首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There has been more attention to phytoplankton dynamics in nutrient-rich waters than in oligotrophic ones thus requiring the need to study the dynamics and responses in oligotrophic waters. Accordingly, phytoplankton community in Blanes Bay was overall dominated by Prymnesiophyceae, remarkably constant throughout the year (31 ± 13% Total chlorophyll a, Tchl a) and Bacillariophyta with a more episodic appearance (20 ± 23% Tchl a). Prasinophyceae and Synechococcus contribution became substantial in winter (Prasinophyceae = 30% Tchl a) and summer (Synechococcus = 35% Tchl a). Phytoplankton growth and grazing mortality rates for major groups were estimated by dilution experiments in combination with high pressure liquid chromatography and flow cytometry carried out monthly over two years. Growth rates of total phytoplankton (range = 0.30–1.91 d−1) were significantly higher in spring and summer (μ > 1.3 d−1) than in autumn and winter (μ ∼ 0.65 d−1) and showed a weak dependence on temperature but a significant positive correlation with day length. Microzooplankton grazing (range = 0.03–1.4 d−1) was closely coupled to phytoplankton growth. Grazing represented the main process for loss of phytoplankton, removing 60 ± 34% (±SD) of daily primary production and 70 ± 48% of Tchl a stock. Chla synthesis was highest during the Bacillarophyceae-dominated spring bloom (Chl asynt = 2.3 ± 1.6 μg Chl a L−1 d−1) and lowest during the following post-bloom conditions dominated by Prymnesiophyceae (Chl asynt = 0.23 ± 0.08 μg Chl a L−1 d−1). This variability was smoothed when expressed in carbon equivalents mainly due to the opposite dynamics of C:chl a (range = 11–135) and chl a concentration (range = 0.07–2.0 μg chl a L−1). Bacillariophyta and Synechococcus contribution to C fluxes was higher than to biomass because of their fast-growth rate. The opposite was true for Prymnesiophyceae.  相似文献   

2.
The present study tested for density-dependent effects of the invasive drift macroalgae Gracilaria vermiculophylla (Ohmi) Papenfuss on growth and survival of the native eelgrass, Zostera marina L., under different temperature levels. Three weeks laboratory experiments were conducted in Odense, Denmark, combining three algae densities (control, low 1.9 kg WW m−2, high 4.5 kg WW m−2) with typical Danish summer temperatures (18 °C) and elevated temperatures (21 °C and 27 °C). There was a significant effect of temperature on shoot survival with on average 68% mortality in the high temperature treatment but almost no mortality at the two lower temperatures. The higher mortality was probably caused by high sulphide levels in the sediment pore water (0.6 mmol l−1 at 18 °C compared to 3.7 mmol l−1 at 27 °C). Above-ground growth of the surviving shoots was also significantly affected by temperature, with leaf elongation rates being negatively affected, while the leaf plastochrone interval increased. Relative growth rate was significantly higher at 21 °C than at 18 °C or 27 °C, whereas rhizome elongation was significantly lowest at 27 °C. Elemental sulphur content in the plant tissues increased significantly with temperature and was up to 34 times higher (S0 in rhizomes) at 27 °C compared to the lower temperatures. In contrast to the temperature effects, cover by G. vermiculophylla did not cause significant effects on any seagrass responses. However, there was a (non-significant) negative effect of algal cover at the highest temperature, where the seagrass is already stressed. The latter results suggest that more studies should test for interaction effects between temperature and other anthropogenic stressors given that temperature is predicted to increase in the near future.  相似文献   

3.
Variations in abundance, biomass, vertical profile and cell size of heterotrophic dinoflagellates (HDFs) between summer and winter and its controlling factors were studied in the northern South China Sea (SCS). It was found that HDF abundance and carbon biomass were 4–102 × 103 cells L−1 and 0.34–12.3 mg C L−1 in winter (February 2004), respectively, while they were 2–142 × 103 cells L−1 and 0.22–31.4 μg C L−1 in summer (July, 2004), respectively, in the northern SCS. HDF abundance and carbon biomass decreased from the estuary to inshore and then offshore. Vertical profiles of HDF abundance were heterogeneous, which accorded well with that of chlorophyll a (Chl.a). Higher abundance of HDFs was often observed at a depth of 30–70 m offshore waters, matching well with the Chl.a maximum, while it showed high abundance at the surface in some coastal and estuary stations. Small HDFs (≤20 μm) dominated the assemblage in term of abundance accounting for more than 90%. However, large HDFs (>20 μm) generally contributed equally in terms of carbon biomass, accounting for 47% on average. HDFs showed different variation patterns for the different study regions; in the estuarine and continental shelf regions, abundance and biomass values were higher in summer than those in winter, while it was the reverse pattern for the slope waters. Hydrological factors (e.g. water mass, river outflow, monsoon and eddies) associated with biological factors, especially the size-fractionated Chl.a, seemed to play an important role in regulating HDF distribution and variations in the northern South China Sea.  相似文献   

4.
The early life history of Western Atlantic snappers from the Southern hemisphere is largely unknown. Habitat use of different life stages (i.e. size categories) of the dog snapper (Lutjanus jocu) was examined across the largest South Atlantic reef–estuarine complex (Abrolhos Shelf, Brazil, 16–19° S). Visual surveys were conducted in different habitats across the shelf (estuary, inner-shelf reefs and mid-shelf reefs). Lutjanus jocu showed higher densities on inner-shelf habitats, with a clear increase in fish size across the shelf. Individuals <7 cm were associated with both the estuary (mangrove and rocky habitats) and inner-shelf reefs (particularly shallow fore-reefs and tide pools). Individuals ranging 10–30 cm were broadly distributed, but consistently more abundant on inner-shelf reefs. Individuals between 30 and 40 cm were more common on mid-shelf reefs, while individuals >40 cm were recorded only on mid-shelf reefs. Literature data indicate that individuals ranging 70–80 cm are common on deep offshore reefs. This pattern suggests that the dog snapper performs ontogenetic cross-shelf migrations. Protecting portions of the different habitats used by the dog snapper during its post-settlement life cycle is highlighted as an important conservation and management measure.  相似文献   

5.
We describe the impact of an open-ocean convection event on nutrient budgets, carbon budget, elemental stoichiometry, phytoplankton biomass and activity in the Northwestern Mediterranean Sea (NWM). In the convective episode examined here we estimated an input of nutrients to the surface layer of 7.0, 8.0 and 0.4×108 mol of silicate, nitrate and phosphate, respectively. These quantities correspond to the annual nutrient input by river discharges and atmospheric depositions in the Gulf of Lion. Such nutrient input is sufficient to sustain new primary production from 46 to 63 g C m−2 y−1, which is the same order of magnitude found in the NWM open waters. Our results together with satellite data analysis, propose new scenarios that explain the origin of the spring phytoplankton bloom occurring in NWM.  相似文献   

6.
Telemetry methods were used to investigate the influence of selected environmental variables on the position and movement of an estuarine-dependent haemulid, the spotted grunter Pomadasys commersonnii (Lacepède 1801), in the Great Fish Estuary, South Africa. Forty individuals (263–698 mm TL) were surgically implanted with acoustic coded transmitters and manually tracked during two periods (7 February to 24 March 2003; n = 20 and 29 September to 15 November 2003; n = 20). Real-time data revealed that spotted grunter are euryhaline (0–37) and are able to tolerate large variations in turbidity (4–356 FTU) and temperature (16–30 °C). However, the fish altered their position in response to large fluctuations in salinity, temperature and turbidity, which are characteristic of tidal estuarine environments. Furthermore, tidal phase had a strong influence on the position of spotted grunter in the estuary.  相似文献   

7.
Benthic, viable resting eggs of calanoid copepods were found for the first time in the Seine estuary (France) during July 2008. Vertical distribution of the resting eggs in the sediment was determined up to 10 cm depth. Hatching success of the eggs extracted from different 1-cm thick sediment layers was experimentally tested immediately after extraction and after a long refractory phase (i.e. 11 months) of storage at low temperature (4–5 °C). The hatching success of resting eggs obtained immediately after sediment incubation was lower (0.72%) than the value observed after 11 months (4.50%) with an overall hatching success of 2.37%. The marine, calanoid copepod Temora longicornis was the primary species to hatch from the eggs; however, the estuarine calanoid copepod Eurytemora affinis also hatched from resting eggs. The mean abundance of eggs found in sediment (1.42 × 106 eggs m−2) was comparable to that reported for other marine and estuarine calanoid copepods. The Seine estuary sediment had a high variability of egg abundance (between 0.14 and 8.10 × 107 eggs m−3) suggesting that the hydrodynamics of this macrotidal estuary are likely responsible for this variability. Significant sediment resuspension occurs in the Seine estuary during flood periods and spring tides leading to resting eggs to contribute along the year to the nauplii recruitment of calanoid copepods. On average, around 400,000 nauplii m−3 month−1 of the main calanoid copepods can emerge from the surface layer sediment in the Seine estuary, suggesting that resting eggs could play an important role in the population dynamics of key calanoid copepods in the Seine estuary.  相似文献   

8.
The Río de la Plata (34° 36′ S, 55° 58′ W; Argentina and Uruguay) estuary, one of the most important South American estuarine environments, is characterized by weak seasonal freshwater discharge, low tidal amplitude (<1 m), a wide and permanent connection to the sea, and a salt-wedge regime. Using stable isotope analysis, we explored the relative importance of the different sources of primary production in the food web. Our results show that phytoplankton and macrodetritus from terrestrial salt and freshwater marshes both contribute to the food web of the Río de la Plata estuary. On the basis of the sampled species, we identified four trophic levels. The clam Mactra isabelleana, the calanoid copepod Acartia tonsa, and the opossum shrimp Neomysis americana are the primary consumers. The rays Atlantoraja castelnaui and Squatina guggenheim and the shark Galeorhinus galeus are the top predators. The Río de la Plata food web shows an important input of nutrients derived from phytoplankton. Rays, sharks, and predatory gastropods reveal an important contribution of C4 plants (likely Spartina spp.). However, production derived from C3 plants is also important for some species. The fishes Brazilian menhaden, Brevoortia aurea; the stripped weakfish Cynoscion guatucupa; and the whitemouth croaker, Micropogonias furnieri, showed differences in their isotopic signatures as juveniles and adults, indicating different food sources, and they were therefore treated as different components of the food web. Our data suggest that detritus from salt and freshwater marshes is reaching the Río de la Plata estuary and can be an important allocthonous source of energy to this environment.  相似文献   

9.
As part of an effort to identify suitable targets for a planned long-term field test, we investigate by means of numerical simulation the gas production potential from unit D, a stratigraphically bounded (Class 3) permafrost-associated hydrate occurrence penetrated in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well on North Slope, Alaska. This shallow, low-pressure deposit has high porosities (? = 0.4), high intrinsic permeabilities (k = 10−12 m2) and high hydrate saturations (SH = 0.65). It has a low temperature (T = 2.3-2.6 °C) because of its proximity to the overlying permafrost. The simulation results indicate that vertical wells operating at a constant bottomhole pressure would produce at very low rates for a very long period. Horizontal wells increase gas production by almost two orders of magnitude, but production remains low. Sensitivity analysis indicates that the initial deposit temperature is by the far the most important factor determining production performance (and the most effective criterion for target selection) because it controls the sensible heat available to fuel dissociation. Thus, a 1 °C increase in temperature is sufficient to increase the production rate by a factor of almost 8. Production also increases with a decreasing hydrate saturation (because of a larger effective permeability for a given k), and is favored (to a lesser extent) by anisotropy.  相似文献   

10.
Biomass and primary productivity of picophytoplankton (PP; phytoplankton <3 μm) and larger phytoplankton (>3 μm) were determined during an annual cycle along the salinity gradient in North Carolina’s Neuse River Estuary (NRE), a eutrophic, microtidal estuary. The PP were a major component of total phytoplankton biomass and productivity, contributing ∼35–44% of the total chlorophyll a (Chl a) and 42–55% of the total primary productivity. Chl a and productivity of PP decreased from the upper to lower estuary, although the PP contribution relative to larger phytoplankton remained nearly constant. Significant PP growth occurred in the spring, but PP productivity and biomass were maximal in summer. PP productivity and biomass were positively correlated with temperature and dissolved inorganic phosphorus concentrations, which were maximal in summer due to release from sediments. Biomass and productivity of PP and >3 μm phytoplankton were also positively correlated, suggesting that growth conditions favoring the onset of blooms of larger phytoplankton species will similarly affect PP. High PP productivity and biomass in the NRE support the notion that PP play an important role in the production and eutrophication potentials of this estuary. High PP productivity and biomass have been noted in several other temperate estuaries, all sharing a common feature with the NRE—long residence time. These findings challenge the assumption that PP relative importance should be minimal in eutrophic systems.  相似文献   

11.
《Oceanologica Acta》2002,25(3-4):119-124
The comparative effect of the uptake of fresh and degraded detritus of halophytic plants, harvested from salt marches of the Mont Saint-Michel Bay (France), on the growth of a juvenile population of the annelid polychaete Ndiversicolor (L.) was studied under experimental conditions in summer 1993. Fresh and degraded detritus of Spartina anglica, Halimione portulacoides and Salicornia europeae, as well as the green algae Enteromorpha sp. were distributed separately to homogenous set of juveniles for a 75 d period. The highest growth rate was obtained for worms fed with Enteromorpha sp. Administration of fresh detritus of a given halophyte species to Ndiversicolor juveniles always leads to a significantly higher growth rate than did degraded detritus. This is probably due to a great microbial biomass occurring on the fresh detritus, which is moreover, much better assimilated than the detritus they colonize.  相似文献   

12.
There are deep-water populations of the endemic and threatened Mediterranean brown alga Cystoseira zosteroides in the Medes Islands Marine Reserve (NW Mediterranean). Here, the distribution, population structure, individual growth, mortality and recruitment rates of this species over two years are described in relation to the effects of an exceptional storm. We found a high spatial variability in the structure and dynamics of C. zosteroides populations at small geographical scales, suggesting that environmental factors acting at the population level display a key role in population size structure, mortality and recruitment. The elevated mortality rates recorded at some locations (almost 80%) is amongst the highest recorded for perennial algae as a consequence of a single storm, emphasizing the importance of episodic catastrophic events in the maintenance of these deep-water, slow-growing populations. These findings are of particular importance not only to fully understand the ecology of C. zosteroides, but also for its conservation.  相似文献   

13.
Dissolved gaseous mercury (DGM) was measured continuously using two newly developed techniques and a manual technique. The continuous techniques were based on the equilibrium between the aqueous and gaseous phase (DGM = Hgextr / H', Hgextr is the measured mercury concentration in the gas phase, H' is the Henry's Law coefficient at the desired temperature). In order to calculate the annual mercury evasion from the Mediterranean Sea, diurnal and seasonal measurements of DGM, total gaseous mercury in air (TGM), water temperature and wind speed were performed. During August 2003, March–April 2004 and October–November 2004 measurements of these parameters were conducted on board the RV Urania. The continuous measurements of DGM showed a diurnal variation in concentration, at both coastal and off shore sites, with higher concentrations during daytime than nighttime. The concentration difference could be as large as 130 fM between day and night. The degree of saturation was calculated directly from the measurements, S = Hgextr / TGM and was found to vary between the different seasons. The highest average degree of saturation (850%) and the largest variation in saturation (600–1150%) was observed during the summer. The spring showed the lowest variation (260–360%) and the lowest average degree of saturation (320%). The autumn also showed a large variation in saturation (500–1070%) but a lower average (740%) compared to the summer cruise. This might be explained by the temperature difference between the different seasons, since that parameter varied the most. The flux from the sea surface was calculated using the gas exchange model developed by Nightingale et al. [Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., Boutin, J., Upstill-Goddard, R. C., 2000. In situ evaluation of air–sea gas exchange parameterization using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14(1):373–387]. The evasion varied between the different seasons with the highest evasion during the autumn, 24.6 pmol m− 2 h− 1. The summer value was estimated to 22.3 pmol m− 2 h− 1 and the spring to 7.6 pmol m− 2 h− 1. Using this data the yearly evasion from the Mediterranean Sea surface was estimated to 77 tons.  相似文献   

14.
We analyzed the distribution, diversity, and composition of western Mediterranean macroplankton (excluding gelatinous taxa) in the water column over depths of ca. 550–850 m, with special attention to near-bottom (0–1.5 and ca. 5–77 m above the bottom, mab) levels, and including data from three areas (off the coasts of Catalonia, and to the NW, and SE of Mallorca, Balearic Islands) in the period 1991–2008. Spatio-temporal changes in macroplankton abundance were evaluated as follows: (i) by seasonal sampling in 2007 off the Catalonian coast, (ii) by comparing Catalonian and Balearic Island slopes, and (iii) by comparing a fixed station on the Catalonian slope (at 550–800 m depth) at decadal (1991/1992–2007/2008) time scales. Diversity (in terms of species richness, S) was greater (i) at ca. 5–77 mab than at 0–1.5 mab, (ii) over the insular slopes of the Balearic Island (around Mallorca) than over the mainland Catalonian slopes, and (iii) in the period 1991/1992 than in 2007, likely related to higher values of the North Atlantic Oscillation (NAO) index in 1991/1992. In most analyses species composition was strongly influenced by the degree of stratification and homogenization of the water column in summer–autumn and winter–spring respectively and by location (longitude). Changes consisted mainly of higher density of macroplankton (e.g. abundance of the dominant euphausiids Nematoscelis megalops, Meganyctiphanes norvegica and Euphausia krohni and of the fish Cyclothone braueri) between June and October, parallel to an increase in the T and S close to the bottom. This coincided with changes in the flow of Levantine intermediate water (LIW) in the area. Aggregation of adult forms of the dominant species close to the bottom in summer–autumn could be favored because summer is the period of highest density of food – copepods, mainly Calanus helgolandicus – near the bottom off the Catalan slope. The formation of a thermocline in the water column and the reinforcement of the permanent thermohaline front at the shelf-slope break during summer at ca. 400 m in the Balearic Basin may also enhance this tendency toward greater aggregation of deep macroplankton under stratified water column conditions.  相似文献   

15.
A ten-year data set for fetch- and depth-limited wave growth   总被引:1,自引:0,他引:1  
This paper presents the key results from a ten-year data set for Lake IJssel and Lake Sloten in The Netherlands, containing information on wind, storm surges and waves, supplemented with SWAN 40.51 wave model results. The wind speeds U10, effective fetches x and water depths d for the data set ranged from 0–24 m s 1, 0.8–25 km and 1.2–6 m respectively. For locations with non-sloping bottoms, the range in non-dimensional fetch x? ( = gxU10 2) was about 25–80,000, while the range in dimensionless depth d? ( = g d U10 2) was about 0.03–1.7. Land–water wind speed differences were much smaller than the roughness differences would suggest. Part of this seems due to thermal stability effects, which even play a role during near-gale force winds. For storm surges, a spectral response analysis showed that Lake IJssel has several resonant peaks at time scales of order 1 h. As for the waves, wave steepnesses and dimensionless wave heights H? ( = gHm0U10 2) agreed reasonably well with parametric growth curves, although there is no single curve to which the present data fit best for all cases. For strongly depth-limited waves, the extreme values of d? (0.03) and Hm0 / d (0.44) at the 1.7 m deep Lake Sloten were very close to the extremes found in Lake George, Australia. For the 5 m deep Lake IJssel, values of Hm0 / d were higher than the depth-limited asymptotes of parametric wave growth curves. The wave model test cases of this study demonstrated that SWAN underestimates Hm0 for depth-limited waves and that spectral details (enhanced peak, secondary humps) were not well reproduced from Hm0 / d = 0.2–0.3 on. SWAN also underestimated the quick wave response (within 0.3–1 h) to sudden wind increases. For the remaining cases, the new [Van der Westhuysen, A.J., Zijlema, M., and Battjes, J.A., 2007. Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water, Coast. Eng., 54, 151–170] SWAN physics yielded better results than the standard physics of Komen, G.J., Hasselmann, S., Hasselmann, K., 1984. On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr. 14, 1271–1285, except for persistent overestimations that were found for short fetches. The present data set contains many interesting cases for detailed model validation and for further studies into the evolution of wind waves in shallow lakes.  相似文献   

16.
Satellite image studies and recent in situ sampling have identified conspicuous phytoplankton blooms during spring and summer along the Patagonia shelf-break front. The magnitudes and spectral characteristics of light absorption by total particulate matter (phytoplankton and detritus) and colored dissolved organic matter (CDOM) have been determined by spectrophotometry in that region for spring 2006 and late summer 2007 seasons. In spring, phytoplankton absorption was the dominant optical component of light absorption (60–85%), and CDOM showed variable and important contributions in summer (10–90%). However, there was a lack of correlation between phytoplankton biomass (chlorophyll-a concentration or [chl a]) and the non-algal compartment in both periods. A statistically significant difference was found between the two periods with respect to the CDOM spectral shape parameter (Scdom), with means of 0.015 (spring) and 0.012 nm?1 (summer). Nonetheless, the mean Scdm values, which describe the slope of detritus plus CDOM spectra, did not differ between the periods (average of 0.013 nm?1). Phytoplankton absorption values in this work showed deviations from mean parameterizations in previous studies, with respect to [chl a], as well as between the two study periods. In spring, despite the microplankton dominance, high specific absorption values and large dispersion were found (a*ph(440)=0.04±0.03 m2 mg [chl a]?1), which could be attributed to an important influence of photo-protector accessory pigments. In summer, deviations from general trends, with values of a*ph(440) even higher (0.09±0.02 m2 mg [chl a]?1), were due to the dominance of small cell sizes and also to accessory pigments. These results highlight the difficulty in deriving robust relationships between chlorophyll concentration and phytoplankton absorption coefficients regardless of the season period. The validity of a size parameter (Sf) derived from the absorption spectra has been demonstrated and was shown to describe the size structure of phytoplankton populations, independently of pigment concentration, with mean values of 0.41 in spring and 0.72 in summer. Our results emphasize the need for specific parameterization for the study region and seasonal sampling approach in order to model the inherent optical properties from water reflectance signatures.  相似文献   

17.
Gut fluorescence and carbon budget techniques were applied to Tarebia granifera (shell height 10–12 mm) at the iSimangaliso Wetland Park, a UNESCO World Heritage Site. This snail has recently invaded a number of estuaries in northern KwaZulu-Natal, where it reaches densities of over 1000 ind. m?2 and becomes a dominant component of the benthic community. Its rapid establishment and spread have raised concerns about potential top-down impacts on the ecosystem. This study shows that T. granifera can utilize large amounts of microphytobenthos (MPB) in addition to detritus. In situ total available MPB pigment concentrations ranged from 11.6 to 110.5 mg pigm. m?2. T. granifera’s gut pigment content ranged from 54 to 1672 μg pigm. ind?1. Gut evacuation rates (k) ranged from 0.36 to 0.62 h?1 (R2 range: 16.2–35.2, P < 0.05). Individual ingestion rates ranged from 6.6 to 30.4 μg pigm. ind.?1 d?1. T. granifera was estimated to consume from 0.5 to 35% of the total available MPB biomass per day, or 1.2–68% of the daily primary benthic production. The carbon component estimated from the gut fluorescence technique contributed 8.7–40.9% of the total gut organic carbon content. The average carbon daily ration contributed by microalgal biomass was ≈16% body carbon per day. Variability in the data was attributed to the complex feeding history of snails. Further studies are needed to validate these results and provide more information on the ecological impact of T. granifera on this wetland and other similar invaded ecosystems, both estuarine and freshwater.  相似文献   

18.
To estimate the influence of mercury emitted from submarine fumaroles, the horizontal and vertical distribution of mercury in sediment of Kagoshima Bay was studied. The fumaroles are located in the northern bay head area, and the sediment samples had been taken from 52 points throughout the bay with a gravity core sampler. The core samples obtained were cut at a thickness of 1–2 cm and used for measurements. The total concentration of mercury in surface sediment in the northern and central areas of the bay was 51–679 μg kg− 1 (average 199 μg kg− 1, n = 22) and 23–100 μg kg− 1 (average 55 μg kg− 1, n = 30), respectively. The highest value was obtained in the vicinity of the fumaroles. The mercury concentration in sediment near the fumaroles varied with depth, which may reflect the variation in fumarolic activity. A successive extraction method was applied to the speciation of mercury in the sediment. The results showed that sediment taken in the vicinity of submarine fumaroles contained a higher percentage of mercury bound with organic matter.  相似文献   

19.
Heat flow anomalies provide critical information in active tectonic environments. The Gulf of Cadiz and adjacent areas are affected by the plate convergence between Africa and Europe, causing widespread deformation and faulting. Active thrust faults cause lateral movement and advection of heat that produces systematic variations in surface heat flow. In December 2003 new heat flow data were collected during the research vessel Sonne cruise SO175 in the Gulf of Cadiz over two sites of recent focused research activity: (i) the Gulf of Cadiz sedimentary prism and (ii) the Marques de Pombal escarpment. Both features have also been discussed as potential source areas of the Great Lisbon earthquake and tsunami of 1755. Background heat flow at the eastern terminus of the Horseshoe abyssal plain is about 52–59 mW/m2. Over the Gulf of Cadiz prism, heat flow decreases from ∼57 mW/m2 to unusually low values of 45 mW/m2 roughly 120 km eastward. Such low values and the heat flow trend are typical for active thrusting, supporting the idea of an east-dipping thrust fault. Slip rates are 10 ± 5 mm per year, assuming that the fault dips at 2°. A fault dipping at 5°, however, would result into slip rates of 1.5–5 mm per year, suggesting that subduction has largely ceased. Based on seismic data, the Marques de Pombal fault is interpreted as part of an active fault system located ∼100 km westward of Cape San Vincente. Heat flow over the fault is affected by refraction of heat caused by the 1 km high escarpment. Thermal models suggest that the slip rate along the fault must either be small or shear stresses acting on the fault are rather high. With respect to other fault zones, however, it is reasonable to assume that the fault's slip rate is small.  相似文献   

20.
We examined the carbonate system, mainly the partial pressure of CO2 (pCO2), dissolved inorganic carbon (DIC) and total alkalinity (TAlk) in the Changjiang (Yangtze) River Estuary based on four field surveys conducted in Sep.–Oct. 2005, Dec. 2005, Jan. 2006 and Apr. 2006. Together with our reported pCO2 data collected in Aug.–Sep. 2003, this study provides, for the first time, a full seasonal coverage with regards to CO2 outgassing fluxes in this world major river–estuarine system. Surface pCO2 ranged 650–1440 μatm in the upper reach of the Changjiang River Estuary, 1000–4600 μatm in the Huangpujiang River, an urbanized and major tributary of the Changjiang downstream which was characterized by a very high respiration rate, and 200–1000 μatm in the estuarine mixing zone. Both DIC and TAlk overall behaved conservatively during the estuarine mixing, and the seasonal coverage of these carbonate parameters allowed us to estimate the annual DIC export flux from the Changjiang River as ∼ 1.54 × 1012 mol. The highly polluted Huangpujiang River appeared to have a significant impact on DIC, TAlk and pCO2 in the lower reaches of the inner estuary. CO2 emission flux from the main stream of the Changjiang Estuary was at a low level of 15.5–34.2 mol m− 2 yr− 1. Including the Huangpujiang River and the adjacent Shanghai inland waters, CO2 degassing flux from the Changjiang Estuary may have represented only 2.0%–4.6% of the DIC exported from the Changjiang River into the East China Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号