首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The two key mechanisms for biologically driven carbon sequestration in oceans are the biological pump(BP) and the microbial carbon pump(MCP); the latter is scarcely simulated and quantified in the China seas. In this study, we developed a coupled physical-ecosystem model with major MCP processes in the South China Sea(SCS). The model estimated a SCSaveraged MCP rate of 1.55 mg C m~(-2) d~(-1), with an MCP-to-BP ratio of 1:6.08 when considering the BP at a depth of 1000 m.Moreover, the ecosystem responses were projected in two representative global warming scenarios where the sea surface temperature increased by 2 and 4°C. The projection suggested a declined productivity associated with the increased near-surface stratification and decreased nutrient supply, which leads to a reduction in diatom biomass and consequently the suppression of the BP. However, the relative ratio of picophytoplankton increased, inducing a higher microbial activity and a nonlinear response of MCP to the increase in temperature. On average, the ratio of MCP-to-BP at a 1000-m depth increased to 1:5.95 with surface warming of 4°C, indicating the higher impact of MCP in future ocean carbon sequestration.  相似文献   

2.
湖泊沉积物碳库作为湖泊生态系统的重要组成部分,对湖泊碳循环起重要作用,而蓝藻水华衰亡过程对湖泊碳库稳定性影响研究较少本研究采集太湖蓝藻、湖水、沉积物样品,建立蓝藻水沉积物室内模拟实验系统,分析蓝藻水华衰亡过程中沉积物碳库易氧化有机碳(EOC)、惰性有机碳(ROC)、微生物量碳(MBC)、轻组有机碳(LFOC)和重组有机碳(HFOC)的变化规律,探究蓝藻水华衰亡过程对湖泊碳库稳定性的影响结果表明,蓝藻水华衰亡前期(1~9天),ROC缓慢下降,EOC和LFOC快速下降,MBC有所增加;衰亡中期(10~45天),沉积物TOC和ROC含量升高;衰亡末期(46~63天),HFOC和ROC等稳定有机碳进入一个从缓慢分解逐渐趋于稳定的阶段周期性的蓝藻水华暴发、衰亡和湖泊稳定性有机碳的日渐累积,最终会对沉积物碳库有机碳组分及其稳定造成显著影响.  相似文献   

3.
The largest global carbon-cycle perturbation in Earth history was recorded in the Ediacaran—a persistent negative shift in the global marine dissolved inorganic carbon(DIC) reservoir that lasted for ~25–50 million years, with a nadir of –12‰(i.e.,the Shuram Excursion, or SE). This event is considered to have been a result of full or partial oxidation of a large dissolved organic carbon(DOC) reservoir, which, if correct, provides evidence for massive DOC storage in the Ediacaran ocean owing to an intensive microbial carbon pump(MCP). However, this scenario was recently challenged by new hypotheses that relate the SE to oxidization of recycled continentally derived organic carbon or hydrocarbons from marine seeps. In order to test these competing hypotheses,this paper numerically simulates changes in global carbon cycle fluxes and isotopic compositions during the SE, revealing that:(1) given oxygen levels in the Ediacaran atmosphere-ocean of ≤40% PAL, the recycled continental organic carbon hypothesis and the full oxidation of oceanic DOC reservoir hypothesis are challenged by the atmospheric oxygen availability which would have been depleted in 4 and 6 million years, respectively;(2) the marine-seep hydrocarbon oxidation hypothesis is challenged by the exceedingly large hydrocarbon fluxes required to sustain the SE for 25 Myr; and(3) the heterogeneous(partial) DOC oxidation hypothesis is quantitatively able to account for the SE because the total amount of oxidants needed for partial oxidation(50%)of the global DOC reservoir could have been met.  相似文献   

4.
The continent is the second largest carbon sink on Earth’s surface.With the diversification of vascular land plants in the late Paleozoic,terrestrial organic carbon burial is represented by massive coal formation,while the development of soil profiles would account for both organic and inorganic carbon burial.As compared with soil organic carbon,inorganic carbon burial,collectively known as the soil carbonate,would have a greater impact on the long-term carbon cycle.Soil carbonate would have multiple carbon sources,including dissolution of host calcareous rocks,dissolved inorganic carbon from freshwater,and oxidation of organic matter,but the host calcareous rock dissolution would not cause atmospheric CO2drawdown.Thus,to evaluate the potential effect of soil carbonate formation on the atmospheric p CO2level,different carbon sources of soil carbonate should be quantitatively differentiated.In this study,we analyzed the carbon and magnesium isotopes of pedogenic calcite veins developed in a heavily weathered outcrop,consisting of limestone of the early Paleogene Guanzhuang Group in North China.Based on the C and Mg isotope data,we developed a numerical model to quantify the carbon source of calcite veins.The modeling results indicate that4–37 wt%of carbon in these calcite veins was derived from atmospheric CO2.The low contribution from atmospheric CO2might be attributed to the host limestone that might have diluted the atmospheric CO2sink.Nevertheless,taking this value into consideration,it is estimated that soil carbonate formation would lower 1 ppm atmospheric CO2within 2000 years,i.e.,soil carbonate alone would sequester all atmospheric CO2within 1 million years.Finally,our study suggests the C–Mg isotope system might be a better tool in quantifying the carbon source of soil carbonate.  相似文献   

5.
A model of the carbon dioxide system in nature is derived and is used to further our understanding of the factors which control this system in the oceans, the atmosphere, and the sediments.  相似文献   

6.
The belowground part of terrestrial ecosystem is a huge carbon pool. It is believed that of the total 2500Gt carbon stored in global terrestrial ecosystem, soil carbon storage within the 1 m surface layer ac- counts for 2000Gt, which is 4-fold of vegetation car- bon storage[1,2]. Compared with the carbon in the vegetation, carbon in the deep soil layers is much more stable, and it will stay in soil profile permanentlyunless geological vicissitude occurs. Essentially, forest restoration is the…  相似文献   

7.
外源溶解性有机碳对抚仙湖甲壳类浮游动物碳源的贡献   总被引:2,自引:1,他引:1  
外源溶解性有机碳(DOC)是湖泊碳库的重要组成部分,关于外源DOC对浮游动物的贡献及途径需要深入研究.本研究在抚仙湖受控实验中添加13C标记的葡萄糖,通过分析样品中浮游植物与浮游动物的种类、数量、磷脂脂肪酸生物标志物及其稳定同位素特征,研究外源DOC对湖泊甲壳类浮游动物碳源的贡献比例及其变化.结果表明:细菌、甲壳类浮游动物(象鼻溞)的δ~(13)C值在加入葡萄糖后分别从-16.28‰和-23.88‰快速增加到5408.25‰和1974.7‰,而藻类磷脂脂肪酸(C18∶2ω6)δ~(13)C值从-27.07‰增加到342.44‰,增长的幅度表明添加的葡萄糖首先被细菌和浮游动物快速利用,而藻类只利用了一小部分.同时细菌、颗粒性有机物(POM)和浮游动物的δ~(13)C值在第1 d急剧增加,细菌的δ~(13)C值远大于浮游动物和POM的δ~(13)C值,之后细菌和POM的δ~(13)C值开始下降,但浮游动物的δ~(13)C值却仍在缓慢增加,进一步表明了DOC进入湖泊后首先被细菌吸收利用,而细菌吸收DOC后通过自身代谢作用形成细胞颗粒,浮游甲壳类动物通过摄食细胞颗粒来获得外源DOC.  相似文献   

8.
Despite soil erosion through water being a ubiquitous process and its environmental consequences being well understood, its effects upon the global carbon cycle still remain largely uncertain. How much soil organic carbon (SOC) is removed each year from soils by sheet wash, an important if not the most efficient mechanism of detachment and transport of surficial soil material? What are the main environnemental controls worldwide? These are important questions which largely remain unanswered. Empirical data from 240 runoff plots studied over entire rainy seasons from different regions of the world were analysed to estimate particulate organic carbon (POC) losses (POCL), and POC enrichment in the sediments compared to the bulk soil (ER), which can be used as a proxy of the fate of the eroded POC. The median POCL was 9.9 g C m‐2 y‐1 with highest values observed for semi‐arid soils (POCL = 10.8 g C m‐2 y‐1), followed by tropical soils (POCL = 6.4 g C m‐2 y‐1) and temperate soils (POCL = 1.7 g C m‐2 y‐1). Considering the mean POCL of 27.2 g C m‐2 y‐1, the total amount of SOC displaced annually by sheet erosion from its source would be 1.32 ± 0.20 Gt C, i.e. 14.6% of the net annual fossil fuel induced C emissions of 9 Gt C. Because of low sediment enrichment in POC, erosion‐induced CO2 emissions are likely to be limited in clayey environments while POC burial within hillslopes is likely to constitute an important carbon sink. In contrast, most of the POC displaced from sandy soils is likely to be emitted to the atmosphere. These results underpin the major role sheet wash plays in the displacement of SOC from its source and in the fate of the eroded SOC, with large variations across the different pedo‐climatic regions of the world. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Changes in the climate conditions in the recent decade arouse the heightened interest to the problem of the greenhouse effect and consequently to studying the dynamics of CO2 concentration in the ocean-atmosphere system. The modern changes in CO2 concentration and temperature can result both from the anthropogenic influence and from the rhythms of natural processes. The results of modelling carbon equilibrium in the World Ocean water for the Quaternary suggest that the modern climate change is a part of natural climate variations having taken place for at least more than 400 thousand years.  相似文献   

10.
Soil erosion is an important component of the global carbon cycle. However, little attention has been given to the role of aeolian processes in influencing soil organic carbon (SOC) flux and the release of greenhouse gasses, such as carbon dioxide (CO2), to the atmosphere. Understanding the magnitude and mechanisms of SOC enrichment in dust emissions is necessary to evaluate the impact of wind erosion on the carbon cycle. This research examines the SOC content and enrichment of dust emissions measured using Big Spring Number Eight (BSNE) wind‐vane samplers across five land types in the rangelands of western Queensland, Australia. Our results show that sandy soils and finer particulate quartz‐rich soils are more efficient at SOC emission and have larger SOC dust enrichment than clay‐rich aggregated soils. The SOC enrichment ratios of dusts originating from sites with sand‐rich soil ranged from 2·1–41·9, while the mean enrichment ratio for dusts originating from the clay soil was 2·1. We hypothesize that stronger inter‐particle bonds and the low grain density of the aggregated clay soil explain its reduced capacity to release SOC during saltation, relative to the particulate sandy soils. We also show that size‐selective sorting of SOC during transport may lead to further enrichment of SOC dust emissions. Two dust samples from regional transport events were found to contain 15–20% SOC. These preliminary results provide impetus for additional research into dust SOC enrichment processes to elucidate the impact of wind erosion on SOC flux and reduce uncertainty about the role of soil erosion in the global carbon cycle. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
本文介绍了国家气候中心发展的一个全球海洋碳循环环流模式,并分析评估了该模式的基本性能.该模式是在美国地球物理流体动力学实验室(GFDL,Geophysical Fluid Dynamics Laboratory)的全球海洋环流模式MOM4(Modular Ocean Model Version 4)基础上发展的一个垂直方向40层、包含生物地球化学过程的全球三维海洋碳循环环流模式,简称为MOM4_L40(Modular Ocean Model Version 4 With 40Levels).该模式在气候场强迫下长期积分1000年,结果分析表明,与观测相比,模式较好地模拟了海洋温度、盐度、总二氧化碳、总碱、总磷酸盐的表面和垂直分布特征.模拟的海洋总二氧化碳分布与观测基本相符,表层为低值区,其下为高值区,高值区域位于10°S—60°N之间,但2000m以上模拟值较观测偏小,2000m以下模拟值较观测偏大.总体来说,MOM4_L40模式是一个可信赖的海洋碳循环过程模拟研究工具.  相似文献   

12.
Marine sediments are the most significant reservoir of organic carbon(OC) in Earth′s surface system. Iron, a crucial component of the marine biogeochemical cycle, has a considerable impact on marine ecology and carbon cycling. Understanding the effect of iron on the preservation of OC in marine sediments is essential for comprehending biogeochemical processes of carbon and climate change. This review summarizes the methods for characterizing the content and structure of iron-bound OC and explore...  相似文献   

13.
《Continental Shelf Research》2007,27(10-11):1584-1599
Historic data from the Russian-American Hydrochemical Atlas of Arctic Ocean together with data from the TRANSDRIFT II 1994 and TUNDRA 1994 cruises have been used to assess the spatial and inter-annual variability of carbon and nutrient fluxes, as well as air–sea CO2 exchange in the Laptev and western East Siberian Seas during the summer season. Budget computations using summer data of dissolved inorganic phosphate (DIP), dissolved inorganic nitrogen (DIN) and dissolved inorganic carbon (DIC) gives that the Laptev Sea shelf is a net sink of DIP and DIN of 2.5×106, 23.2×106 mol d−1, respectively, while it is a net source of DIC (excluding air–sea exchange) of 1249×106 mol d−1. In the East Siberian Seas the budget computations give 0.5×106, −11.4×106 and −173×106 mol d−1 (minus being a sink) for DIP, DIN, and DIC, respectively. In summers, the Laptev Sea Shelf is net autotrophic while the East-Siberian Sea Shelf is net heterotrophic, and both systems are weak net denitrifying. The Laptev Sea Shelf takes up 2.1 mmol CO2 m−2 d−1 from atmosphere, whereas the western part of the East-Siberian Sea Shelf loose 0.3 mmol CO2 m−2 d−1 to the atmosphere. The variability of DIP, DIN and DIC fluxes during summer in the different regions of the Laptev and East Siberian Seas depends on bottom topography, river runoff, exchange with surrounding seas and wind field.  相似文献   

14.
This study presents the distribution of dissolved inorganic carbon (DIC) along the Strait of Gibraltar, its tidal-induced variability, as well as the inorganic carbon exchange between the Atlantic Ocean and Mediterranean Sea. During November 2003, water column samples were collected at nine stations to measure total alkalinity (TA), pH, and dissolved oxygen (DO) for the spatial characterization of the carbonate system. At the same time, anchored samplings were carried out, above the Camarinal Sill and in the Eastern Section of the Strait, in order to assess the tidal mixing effects for oxygen and DIC distribution on the water column. Three distinct water masses can be discerned in this area: the Surface Atlantic Water (SAW), the Mediterranean Water (MW), and the less abundant North Atlantic Central Water (NACW). The observations show an increase in the DIC and a decrease in oxygen concentration with depth, related to the different physico-chemical features of each water mass. The results show the high time-dependence of the vertical distribution of DIC with the interface oscillation, affected by the intense mixing processes taking place in the Strait. Intense mixing episodes over the Camarinal Sill are responsible for an increase in the DIC concentrations in the upper layer of the Eastern Section of the Strait. Higher DIC concentrations in the Mediterranean than in the Atlantic waters are responsible for a net DIC transport of 1.47×1012 mol C yr−1 to the Atlantic Ocean. Nevertheless, the net exchange is highly sensitive to the interface definition, as well as to the estimate of water volume transport used.  相似文献   

15.
Understanding the carbon cycle of the Han River system in Korea is of prime interest in managing and preserving this valuable water resource for more than 20 million residents in the area. As a part of a comprehensive carbon cycling study for the Han River system, this report focuses on the carbon isotope compositions of dissolved inorganic carbon (DIC) in its two major tributaries, the North and the South Han Rivers. The major difference in carbonate chemistry of the tributaries originates primarily from the lithology of the catchment areas. The South Han River, draining a carbonate‐dominant terrain, has much higher alkalinities and DIC concentrations, whereas the lower concentrations in the North Han River indicate little influence of carbonate weathering. Likewise, δ13CDIC values in the South Han River indicate that the DIC input from the carbonate rocks is important in controlling carbon isotope ratios of DIC. For the North Han River, the oxidation of organic material influences the amount of riverine DIC and δ13CDIC values to a greater extent. Overall, remarkable seasonal and spatial variations of river chemistry and carbon isotope compositions of DIC reflect the variability in geo‐hydrologic characteristics, in the water regime, and in metabolic activities in the river water and/or the drainage areas. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The oceans are the largest carbon pools on Earth, and play the role of a "buffer" in climate change. Blue carbon, the carbon(mainly organic carbon) captured by marine ecosystems, is one of the important mechanisms of marine carbon storage.Blue carbon was initially recognized only in the form of visible coastal plant carbon sequestration. In fact, microorganisms(phytoplankton, bacteria, archaea, viruses, and protozoa), which did not receive much attention in the past, account for more than 90% of the total marine biomass and are the main contributors to blue carbon. Chinese coastal seas, equivalent to 1/3 of China's total land area, have a huge carbon sink potential needing urgently research and development. In this paper, we focus on the processes and mechanisms of coastal ocean's carbon sequestration and the approaches for increasing that sequestration. We discuss the structures of coastal ecosystems, the processes of carbon cycle, and the mechanisms of carbon sequestration. Using the evolution of coastal ocean's carbon sinks in sedimentary records over geologic times, we also discuss the possible effects of natural processes and anthropogenic activities on marine carbon sinks. Finally, we discuss the prospect of using carbon sequestration engineering for increasing coastal ocean's carbon storage capacity.  相似文献   

17.
Chen  Yilin  Qin  Yong  Li  Jiuqing  Li  Zhuangfu  Yang  Tianyu  Lian  Ergang 《中国科学:地球科学(英文版)》2022,65(9):1736-1750
Science China Earth Sciences - The synthesis of carbon onions in the laboratory by various methods is common; however, naturally occurring carbon onions have only been found in a few geological...  相似文献   

18.
Summary The new, more reliable data on transmisson function of the atmosphere in the region of 12–18 carbon dioxide absorption band are obtained. The radiation chart for calculations of atmospheric heat radiation is built on the base of this data. The dependence of atmospheric heat radiation on CO2 and H2O contents and also on temperature vertical distribution is investigated with the help of the radiation chart. It is shown, that the heat radiation of the atmosphere almost doesn't depend on variations of carbon dioxide content in the atmosphere. The income of atmospheric heat radiation in the region of spectra from 12 to 18 in integrated atmospheric radiation is determined.
, 12–18. . , . , . 12–18 .
  相似文献   

19.
The amount of bicarbonate utilised by plants is usually ignored because of limited measurement methods.Accordingly, this study quantified the photosynthetic assimilation of inorganic carbon(CO_2and HCO_3~-) by plants. The net photosynthetic CO_2assimilation(PN), the photosynthetic assimilation of CO_2 and bicarbonate(PN'),the proportion of increased leaf area(fLA) and the stable carbon isotope composition(δ~(13)C) of Orychophragmus violaceus(Ov) and Brassica juncea(Bj)under three bicarbonate levels(5, 10 and 15 mm NaHCO_3)were examined to determine the relationship among PN,PN' and fLA. PN', not PN,changed synchronously with fLA.Moreover, the proportions of exogenous bicarbonate and total bicarbonate(including exogenous bicarbonate and dissolved CO_2-generated bicarbonate) utilised by Ov were 2.27 % and 5.28 % at 5 mm bicarbonate, 7.06 % and13.28 % at 10 mm bicarbonate, and 8.55 % and 17.31 % at15 mm bicarbonate, respectively. Meanwhile, the proportions of exogenous bicarbonate and total bicarbonate utilised by Bj were 1.77 % and 3.28 % at 5 mm bicarbonate,2.11 % and 3.10 % at 10 mm bicarbonate, and 2.36 % and3.09 % at 15 mm bicarbonate, respectively. Therefore, the dissolved CO_2-generated bicarbonate and exogenous bicarbonate are important sources of inorganic carbon for plants.  相似文献   

20.
The extensive blanket peatlands of the UK uplands account for almost half of total national terrestrial carbon storage. However, much of the blanket peat is severely eroded so that the contemporary role of the peatland system in carbon sequestration is compromised by losses of organic carbon in dissolved (DOC) and particulate (POC) form in the fluvial system. This paper presents the first detailed assessment of dissolved and organic carbon losses from a severely eroded headwater peatland (River Ashop, South Pennines, UK). Total annual fluvial organic carbon losses range from 29–106 Mg C km,‐2 decreasing from the headwaters to the main catchment outlet. In contrast to less eroded systems fluvial organic carbon flux is dominated by POC. POC:DOC ratios decrease from values of 4 in the headwaters to close to unity at the catchment outlet. These results demonstrate the importance of eroding headwater sites as sources of POC to the fluvial system. Comparison with a range of catchment characteristics reveals that drainage density is the best predictor of POC:DOC but there is scatter in the relation in the headwaters. Steep declines in specific POC yield from headwater catchments are consistent with storage of POC within the fluvial system. Key to the significance of fluvial carbon flux in greenhouse gas budgets is understanding the fate of fluvial carbon. Further work on the fate of POC and the role of floodplains in fluvial carbon cycling is urgently required. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号