首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
In order to meet the needs of geochemical mapping and geochemical exploration, 125 geochemical reference materials have been successively prepared by the Institute of Geophysical and Geochemical Exploration (IGGE) since 1978. They include certified reference materials of stream sediments (GSD1-14), soils (GSS1-16; ASA 1–6, for analysis of available elements), various rocks (GSR1-6, GSR13-15), biological material (GSV1-4 and GSB 1–10), synthetic silicates (GSES I 1–11) and limestones (GSES II 1–9 for spectral analysis). They also include geochemical reference materials for ore analysis: Cu-Pb-Zn ores (GSO1-4), Cu-Pb-Zn concentrates (GSO5-7), platinum-group element (PGE) ores (GPt5-6 and GPt9-10), silver ores (GAg1-6) and geochemical reference materials for Au (GAu8-14) and PGE determination (GPt1-4, and GPt7-8). A multi-laboratory collaborative analysis scheme was adopted in the certification procedure of the IGGE. Dozens of competent laboratories with hundreds of senior analysts in China participated in the certification analysis. These samples have been supplied to more than thirty countries and more than 4000 customers from national industrial, agricultural, environmental, scientific and educational fields. Most of the geochemical reference materials are used for the calibration of measuring apparatus, evaluation of analytical methods, certification studies, quality control and laboratory accreditation programmes.  相似文献   

2.
地球化学标准物质的研制与应用   总被引:4,自引:0,他引:4  
1978年以来,物化探研究所围绕我国地球化学调查和地质矿产勘查的需要,先后研制了多种地质物料的系列地球化学标准物质,包括水系沉积物、土壤(含全量和生物有效成份)、岩石、生物、光谱分析标准、多金属矿石与精矿、痕量铂族元素与铂矿石、痕量金与金矿石及银矿石标准物质,共计126个样品。具有系列性好和适用性强的特点,是我国地质测试质量体系的基本组成部分,其中GSD、GSS和GAu系列作为全国区域地球化学样品分析的量值和质量监控标准,保证了各省区不同时间、不同实验室的分析结果可以统一对比和成图。这些标准物质在我国地质矿产、冶金、农业、环境部门和科研院校中广泛应用,应用的国家达30余个。  相似文献   

3.
Three new certified reference materials (CRM), certified for the platinum-group elements (PGE), GPt-8, GPt-9 and GPt-10 were developed based on the previous CRMs IGGE GPt-1 to GPt-7. The PGE concentration of GPt-8 is about 1 ng g-1. GPt-9 and GPt-10 are ore samples with PGE concentrations of more than 1 μg g-1. A multi-laboratory collaborative analysis scheme was adopted in the certification procedure, in which nine highly-experienced institutes and laboratories participated. The samples were analysed for the six platinum-group elements by nickel sulfide mini fire assay, with Te coprecipitation, and were determined by ICP-MS. Osmium was determined by isotope dilution.  相似文献   

4.
Samples of 20 chromitite, 14 ultramafic and mafic rock, and 9 laterite and soil samples from the Precambrian Sukinda and Nausahi ultramafic complexes, Orissa, India were analyzed for platinum-group elements (PGE). The maximum concentrations are: palladium, 13 parts per billion (ppb); platinum, 120 ppb; rhodium, 21 ppb; iridium, 210 ppb; and ruthenium, 630 ppb. Comparison of chondrite-normalized ratios of PGE for the chromitite samples of lower Proterozoic to Archean age with similar data from Paleozoic and Mesozoic ophiolite complexes strongly implies that these complexes represent Precambrian analogs of ophiolite complexes. This finding is consistent with the geology and petrology of the Indian complexes and suggests that plate-tectonic and ocean basin developement models probably apply to some parts of Precambrian shield areas.  相似文献   

5.
在高寺台超镁铁杂岩体发现了2种铂族元素异常:一种异常分布在杂岩体纯橄榄岩或橄榄岩带的镁质超基性岩中,与已知的含铂族铬铁矿有关,与已知的铬、钴、镍等矿化主金属的强异常密切共生。在这种异常中,钯呈甚低的背景分布,w(Pt)/w(Pd)大;另一种铂族元素异常呈带状沿杂岩体透辉岩带及其中的剪切带分布,其异常特征是铂、钯异常密切共生,w(Pt)/w(Pd)近于1,并且,在这种异常中,不伴生铬、镍等元素的强异常。这是一种新的铂、钯等元素的地球化学富集和矿化。研究表明,采用岩石、土壤、水系沉积物铂、钯地球化学勘查技术,可以发现难识别的铂族矿化。  相似文献   

6.
In this study, a high‐precision method for the determination of Sm and Nd concentrations and Nd isotopic composition in highly depleted ultramafic rocks without a preconcentration step is presented. The samples were first digested using the conventional HF + HNO3 + HClO4 method, followed by the complete digestion of chromite in the samples using HClO4 at 190–200 °C and then complete dissolution of fluoride formed during the HF decomposition step using H3BO3. These steps ensured the complete digestion of the ultramafic rocks. The rare earth elements (REEs) were separated from the sample matrix using conventional cation‐exchange chromatography; subsequently, Sm and Nd were separated using the LN columns. Neodymium isotopes were determined as NdO+, whereas Sm isotopes were measured as Sm+, both with very high sensitivity using single W filaments with TaF5 as an ion emitter. Several highly depleted ultramafic rock reference materials including USGS DTS‐1, DTS‐2, DTS‐2b, PCC‐1 and GSJ JP‐1, which contain extremely low amounts of Sm and Nd (down to sub ng g?1 level), were analysed, and high‐precision Sm and Nd concentration and Nd isotope data were obtained. This is the first report of the Sm‐Nd isotopic compositions of these ultramafic rock reference materials except for PCC‐1.  相似文献   

7.
贵州寻找铂族元素矿床的思考   总被引:4,自引:0,他引:4  
王登红 《贵州地质》2003,20(3):127-131
贵州省具有形成铂族元素矿床的地质条件,也存在铂族元素矿化的地质与地球化学信息,可能存在的矿床类型包括热液型、煤岩型、黑色页岩型等多种,可能发现矿床的地区除了在西部峨眉山玄武岩分布区之外,峨眉山玄武岩分布区外围的卡林型金矿和Hg、As、Sb等浅成低温热液型矿床分布区也值得重视。在找矿过程中,要充分研究哪些异常是由玄武岩引起的,哪些可能是由矿引起的。在采样时,由于铂族元素分布的极端不均性,天然重砂和人工重砂的配合是必要的。  相似文献   

8.
大别造山带毛屋超镁铁岩的铂族元素研究   总被引:1,自引:1,他引:1       下载免费PDF全文
采用镍锍火试金法结合ICP-MS分析了毛屋斜方辉石岩和石榴二辉岩样品中的Ir、Ru、Rh、Pt和Pd的含量,结果显示其铂族元素(PGE)的含量随岩石类型无规律性的变化,原始地幔标准化后的铂族元素分布模式呈负斜率,Pd、Ir发生了分异。毛屋超镁铁岩铂族元素特征的形成受岩石中铂族元素的存在相制约,PPGE富集在富Cu硫化物,而IPGE以类似残留相、不熔的单硫化物固熔体形式存在,其中地壳混染也起了一定的作用;同时,成岩过程中流体的存在造成了Pt和Pd的活化。因此,单硫化物固熔体和流体的共同作用形成了毛屋超镁铁岩类似残留地幔岩的铂族元素分布特征。  相似文献   

9.
Cu-Ni-PGES MINERALIZATION OF MELANOCRATIC ROCKS IN SOUTHEAST MARGIN OF THE QINGHAI-XIZANG(TIBET) PLATEAU, HKTERALIZAtheprojectsupportedbyNNSFofChina  相似文献   

10.
INTRODUCTIONLowerCambrianblackrockseriesexistsbroadlyinmorethan10provincesinSouthChina(Chenetal.,1990).Thebotomoftheseriesspo...  相似文献   

11.
The distribution of platinum group elements (PGEs) in massive sulfides and hematite–magnetite±pyrite assemblages from the recently discovered basalt-hosted Turtle Pits hydrothermal field and in massive sulfides from the ultramafic-hosted Logatchev vent field both on the Mid-Atlantic Ridge was studied and compared to that from selected ancient volcanic-hosted massive sulfide (VHMS) deposits. Cu-rich samples from black smoker chimneys of both vent fields are enriched in Pd and Rh (Pd up to 227 ppb and Rh up to 149 ppb) when compared to hematite–magnetite-rich samples from Turtle Pits (Pd up to 10 ppb, Rh up to 1.9 ppb). A significant positive correlation was established between Cu and Rh in sulfide samples from Turtle Pits. PGE chondrite-normalized patterns (with a positive Rh anomaly and Pd and Au enrichment), Pd/Pt and Pd/Au ratios close to global MORB, and high values of Pd/Ir and Pt/Ir ratios indicate mafic source rock and seawater involvement in the hydrothermal system at Turtle Pits. Similarly shaped PGE chondrite-normalized patterns and high values of Pd/Pt and Pd/Ir ratios in Cu-rich sulfides at Logatchev likely reflect a similar mechanism of PGE enrichment but with involvement of ultramafic source rocks.  相似文献   

12.
研制了霓霞正长岩,粗面岩,花岗闪长岩,辉长石,流纹岩及白云岩6种不同类型的岩石标准物质,对用X射线荧光光谱均匀性检验实际取样量进行了探讨,选择分析测试方法时,除采用了标准方法和长期应用的分析方法外,还采用了近年发展起来的新技术新方法,在定值中应用了多参数统计定值模式,给出了69个元素的标准值和参考值,该批标准物质于1991年1月经国家技术监督局审核批准为国家一级标准物质,编号分别为GBW07109  相似文献   

13.
中国东部地壳元素丰度与岩石平均化学组成研究   总被引:6,自引:4,他引:6  
迄今我们习用的地壳化学元素丰度和岩石平均化学组成的文献值大多是收集的汇编数据,不少微量元素特别是贵金属等难测元素的丰度所依据的样品的代表性和测试质量难以考证,其值存在着颇大的不确定度。本研究立足于实测资料,在中国东部系统采集了各类火成岩和变质杂岩体及各时代的标准地层剖面岩石样品28253个,组合成2718个分析样。采用中子活化等15种可靠分析方法测试,以国家一级标准物质作质量监控。求得的华北地台地壳、中国东部上地壳和出露地壳及各类岩石的78种化学元素丰度,显著改善了地壳和岩石的化学元素丰度,填补了多种岩石微量元素丰度的空白。  相似文献   

14.
中国火成岩化学元素的丰度与分布   总被引:19,自引:3,他引:19  
鄢明才  迟清华 《地球化学》1996,25(5):409-424
在中国各构造单元构选采了10364件火成岩样品合成1131个分析样,采用仪器中子活化法,X射线荧光光谱法,原子吸收法,原子荧光光谱法,催化波极谱法和分光光度法等15种可靠分析方法进行测试,对一些难测痕量元素采用了最新的分析研究成果,以同类国家一级标准物质监控分析质量。  相似文献   

15.
Geology of Ore Deposits - We studied the regularities of distribution of siderophile elements, including platinum group elements (PGE), in rock and in sulfides from Archean (2814 ± 51 Ma)...  相似文献   

16.
The contents of the platinum-group elements (PGEs: Os, Ir, Ru, Rh, Pt, Pd) in the Abulangdang ultramafic intrusion have been determined using ICP-MS after nickel sulfide fire assay preconcentration. Different samples show significant differences in absolute PGE abundance. They display a pronounced negative incline in mantle-normalized patterns which are characterized by strong enrichment in IPGEs (Os, Ir, Ru) and depleting to slight enrichment in PPGEs (Rh, Pt, Pd). The characteristics of PGE distribution in the Abulangdang rocks are due to the combined action of sulfide and non-sulfide (spinel/chromite or alloy or micro-granular aggregation of metals). In comparison with the mafic-ultramafic rocks which host Ni-Cu-PGE deposits in the Emeishan Large Igneous Province (ELIP), it is assumed that the Abulangdang ultramafic intrusion may be the product of early-stage magma activity in the ELIP.  相似文献   

17.
新疆黄山铜镍硫化物矿床成矿岩浆作用过程   总被引:10,自引:0,他引:10  
黄山铜镍硫化物矿床镁铁.超镁铁质岩体岩相发育良好,主要包括橄榄岩、辉石岩、辉长岩和闪长岩,橄榄岩中部分橄榄石包含有硫化物珠滴。对该岩体不同岩相进行了主元素、微量元素、铂族元素和单矿物的分析,结果表明,不同类型岩石的化学组成受橄榄石、辉石和斜长石结晶分异作用的控制。微量元素和稀土元素具有相似的分布模式,(La/Yb)N介于1.14—3.65之间,明显亏损Nb和Ta,富集Sr。含矿岩石Cu/Pd和Ti/Pd比值大于原生地幔岩浆。上述结果揭示黄山镁铁-超镁铁质岩体不同岩性的岩石具有不同的主元素和微量元素特征,但母岩浆来自同一源区。根据橄榄石的F0值和全岩的主要氧化物组成估算出母岩浆为高镁(MgO约为15%)玄武岩岩浆,在岩浆作用过程中地壳富硅组分的混染是导致硫化物熔离的主要机制。  相似文献   

18.
We present a revised method for the determination of concentrations of rare earth (REE) and other trace elements (Y, Sc, Zr, Ba, Hf, Th) in geological samples. Our analytical procedure involves sample digestion using alkaline fusion (NaOH-Na2O2) after addition of a Tm spike, co-precipitation on iron hydroxides, and measurement by sector field-inductively coupled plasma-mass spectrometry (SF-ICP-MS). The procedure was tested successfully for various rock types (i.e., basalt, ultramafic rock, sediment, soil, granite), including rocks with low trace element abundances (sub ng g−1). Results obtained for a series of nine geological reference materials (BIR-1, BCR-2, UB-N, JP-1, AC-E, MA-N, MAG-1, GSMS-2, GSS-4) are in reasonable agreement with published working values.  相似文献   

19.
Data on the composition of sulfide ores from ultramafic massifs in the central East Sayan Mountains and on the regularities of platinum group elements (PGE) in these ores are presented. It is found that the highest PGE contents are characteristic for net-textured and massive ores from the Zhelos massif: total PGE content there is up to 15 ppm, with Pd/Pt = 3–8, for Ni and Cu contents of 1.5–2.8 and 0.5–2.7 wt%, respectively. In the disseminated ores of the Zhelos massif, PGE contents vary from 1 to 7 ppm, at Ni and Cu contents varying in the ranges of 0.5–1.0 and 0.2–0.4 wt %, respectively. In the Tokty-Oi massif, disseminated ores are characterized by higher absolute PGE contents (1.6 to 3.3 ppm) at similar Ni content. PGE tenor of disseminated ores is higher compared to that of massive and net-textured ones. In the cross-sections of both massifs, net-textured and massive ores of an essentially pyrrhotine composition are found at the contact between ultramafic and host rocks. Total PGE in these ores is up to 12 ppm. The obtained data on sulfur isotopes indicate the common, well-homogenized sources, and close physical–chemical depositional conditions of all ore types.  相似文献   

20.
On the basis of a representative collection of ultramafic rocks and chromite ores and a series of technological samples from the largest (Central and Western) deposits in the Rai-Iz massif of the Polar Urals and the Almaz-Zhemchuzhina and Poiskovy deposits in the Kempirsai massif of the southern Urals, the distribution and speciation of platinum-group elements (PGE) in various type sections of mafic-ultramafic massifs of the Main ophiolite belt of the Urals have been studied. Spectral-chemical and spectrophotometric analyses were carried out to estimate PGE in 700 samples of ultramafic rocks and chromite ores; 400 analyses of minerals from rocks, ores, and concentrates and 100 analyses of PGE minerals (PGM) in chromite ores and concentrates were performed using an electron microprobe. Near-chondritic and nonchondritic PGE patterns in chromitebearing sections have been identified. PGE mineralization has been established to occur in chromite ore from all parts of the mafic-ultramafic massifs in the Main ophiolite belt of the Urals. The PGE deposits and occurrences discovered therein are attributed to four types (Kraka, Kempirsai, Nurali-Upper Neiva, and Shandasha), which are different in mode of geological occurrence, geochemical specialization, and placer-forming capability. Fluid-bearing minerals of the pargasite-edenite series have been identified for the first time in the matrix of chromite ore of the Kempirsai massif (the Almaz-Zhemchuzhina deposit) and Voikar-Syn’ya massif (the Kershor deposit). The PGE grade in various types of chromite ore ranges from 0.1–0.2 to 1–2 g/t or higher. According to technological sampling, the average PGE grade in the largest deposits of the southeastern ore field of the Kempirsai massif is 0.5–0.7 g/t. Due to the occurrence of most PGE as PGM 10–100 mm in size and the proved feasibility of their recovery into nickel alloys, chromites of the Kempirsai massif can be considered a complex ore with elevated and locally high Os, Ir, and Ru contents. The Nurali-Upper Neiva type of ore is characterized by small-sized primary deposits, which nevertheless are the main source of large Os-Ir placers in the Miass and Nev’yansk districts of the southern and central Urals, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号