首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We present evidence that there are significant interactions between heterotrophic microorganisms, doliolids and Fritillaria within intrusions of nutrient-rich Gulf Stream water stranding on the continental shelf. During the summer of 1981 cold, nutrient-rich water from below the surface of the Gulf Stream was repeatedly intruded and stranded on the continental shelf off northeastern Florida. On August 6 old, stranded Gulf Stream water depleted of nitrate occupied the lower layer on the outer shelf. The upper water was continental shelf water, older but of undefined age. On August 6 free-living bacteria were >106ml−1 everywhere at all depths, an order of magnitude greater than normal bacterial numbers on the northeastern Florida continental shelf. Over 10 days the numbers of free bacteria doubled while bacteria attached to particles increased by a factor of four. The adenylate/chlorophyll ratio showed that phytoplankton dominated the lower layers of intruded water, while the surface water became increasingly dominated by heterotrophic microorganisms (bacteria and protozoa) over 10 days. There were significant, negative correlations between bacteria and doliolids and between bacteria and Fritillaria. Regions of maximum bacterial numbers did not coincide with locations of salp swarms. The increased numbers of bacteria at all depths in a highly stratified system in which most phytoplankton are in the lower layer suggests a diverse source of bacterial growth substrates, some of which involve zooplankton as intermediaries. Production of autotrophs is more than twice that of microheterotrophs on average, but because of their differential distribution, microheterotrophs are the dominant biomass in much of the surface water and may be significant in energy flux to metazoan consumers as well as competitors for mutually useable sources of nutrition.  相似文献   

2.
Surface distributions of zooplankton were surveyed with simultaneous measurements of temperature, salinity, chlorophyll and nitrate, around the Izu Islands in July 1988. Several phytoplankton patches, which had developed in the upwelled waters, were encountered around the islands. Zooplankters collected with a 20µm mesh mainly consisted of copepods including eggs, nauplii, copepodites and adults.Paracalanus parvus dominated among the copepod females. High concentrations of all copepod stages were associated with the phytoplankton patches. The increase in reproductive activity of female copepods was considered as a possible process to form the copepod patches associated with the phytoplankton patches.  相似文献   

3.
The micro- and mesozooplankton communities in surface waters of the Greenland Sea are described based on data from five cruises covering an annual cycle. Special emphasis is given to the summer period (June and August), prior to and after the descent of Calanus spp. Calanus spp. dominated the copepod community during the spring bloom and in the beginning of the summer. However, during the summer, there was a pronounced shift in the zooplankton composition in the euphotic zone. In contrast to what has been observed in other Arctic systems, smaller genera such as Pseudocalanus spp., Oncaea spp. and Oithona spp. became abundant and the total copepod biomass remained high after the Calanus spp. descended for hibernation. The peak protozooplankton biomass in the Greenland Sea (June) co-occurred with the peak in Calanus spp. Protozooplankton biomass then decreased during the summer. Growth of protozooplankton and grazing rates of the two dominating non-Calanus genera, Oithona and Pseudocalanus, were measured. For both copepod genera, protozooplankton constituted 40% or more of the diet, and maximum clearance was on prey items with an equivalent spherical diameter between 15 and 30 μm. The non-Calanus components of the zooplankton community were responsible for 70–99% of the total zooplankton grazing on phytoplankton during summer and were crucial for the recycling and respiration of primary production.  相似文献   

4.
The seasonal cycles of abundance of the phytoplankton and zooplankton in Lake Ototoa, Northland, at 36° 31 S, 174° 14 E, are described. Concentrations of chlorophyll a were low (range 0.04–4.61 mg.m‐3; mean 0.97 mg.m‐3), and highest values were in winter. Phytoplankton densities were also low; an oligo‐trophic diatom‐desmid assemblage associated with Botryococcus, Dinobryon, and Svhaerocyslis was found.

The zooplankton was dominated by the calanoid copepod Calamoecia lucasi whose numbers remained fairly constant throughout the year, and the only other copepod found was the cyclopoid Mesocyclops leuckarti which was present in very low numbers. Bosmina meridionalis was the only limnetic cladoceran and was most abundant during autumn and spring. A number of rotifer species were also common.  相似文献   

5.
The distribution and abundance of Thaliacea on the south-eastern continental shelf of the U.S.A. (29°30′–31°N) was studied at 4- to 10-day intervals. During July, Thalia democratica and doliolids covered the same geographic area of the outer middle shelf (~2 800 km2 on 27–29 July). By 8–12 August, these organisms occupied the entire middle shelf from 29°30′ to 30°50′N (~9 300 km2). The increase in area covered was due to the shoreward advection of water. Over a period of 10 days, concentrations of salps increased by as much as 25-fold in the thermocline, which amounted to a daily increase of zooids of 50 per cent. Doliolids increased five-fold during the same period. Both increases resulted from asexual reproduction and indicate that Thaliacea, through asexual reproduction, can respond almost instantaneously to favourable food conditions. Thaliacea seem to be the only metazooplankton taxon that can respond immediately, with large increases in population, to upwelling events.  相似文献   

6.
The intensive study of the Arabian Sea during the 1990s included mesozooplankton investigations by the Netherlands, United Kingdom, Pakistan, India, Germany and the United States. Several major discoveries resulted. First, the high biomass of mesozooplankton observed during the Northeast Monsoon season is sustained by primary productivity stimulated by convective mixing and by an active microbial loop. The apparent ‘paradox’ of high standing stocks of mesozooplankton coinciding with low standing stocks of phytoplankton thus was resolved. Second, the Southwest Monsoon (upwelling) season supports a burst of mesozooplankton growth, much of which is exported to the interior of the Arabian Sea by strong currents and eddy activity and to depth at the end of the season when diapause causes at least one very abundant copepod to leave the epipelagic zone. Third, the oxygen minimum zone severely restricts the vertical distribution of mesozooplankton in the eastern region of the Arabian Sea. The copepod that withstands conditions in the OMZ most readily, Pleuromamma indica, has increased in abundance over the past thirty years suggesting the OMZ may have grown in size and/or intensity in that time. Fourth, the Fall Intermonsoon and Northeast Monsoon seasons are characterized everywhere by increased abundance of the cyclopoid copepod genus, Oithona. Abundances of Oithona measured in the 1990s are much higher than those of the 1930s, suggesting food web alterations over the past half-century.  相似文献   

7.
Main features of the zooplankton distribution and the ecological characteristics of the dominant species in the northern Benguela during different phases of upwelling are discussed. The composition of the zooplankton between 17 and 27°S was similar each year. Among the 20°30 most abundant species, 3°4 copepods dominated, influencing the distribution of total zooplankton biomass. During quiescent upwelling, zooplankton abundance was low and there were no significant differences in the inshore-offshore distribution of zooplankton biomass, the maximum occurring over the slope. During active upwelling, zooplankton biomass increased significantly, the maximum over the shelf being constituted almost entirely of developmental stages of herbivorous copepods. Over the inner shelf, all stages of the copepod Calanoides carinatus were feeding actively, removing up to 5 per cent per day of the standing stock of phytoplankton. Comparison of daily ration, respiration rate and biochemical composition of C. carinatus revealed active storage of energy inshore. Offshore populations of C. carinatus, found deeper than 200 m, comprised mainly copepodite stage V, which were not feeding and were characterized by decreased mobility and respiration and a high lipid content. It is estimated that the energy stored during active upwelling enables copepods to survive up to six months without any additional source of energy.  相似文献   

8.
Zooplankton sampling has been carried out by the Continuous Plankton Recorder (CPR) survey since the 1930s enabling the study of long-term changes in plankton populations, the elucidation of seasonal patterns of abundance, and more recently providing zooplankton biomass estimates for ecosystem models. Data for zooplankton abundance collected by CPR tows in the Western English Channel (between 1988 and 1998) were compared to vertically integrated samples collected from station L4 off Plymouth, UK. Comparisons were made for locally abundant copepods (including Acartia, Calanus, Para/Pseudocalanus, Centropages, Oithona and Temora) collected by CPR and WP-2 nets. All dominant species recorded at L4 were also common to the CPR data. However, the position of the taxa in the two datasets was not equivalent. Seasonal cycles revealed by CPR data were significantly similar to those recorded throughout the water column at L4 for most taxa. However, absolute levels of abundance differed for the two datasets: abundances were underestimated by CPR samples when compared to those of vertically integrated samples by a factor of between 2 and 35, with the exception of Centropages. The differing mesh sizes (200 and 270 μm) of the WP-2 net and CPR mesh could only partially explain these differences in abundance, implying that the behaviour of individual taxa and their depth in the water column also influenced the abundance recorded.  相似文献   

9.
We sampled zooplankton and fecal pellets in the upper 200 m of Monterey Bay and nearby coastal regions in California, USA. On several occasions, we observed high concentrations of large pellets that appeared to be produced during night-time by dielly migrating euphausiids. High concentrations of pellets were found in near-surface waters only when euphausiids co-occurred with high concentrations of large (>10 μm) phytoplankton. Peak concentrations of pellets at mid-depth (100 or 150 m) during the day were consistent with the calculated sinking speeds of pellets produced near the surface at night. At these high flux locations (HI group), pellet concentrations declined below mid-depth. In contrast, at locations where the phytoplankton assemblage was dominated by small phytoplankton cells (<10 μm), pellet production and flux were low (LO group) whether or not euphausiid populations were high. Protozooplankton concentrations did not affect this pattern. We concluded that the day and night differences in pellet concentration and flux in the HI profiles were mostly due to sinking of dielly-pulsed inputs in the surface layer, and that small zooplankton (Oithona, Oncaea), heterotrophic dinoflagellates, and bacterial activity probably caused some pellet degradation or consumption below 100 m. We estimated that consumption of sinking pellets by large copepods was insignificant. High fluxes of pellets were episodic because they required both high concentrations of large phytoplankton and large stocks of euphausiids. Under these conditions, flux events overwhelmed retention mechanisms, resulting in large exports of organic matter from the upper 200 m.  相似文献   

10.
Attachment and feeding of pelagic copepods on larvacean houses   总被引:3,自引:0,他引:3  
The attachment and feeding of pelagic copepods on discarded and occupied oikopleurid larvacean houses were investigated from May 1989 to August 1991 at an offshore station in the Nansei Islands, which is strongly influenced by the Kuroshio Current, and an inshore station in the central Seto Inland Sea.Oncaea spp.,Microsetella norvegica, and other calanoid and cyclopoid copepods were found attached onto discarded and occupied houses throughout the year at the offshore station, whereas neither discarded nor occupied houses, carried copepods at the inshore station at any time. The feeding behavior ofOncaea sp. in a discarded house was observed with a video tape recorder system.  相似文献   

11.
During a circumnavigation of the Svalbard archipelago in May 2006, simultaneous marine environmental (meteorology, heat flux, ocean turbulence, irradiance) and biological (phytoplankton and zooplankton biomass/species) data were sampled at selected stations. The zooplankton data were supplemented by high-resolution, high-speed VPR sampling down to 100 m depth at most stations. We were able to sample different phases of the phytoplankton spring bloom in Arctic as well as in Atlantic waters, and the stations represented different situations with respect to irradiance, turbulence and water-column stability. Phytoplankton growth and depth distribution were physically controlled, while zooplankton distributions were affected by biological parameters and turbulence. Development of the zooplankton followed the phytoplankton bloom phase, which was progressing in a direction from west to east in the waters north of Svalbard, and southwards in the Barents Sea. Our results also showed that the zooplankton did not avoid Phaeocystis pouchetii colonies, which have earlier been described as toxic. Despite an early retreat of the ice this year there was no apparent mismatch between the phytoplankton bloom and the dominant mesozooplankton, Calanus spp.  相似文献   

12.
In order to understand the mechanism by which zooplankters from different origins co-occur during the upwelling season within Golfo de Arauco, one of the most productive areas in central Chile, we assessed short term variations in the vertical distribution of the most abundant copepod species. Fine-scale, day and night vertical zooplankton sampling was done with a pump over 12 days in summer. The water column in the gulf consisted of three layers: Equatorial Subsurface Water of low dissolved oxygen content in the deeper part of the water column, strong temperature and oxygen gradients at mid-depth (15-25 m), and a layer of warmer, more oxygenated, less saline water at the surface. Copepods within the gulf originated from offshore, from the continental shelf, and from the coastal area. Most taxa showed distinctive vertical distributions. Three copepod groups were identified by their mean weighted depths of residence. One group included shallow residents found above the thermocline/oxycline (Acartia tonsa, Centropages brachiatus, Corycaeus sp., Paracalanus parvus, Oncaea sp.). A second group was comprised by species distributed at or below the thermocline/oxycline (Oithona sp., Oncaea conifera, Lucicutia sp., Metridia sp., Heterorhabdus papilliger). The third group was composed of vertical migrators that crossed the thermocline/oxycline (Calanus chilensis, Calanoides patagoniensis, Aetideus armatus, Pleuromamma piseki). In spite of their different vertical distribution ranges, the most abundant and frequent copepod species (P. parvus, C. chilensis, C. patagoniensis, C. brachiatus) share a common capacity to withstand wide ranges of oxygen concentration and temperature. This characteristic, along with the capacity to vary their life strategies under different environmental conditions, seems to facilitate the maintenance of large numbers of copepods in coastal waters along the Humboldt Current.  相似文献   

13.
To understand the role of phytoplankton resting cells in the outbreak of algal blooms, particularly harmful algal blooms, surface sediments were collected monthly from April 2007 to March 2008 from two bays near the international ports in the Southern Chinese coastal waters. Sieved sediments were incubated for 20 and 40 days, and germinated vegetative cells were observed. Altogether, 97 taxa were recorded, of which 50 were diatoms and 35 dinoflagellates. Vegetative cells of cyanobacteria, chlorophytes, dictyophytes, euglenophytes, haptophytes, and raphidophytes were also observed. Centric diatoms such as Chaetoceros, Melosira, Skeletonema, and Thalassiosira dominated. Scrippsiella, Gymnodinium, and Alexandrium were common dinoflagellate taxa. Diatom spores germinated in samples from all seasons but were abundant in the autumn and winter samples. Low numbers of dinoflagellate cells germinated in the winter samples. The nanophytoplankton taxa, Gymnodinium corii and Chrysochromulina sp., which have not been recorded in the previous phytoplankton surveys, were abundant, suggesting either their new appearance in the water column or perhaps that they were overlooked in routine phytoplankton monitoring due to their small sizes. Vegetative cells of harmful or potentially harmful taxa were germinated, and some of them such as Amphidinium, Gambierdiscus, Ostreopsis, and Coolia have not previously been reported in the study area. Based on the results of the incubation of sediments from the two bays near the international ports, it is suggested that international shipping increases the risk of the introduction of new phytoplankton species and thus promotes the incidence of harmful algal blooms.  相似文献   

14.
The earliest comprehensive plankton sampling programme in the Southern Ocean was undertaken during the early part of last century by Discovery Investigations to gain a greater scientific understanding of whale stocks and their summer feeding grounds. An initial survey was carried out around South Georgia during December 1926 and January 1927 to describe the distribution of plankton during the summer, and to serve as a baseline against which to compare future surveys. We have reanalysed phytoplankton and zooplankton data from this survey and elucidated patterns of community distribution and compared them with our recent understanding of the ecosystem based on contemporary data. Analysis of Discovery data identified five groups of stations with characteristic phytoplankton communities which were almost entirely consistent with the original analysis conducted by [Hardy A.C., Gunther, E.R., 1935. The plankton of the South Georgia whaling grounds and adjacent waters 1926-1927. Discovery Report 11, 1-456]. Major groupings were located at the western end of the island and over the northern shelf where Corethron spp. were dominant, and to the south and east where a more diverse flora included high abundances of Nitzschia seriata. Major zooplankton-station groupings were located over the inner shelf which was characterised by a high abundance of Drepanopus forcipatus and in oceanic water >500 m deep that were dominated by Foraminifera, Oithona spp., Ctenocalanus vanus, and Calanoides acutus. Stations along the middle and outer shelf regions to the north and west, were characterised by low overall abundance. There was some evidence that groupings of stations to the north of the island originated in different water masses on either side of the Southern Antarctic Circumpolar Current Front, the major frontal system in the deep ocean close to South Georgia. However, transect lines during 1926/1927 did not extend far enough offshore to sample this frontal region adequately. Interannual variability of zooplankton abundance was assessed from stations which were sampled repeatedly during seven recent British Antarctic Survey cruises (1995-2005) to the region and following taxonomic harmonization and numerical standardization (ind. m−3), a subset of 45 taxonomic categories of zooplankton (species and higher taxa) from 1926/1927, were compared with similar data obtained during the BAS cruises using a linear model. Initially comparisons were restricted to BAS stations that lay within 40 km of Discovery stations although a comparison was also made using all available data. Despite low abundance values in 1926/1927, in neither comparison did Discovery data differ significantly from BAS data. Calculation of the percentage similarity index across cruises did not reveal any systematic differences in species composition between 1926 and 1927 and the present. In the light of ocean warming trends, the existence of more subtle changes in species composition is not ruled out, but an absence of finely resolved time-series data make this impossible to determine.  相似文献   

15.
Mesozooplankton abundance, community structure and copepod grazing on phytoplankton were examined during the austral spring 1997 and summer 1998 as part of the US JGOFS project in the Pacific sector of the Antarctic polar front. Mesozooplankton abundance and biomass were highest at the polar front and south of the front. Biomass increased by 1.5–2-times during the course of the study. Calanoides acutus, Calanus propinquus, C. simillimus, Rhincalanus gigas and Neocalanus tonsus were the dominant large copepods found in the study. Oithona spp and pteropods were numerically important components of the zooplankton community. The copepod and juvenile krill community consumed 1–7% of the daily chlorophyll standing stock, equivalent to 3–21% of the daily phytoplankton production. There was an increased grazing pressure at night due to both increased gut pigment concentrations as well as increases in zooplankton numbers. Phytoplankton carbon contributed a significant fraction (>50%) of the dietary carbon for the copepods during spring and summer. The relative importance of phytoplankton carbon to the diet increased south of the polar front, suggested that grazing by copepods could be important to organic carbon and biogenic silica flux south of the polar front.  相似文献   

16.
根据2013年8月(夏季)和2014年5月(春季)在曹妃甸邻近海域的调查资料,研究了浮游动物群落的种类组成、丰度、生物量、优势种和多样性的时空变化特征,分析了其与环境因子的关系,并结合2004年调查资料对比分析了浮游动物丰度和优势种的变化特征及围填海的影响。结果表明,研究海域浮游动物共鉴定得到31种(类),以桡足类和浮游幼体为主,优势种主要包括双刺纺锤水蚤(Acartia bifilosa)、小拟哲水蚤(Paracalanus parvus)、拟长腹剑水蚤(Oithona similis)和桡足类幼体(Copepodid larva)等。春季的浮游动物丰度和生物量均高于夏季,多样性和均匀度指数均低于夏季。浮游动物丰度的空间分布主要受温度、叶绿素a(Chl-a)等环境因子影响,春季基本为近岸高、远岸低的空间分布规律,夏季则相反,基本为近岸低、远岸高的空间分布规律。与2004年相比,本次调查春季和夏季的浮游动物丰度明显下降,可能与浮游植物丰度及DIP浓度降低有关。春季,西侧、东侧海域的浮游动物丰度分别明显降低、升高,与围填海后营养盐重新分布促进了东侧海域浮游植物增殖有关。夏季则主要受河流输入影响,浮游动物丰度的变化不具有空间差异。  相似文献   

17.
We analyzed long-term (56-year) variations in springtime biomass of the zooplankton of the California Current System from two primary regions sampled by CalCOFI: Southern California (SC) and Central California (CC) waters. All organisms were enumerated from the plankton samples and converted to organic carbon biomass using length-carbon relationships, then aggregated into 19 major taxa. Planktonic copepods dominate the carbon biomass in both SC (59%) and CC (46%), followed by euphausiids (18% and 25% of mean biomass in SC and CC, respectively). Pelagic tunicates, especially salps and doliolids, constituted a higher fraction of the biomass in CC (13%) than in SC (5%). There was no long-term trend detectable in total zooplankton carbon biomass, in marked contrast to a decline in zooplankton displacement volume in both regions. The difference between these biomass metrics is accounted for by a long-term decline in pelagic tunicates (particularly salps), which have a relatively high ratio of biovolume:carbon. The decline in pelagic tunicates was accompanied by a long-term increase in water column density stratification. No other taxa showed a decline over the duration of the study, apart from salps and pyrosomes in SC and doliolids in CC. Some zooplankton taxa showed compensatory increases over the same time period (ostracods, large decapods, and calycophoran siphonophores in both SC and CC; appendicularians and polychaetes in SC). Two tests for ecosystem shifts, a sequential algorithm and the cumulative sum of anomalies (CuSum) approach, failed to detect changes in 1976-1977 in total carbon biomass, displacement volume, or most individual major taxa, suggesting that aggregated biomass is an insensitive indicator of climate forcing. In contrast, both techniques revealed a cluster of step-like changes associated with the La Niña of 1999. The major El Niño’s in the past half century have consistently depressed total zooplankton biomass and biomass of many major taxa in both SC and CC, although such effects are transitory. Much, but not all, of the interannual variability in zooplankton is shared between the Southern and Central California sectors of the California Current System.  相似文献   

18.
Although small copepods are one of the main dietary sources for many commercially important fish, their role in the pelagic trophic dynamics has traditionally been underestimated due to the methodology commonly used in plankton sampling. Temporal variation in abundance of adults and nauplii of small copepods (particularly Oithona plumifera) in nearshore waters on the south coast of South Africa was investigated fortnightly over 14 months at site (km) and location (100 m) scales. Sampling was within <500 m of the shore, where depth was ca. 10 m, using vertical hauls of an 80-μm mesh plankton net from 1 m above the seabed to the surface. Twenty-seven adult copepod taxa were recorded, but Oithona spp. was consistently the most abundant. Taxon richness was 7–19 on each sampling occasion. There was strong temporal variation (Oithona varied between 0 and 2300 m−3), but much of this was short-term variability (e.g. between consecutive sampling sessions), with no seasonality or other long-term discernable patterns. There were periods of consistently low numbers, but very high numbers often followed samples with low abundances. Nor was there spatial structure at the location scale, though numbers differed between sites. Despite considerable variability at the location scale within sites, Kenton consistently showed higher densities than High Rocks. Separate analyses, with Bonferroni adjustment, showed that this difference was significant on eight out of 21 occasions for Oithona, six for other pelagic copepods and three for nauplii. This suggests that hydrodynamics favour aggregation of plankton at Kenton. A high degree of short-term variability, with a tendency for aggregation of small zooplankton at certain sites has implications for both pelagic processes and food-web links between the benthic and pelagic environments.  相似文献   

19.
The diet of sardine Sardinops sagax in the southern Benguela was investigated by microscopic examination of stomach contents. The relative dietary importance of prey size and prey type was assessed by calculating the carbon content of prey items. Sardine is an omnivorous clupeoid, ingesting both phytoplankton and zooplankton, with the relative importance of these two food types varying both spatially and temporally. Stomach contents were numerically dominated by small prey items, principally dinoflagellates, followed by crustacean eggs, cyclopoid copepods, calanoid copepods and diatoms. Virtually all prey items ingested by sardine were <1.2 mm maximum dimension, the particle size below which sardine only filter-feed. Despite the numerical dominance by phytoplankton, zooplankton contributed the major portion to sardine dietary carbon, small calanoid and cyclopoid copepods, anchovy eggs and crustacean eggs being the primary prey types. These results indicate that, like anchovy Engraulis capensis, sardine in the southern Benguela are primarily zoophagous, and contrast with earlier dietary studies on sardine in the region. However, the two species appear to partition their prey on the basis of size; sardine consume small zooplankton, whereas anchovy consume large zooplankton. This difference has been observed in other upwelling ecosystems where the two genera co-exist and is likely to contribute to the regime shifts observed between sardine and anchovy.  相似文献   

20.
We studied the effect of four types of fronts, the coastal front, the middle front, the shelf partition front and the shelf break front on the quantitative distribution and the composition of plankton communities in the Pribilof area of the eastern Bering Sea shelf in late spring and summer of 1993 and 1994. The coastal fronts near St. Paul and St. George Islands and the coastal domains encircled by the fronts featured specific taxonomic composition of planktonic algae, high abundance and production of phytoplankton, as well as large numbers of heterotrophic nanoplankton. The coastal fronts also were characterized by high values of total mesozooplankton biomass, high concentrations of Calanus marshallae, as well as relatively high abundances of Parasagitta setosa and Euphausiacea compared to surrounding shelf waters. We hypothesize that wind-induced erosion of a weak thermocline in the inner part of the coastal front as well as transfrontal water exchange in subthermocline layers result in nutrient enrichment of the euphotic layer in the coastal fronts and coastal domains in summer time. This leads to prolonged high primary production and high phytoplankton biomass. In this paper a new type of front—the shelf partition front located 45–55 km to the north-east off St. Paul Island—is described, which is assumed to be formed by the flux of oceanic domain waters onto the shelf. This front features a high abundance of phytoplankton and a high level of primary production compared to the adjacent middle shelf. Near the southwestern periphery of the front a mesozooplankton peak occurred, composed of C. marshallae, with biomass in the subthermocline layer, reaching values typical for the shelf break front and the highest for the area. High abundance of phyto- and zooplankton as well as heterotrophic nanoplankton and elevated primary production were most often observed in the area adjacent to the shelf break front at its oceanic side. The phyto- and mesozooplankton peaks here were formed by oceanic community species. The summer levels of phytoplankton numbers, biomass and primary production in the shelf break frontal area were similar to those reported for the outer and middle shelf during the spring bloom and the coastal domains and coastal fronts in summer. In the environment with a narrow shelf to the south of St. George Island, the mesozooplankton peak was observed at the inner side of the shelf break front as close as 20 km from the island shore and was comprised of a “mixed” community of shelf and oceanic species. The biomass in the peak reached the highest values for the Pribilof area at 2.5 g mean wet weight m−3 in the 0–100 m layer. Details of the taxonomic composition and the numbers and production of phytoplankton hint at the similarity of processes that affect the phytoplankton summer community in the coastal domains of the islands, at the coastal fronts, and at the oceanic side of the shelf break front. The middle front was the only one that had no effect on plankton composition or its quantitative characteristics in June and July. Location of a variety of frontal productive areas within 100 km of the Pribilof Islands creates favorable foraging habitat for higher trophic level organisms, including sea birds and marine mammals, populating the islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号