roughly the same in the valley sites within a certain distance to the valley side,and the geometric parameters of the valley terrain play a greater part in influencing ground motion. With the increase of distance away from the valley''s side, the ranking of the influencing factors also changes, the rating of slope angle moves backward, the ranking of the input ground motion and overburden thickness move ahead. The effect of valley geometric parameters on ground motions is gradually weakened, but the effect of other two influence factors are gradually increased, similar to cases of a horizontal layered site. Strong motion records in Anning River valley site were analyzed,and the results show that the valley topography has a significant amplification effect on ground motion, and that the numerical results of this paper are credible.  相似文献   

20.
Transient flexural vibrations of an elastic column supported by an elastic half-space are investigated analytically under the condition that an arbitrarily shaped free-field lateral acceleration is given as an input. Applying the Timoshenko theory to the column and making use of Laplace transformations with respect to time and numerical inverse Laplace transformations, the time histories of the column free end acceleration are presented. Numerical results obtained from the Timoshenko theory are compared with those of a previous paper1 (applying the Bernoulli-Euler theory to the column), and the effects of column slenderness and foundation stiffness on the transient flexural vibrations of the column are clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号