首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 207 毫秒
1.
The karstic upper Floridan aquifer in north-central Florida (USA) is recharged by both diffuse and allogenic recharge. To understand how recharged water moves within the aquifer, water levels and specific conductivities were monitored and slug tests were conducted in wells installed in the aquifer surrounding the Santa Fe River Sink and Rise. Results indicate that diffuse recharge does not mix rapidly within the aquifer but instead flows horizontally. Stratification may be aided by the high matrix porosity of the eogenetic karst aquifer. Purging wells for sample collection perturbed conductivity for several days, reflecting mixing of the stratified water and rendering collection of representative samples difficult. Interpretive numerical simulations suggest that diffuse recharge impacts the intrusion of allogenic water from the conduit by increasing hydraulic head in the surrounding aquifer and thereby reducing influx to the aquifer from the conduit. In turn, the increase of head within the conduits affects flow paths of diffuse recharge by moving newly recharged water vertically as the water table rises and falls. This movement may result in a broad vertical zone of dissolution at the water table above the conduit system, with thinner and more focused water-table dissolution at greater distance from the conduit.  相似文献   

2.
A model based on numerical solutions, which allows for solving the dispersion equation under variable recharge and velocity conditions, is developed to simulate solute transport in conduit flow aquifers during flow recession periods. As an example, the evolution of a tracer in the little known karst conduit that links the sinking stream of Oma valley to the Olalde spring is investigated in the karstic region of Santa Eufemia-Ereñozar (Basque Country, Spain). The model, with different hypothetical structures, allows for obtaining series of tracer breakthrough curves, which are fitted to experimental data using an optimization algorithm. These results, although they can be used to simulate the tracer evolution between the two points considered, do not allow for determining the internal structure and spatial disposition of contributions in the aquifer.  相似文献   

3.
In order to study the function, hydrodynamic behavior, and hydraulic properties of the karst aquifers in Izeh, southwest Iran, time series analysis was applied to the precipitation, spring discharge, and piezometric head data of two representative karst systems of Zagros (Ilam-Sarvak and Asmari Formations). Time series analysis was applied to two karst aquifers, those of Asmari and Ilam-Sarvak Formations. The daily precipitations of anticlines were estimated based on the precipitation–elevation function which was applied on digital elevation model (DEM) of the area. The mean estimated daily precipitations were considered in bivariate time series analysis as input data of each karst system. The total length of time series was about 2.7 years, extending from May 2007 to December 2009. During the research, several one-parameter probe data loggers were installed, which daily measure the water surfaces in karst aquifers. Time series analysis was applied for describing Izeh karst aquifers with a focus on both univariate (autocorrelation and spectral analysis) and bivariate (cross-correlation, gain function, and coherency function) methods. The results show that Asmari karst aquifer in Kamarderaz Anticline has a large storage capacity. Because of lacking a well-organized karst network, in the Asmari karst aquifer, baseflow dominates with low contribution of quick-flow. In the Ilam-Sarvak karst aquifer (Shavish and Tanush Anticlines), the karstification occurred in fractures and small diameter conduits, which caused to quick-flow between dense limestone. The Ilam-Sarvak karst aquifer could be regarded as a transition between two extreme types of karst, e.g., highly karstified system and in the opposite, extremely diffused one. The analysis of well hydrograph in Ilam-Sarvak karst aquifer shows that the karst aquifer has a low storage capacity. Unlike Asmari karst aquifer, the fractures and small diameter conduits in Ilam-Sarvak karst aquifer are more enhanced, producing a better developed karst network. Contrary to the typical karst systems, however, diffuse flow and conduit flow coexist in the Asmari Formation.  相似文献   

4.
Proper management of karst aquifers requires a better understanding of flow and transport mechanisms in these systems. Flow in karst aquifers is inherently very complex due to the non-linear and non-stationary relationship between recharge and discharge. Information on this relationship has been acquired for a large (1,000 km2), mountainous (>3,500 m asl) karst aquifer with a deep unsaturated zone (>2,000 m) in the Aladaglar mountain range of south-central Turkey. All major discharges from the aquifer, which drain almost all the recharge, have been observed periodically for specific electrical conductivity, tritium and oxygen-18 variations during a period of 12 months. Observations reveal that the system’s response to recharge depends strongly on the competition between the infiltration and drainage velocities. These velocities, which are controlled by variables such as the time of precipitation, time of infiltration, intensity, and continuity of recharge, determine the degree of dominance of different types of flow mechanisms in the aquifer. Bypass, well-mixed and piston flow mechanisms are used to explain the response of the aquifer to the spatio-temporal variations in recharge. It appears that the aquifer switches among these flow mechanisms depending on the prevailing recharge mode and the competition between infiltration and drainage velocities.  相似文献   

5.
Simulation of the development of karst aquifers: role of the epikarst   总被引:2,自引:0,他引:2  
 The evolution of a karst aquifer is modelled taking into account the karst groundwater flow as well as the dissolution kinetics of calcite. In particular, infiltration of water from the epikarst is simulated which controls the temporal and spatial distribution of recharge to the phreatic zone. The results show that the evolution of karst conduits is initiated in the spring. The existence of preferential flow paths leads to the evolution of highly conductive so-called dendritic cave systems, i.e., single passages which concentrate the flow and drain the catchment. With time, the amount of undersaturated water flowing directly into the conduit system is increased leading to an acceleration of the conduits enlargement. Three phases are identified for the evolution of karst aquifers: (a) an initiation stage; (b) an enlargement stage; and (c) a stagnation phase. Received: 4 August 1997 / Accepted: 19 January 1998  相似文献   

6.
Karst aquifer components that contribute to the discharge of a water supply well in the Classical Karst (Kras) region (Italy/Slovenia) were quantitatively estimated during storm events. Results show that water released from storage within the epikarst may comprise as much as two-thirds of conduit flow in a karst aquifer following rainfall. Principal components analysis (PCA) and end-member mixing analysis (EMMA) were performed using major ion chemistry and the stable isotopes of water (δ18O, δ2H) and of dissolved inorganic carbon (δ13CDIC) to estimate mixing proportions among three sources: (1) allogenic river recharge, (2) autogenic recharge, and (3) an anthropogenic component stored within the epikarst. The sinking river most influences the chemical composition of the water-supply well under low-flow conditions; however, this proportion changes rapidly during recharge events. Autogenic recharge water, released from shallow storage in the epikarst, displaces the river water and is observed at the well within hours after the onset of precipitation. The autogenic recharge end member is the second largest component of the well chemistry, and its contribution increases with higher flow. An anthropogenic component derived from epikarstic storage also impacts the well under conditions of elevated hydraulic head, accounting for the majority of the chemical response at the well during the wettest conditions.  相似文献   

7.
Hydrological modeling in the karst area,Rižana spring catchment,Slovenia   总被引:1,自引:1,他引:0  
Karst aquifers are known for their heterogeneity and irregular complex flow patterns which make them more difficult to model and demand specific modeling approaches. This paper presents one such approach which is based on a conceptual model. The model was applied in a karst area of the catchment of Rižana spring (200 km2). It is based on the MIKE SHE code and incorporates the main hydrological processes and geological features of the karst aquifer (diffuse and concentrated infiltration, allogenic recharge, quick and slow groundwater flow, shifting groundwater divides and groundwater outflow from the catchment area). Modeling of evapotranspiration and flow in the upper part of the unsaturated zone is more detailed. For the modeling of groundwater flow in the karst aquifer, a conceptual model was applied which uses drainage function for the simulation of groundwater flow through large conduits (karst channels and large fissures). The model was calibrated and validated against the observed Rižana spring discharge which represents a measured response of the aquifer. The results of validation show that the model is able to adequately simulate temporal evolution of the spring discharge, measured by Nash–Sutcliffe coefficient (0.82) as well as overall water balance.  相似文献   

8.
The systematic sampling of the chemical composition of the groundwater from five karst springs (including an overflow spring) and one outflowing borehole have permitted to determine distinctive chemical changes in the waters that reflect the geochemical processes occurring in a carbonate aquifer system from southern Spain. The analysis of the dissolution parameters revealed that geochemical evolution of the karst waters basically depends on the availability of the minerals forming aquifer rocks and the residence time within the aquifers. In the three proposed scenarios in the aquifers, which include the preferential flow routines, the more important geochemical processes taking place during the groundwater flow from the recharge to the discharge zones are: CO2 dissolution and exsolution (outgassing), calcite net dissolution, calcite and dolomite sequential dissolution, gypsum/anhydrite and halite dissolution, de-dolomitization and calcite precipitation. A detailed analysis of the hydrochemical data set, saturation indices of the minerals and partial pressure of CO2 in the waters joined to the application of geochemical modelling methods allowed the elaboration of a hydrogeochemical model of the studied aquifers. The developed approach contributes to a better understanding of the karstification processes and the hydrogeological functioning of carbonate aquifers, the latter being a crucial aspect for the suitable management of the water resources.  相似文献   

9.
Karst topography in Florida is developed on the Tertiary limestones of the Floridan aquifer Post-depositional diagenesis and solution have made these limestones highly permeable, T=ca. 50,000 m2/d. Zones of megaporosity have formed at unconformities, and dissolution has enlarged joints and fractures Erosion of the overlying clastic Miocene Hawthorn group strata on one flank of a structural arch has exposed the limestone The elevated edge of the Hawthorn cover forms the Cody scarp Ubiquitous solution pipes have previously formed at joint intersections and are now filled Downwashing of the fill deeper into solution cavities in the limestone and subsidence of the overlying unconsolidated sediments causes surface collapse a subsidence doline or sinkhole This process may penetrate up to 60 m of the semi-consolidated Hawthorn cover, as occurred when the Winter Park sinkhole developed Dense clusters of solution pipes may have formed cenotes which are now found on the exposed limestone terrain Groundwater moves laterally as diffuse flow except where input or outflow is concentrated. At sinking streams, vertical shafts, and springs, karst caves have formed, but only the major sinking streams form through-flowing conduit systems Shaft recharge dissipates diffusely. Spring discharge is concentrated from diffuse flow In both cases, conduits taper and merge into a zone of megaporosity  相似文献   

10.
A Leaky-Conduit Model of Transient Flow in Karstic Aquifers   总被引:1,自引:0,他引:1  
Karst Flow Model (KFM) simulates transient flow in an unconfined karstic aquifer having a well-developed conduit system. KFM treats the springshed as a two-dimensional porous matrix containing a triangulated irregular network of leaky conduits. The number and location of conduits can be specified arbitrarily, perhaps using field information as a guide, or generated automatically. Conduit networks can be tree-like or braided. Rainwater that has infiltrated down from the surface leaks into the conduits from the adjacent porous matrix at a rate dictated by Darcy’s law, then flows turbulently to the spring via the conduits. KFM is calibrated using the known steady state; geometry and recharge determine the steady fluxes in the conduits, and the head distribution determines conduit gradients and sizes. Spring flow can vary with time due to spatially and temporally variable recharge and due to prescribed variations in the elevation of the spring. KFM is illustrated by four examples run on a test aquifer consisting of 27 nodes, 42 elements, and 26 conduits. Three examples (drought, uniform rainstorm, storm-water input to one element) are simulations, while the fourth uses data from a spring-basin flooding event. The qualitative fit between the predicted and observed spring discharge in the fourth example provides support of the hypothesis that the dynamic behavior of a karst conduit system is an emergent property of a self-organized system, largely independent of the locations and properties of individual conduits.  相似文献   

11.
Environmental tracers sampled from the carbonate Madison aquifer on the eastern flank of the Black Hills, South Dakota, USA indicated the approximate locations of four major karst conduits. Contamination issues are a major concern because these conduits are characterized by direct connections to sinking streams, high groundwater velocities, and proximity to public water supplies. Objectives of the study were to estimate approximate conduit locations and assess possible anthropogenic influences associated with conduits. Anomalies of young groundwater based on chlorofluorocarbons (CFCs), tritium, and electrical conductivity (EC) indicated fast moving, focused flow and thus the likely presence of conduits. δ18O was useful for determining sources of recharge for each conduit, and nitrate was a useful tracer for assessing flow paths for anthropogenic influences. Two of the four conduits terminate at or near a large spring complex. CFC apparent ages ranged from 15 years near conduits to >50 years in other areas. Nitrate-N concentrations >0.4 mg/L in groundwater were associated with each of the four conduits compared with concentrations ranging from <0.1 to 0.4 mg/L in other areas. These higher nitrate-N concentrations probably do not result from sinking streams but rather from other areas of infiltration.  相似文献   

12.
选取桂林丫吉试验场硝盐洞为研究对象,通过示踪试验和高分辨率水文水化学监测,确定滴水补给来源,研究典型岩溶包气带洞穴滴水对降雨响应的水文过程。研究结果表明,硝盐洞XY5滴水主要受到两种径流成分补给,即集中补给的管道流和弥散流。硝盐洞上部包气带中可能存在表层岩溶带含水层,长期维持滴水流量。滴水流量、电导率和示踪剂浓度的峰值均出现在强降雨时段,表现出快速响应的管道流特征,存在降雨阈值引起硝盐洞滴水降雨响应。降雨前岩溶含水层水分条件是包气带水文响应差异的主要原因,雨季滴水对降雨响应迅速,XY5滴水对降雨响应的滞后时间为10 h;而旱季对降雨的响应滞后明显,滞后时间达9.8天,体现了土壤和表层岩溶带的调蓄作用。74.4 mm降雨量是旱季转雨季滴水响应的降雨阈值。借助于洞穴滴水的水文动态变化和示踪试验技术对于研究包气带水文过程,深入了解岩溶含水层结构及特征,揭示岩溶区降雨入渗补给机制具有重要作用。  相似文献   

13.
The unconfined High Plains (Ogallala) aquifer is the largest aquifer in the USA and the primary water supply for the semiarid southern High Plains of Texas and New Mexico. Analyses of water and soils northeast of Amarillo, Texas, together with data from other regional studies, indicate that processes during recharge control the composition of unconfined groundwater in the northern half of the southern High Plains. Solute and isotopic data are consistent with a sequence of episodic precipitation, concentration of solutes in upland soils by evapotranspiration, runoff, and infiltration beneath playas and ditches (modified locally by return flow of wastewater and irrigation tailwater). Plausible reactions during recharge include oxidation of organic matter, dissolution and exsolution of CO2, dissolution of CaCO3, silicate weathering, and cation exchange. Si and 14C data suggest leakage from perched aquifers to the High Plains aquifer. Plausible mass-balance models for the High Plains aquifer include scenarios of flow with leakage but not reactions, flow with reactions but not leakage, and flow with neither reactions nor leakage. Mechanisms of recharge and chemical evolution delineated in this study agree with those noted for other aquifers in the south-central and southwestern USA. Electronic Publication  相似文献   

14.
15.
Karst aquifers can have a complex flow as a result of the formation of large conduits from dissolution features. As a result, a three-dimensional finite-difference groundwater flow model (equivalent porous media) may not apply as the dual porosity nature of karst features and the effects of turbulent flow cannot be directly simulated. Statistical analysis of karst hydrographs of the Trifilia aquifer in Greece showed the existence of a slightly karstified mass with high primary porosity that regulates the flow. An equivalent porous media model was developed to simulate the Trifilia karst aquifer using MODFLOW. Steady state and transient state calibration gave encouraging results for the equivalent porous media approach, which does not consider pipe flow or turbulence. Detailed hydrogeological research conducted in the area helped define the aquifer hydraulic conductivity zones and extent; and flux to/from the aquifer. Only hydraulic conductivity and specific yield were adjusted during calibration, as the flux to/from the system was considered known and applied as boundary conditions. Small mean absolute and RMS piezometric head error of the model under both steady and transient state conditions were achieved.  相似文献   

16.
Karst aquifers are known for being particularly heterogeneous with highly transmissive conduits embedded in low permeability volumes of rock matrix. Artificial tracer experiments have been carried out in a complex karst aquifer of the folded Jura Mountains in Switzerland with the aim of deciphering the conduit organisation. It is shown that tracer experiments with multiple injection points under different flow conditions can lead to useful information on the conduits’ structure. This information has been combined with data from structural geology, spring hydrology, and speleological observations. A conceptual model of the conduit network shows that a detailed inference of the conduit organisation can be reached: geology controls conduit location and orientation; spring hydrology, including temporary springs, constrains conduit elevations and relative hydraulic heads in the aquifer subsystems; and tracer tests identify major flow paths and outlets of the system and dilution caused by non-traced tributaries, as well as the presence of secondary flow routes. This understanding of the Aubonne aquifer structure has important implications for the future management of the groundwater resource. Similar approaches coupling geological information, spring hydrology, and multi-tracer tests under various flow conditions may help to characterise the structure of the conduit network in karst aquifers.  相似文献   

17.
A mathematical model of a highly heterogeneous functioning karst aquifer is described. The aquifer is in a high-relief karst massif and, as is common for such locations, data are scarce and there are no borehole, piezometer or pumping-test data. The scarcity of data in this case required a parsimonious approach to ensure that the level of complexity of the model was commensurate with the amount, type and quality of the available data. Parsimony also requires the model to include the minimum essential components that account adequately for the data, which in this and similar cases are the functional dualities of the karst system: duality in recharge, flow and discharge. The model is three-dimensional (3D) in the sense that the aquifer is discretized into 3D voxels, although the flow is one-dimensional (1D) and vertical in the vadose zone, and horizontal and two-dimensional (2D) in the saturated zone. The parsimonious model was designed by coupling a 1D unsaturated gravity-driven flow along the vertical (along each column of voxels that discretize the aquifer) and a 2D unconfined Darcy flow in the saturated zone. In the context of this type of aquifer, preferential recharge through the network of karst conduits implies a rapid rise in the water table, the location and extension of which are model parameters. The karst springs are simulated by drains. The methodology, which is completely general, is illustrated by application to the karst aquifer in the Sierra de las Nieves mountains in southern Spain.  相似文献   

18.
岩溶管道结构影响泉流量变化的数值模拟研究   总被引:2,自引:0,他引:2  
采用MODFLOW-CFP建立管道流数值模型,模拟岩溶含水系统在暴雨期的响应过程,以泉口流量峰值作为因变量,分别对控制管道结构的4个参数以及落水洞集中补给比例进行调整,研究管道结构如何控制泉流量变化过程。结果表明:管道直径、管壁渗透系数和落水洞补给比例对泉口流量峰值均表现为正相关,其中管壁渗透系数影响最大;管道弯曲度值较小时其增大促进出口流量峰值变大,当径流途径变长引起的流量减小幅度超过管壁面积变大引起的流量增大幅度时,流量峰值逐渐变小;管壁粗糙度在达到两个相对应的雷诺数临界值时水流状态发生突变,导致流量峰值也表现为两次突变。   相似文献   

19.
Epigenic karst systems exhibit strong connectivity to surface recharge. In land use dominated by extensive agriculture and farming, epigenic karst aquifers are highly vulnerable to surface contaminants from point and nonpoint sources. Currently, the karstic landscapes of the southeastern Kentucky platform (USA) are impacted by agriculture and the rapid proliferation of concentrated-animal-feeding operations. Analysis of karst aquifer responses to storm events provides qualitative information regarding aquifer–recharge flow paths and groundwater residence time, and knowledge of spatial and temporal variations in recharge and flow is crucial to the understanding of the fate of surface contaminants. Time-series correlation analyses on long-term physicochemical data recorded at the outlet of Grayson Gunnar Cave, an epigenic karst system located along the Cumberland escarpment in southeastern Kentucky, revealed the existence of two separate conduit branches responding 4–8 h apart from each other. Recorded storm response times range from 4 h for flushing and dilution to 7 h for recovery. An estimated 6 million L of stored groundwater is discharged from both branches during major storms, and the fastest responding branch accounts for the majority (80%) of the groundwater reserve being discharged through the spring. As evidenced by groundwater residence time (7 days), recharge is likely characterized by localized infiltration of rain water from subsurface sinkholes to the conduit branches with no contribution of regional or lateral groundwater flow.  相似文献   

20.
Chen  Yazhou  Dong  Weihong  Ren  Hujun  Li  Xibin 《Hydrogeology Journal》2023,31(3):589-600

In karst areas, groundwater movement is dominated by conduit flow; thus, understanding the distribution and structure of karst conduits has great significance for water research, groundwater protection and engineering construction. With the Dafengdong (Guizhou Province, China) underground river karst as an example, a mise-a-la-masse method, tracer tests and cave detection were conducted to study the distribution and structure of karst conduits. Combined with information on the geological and hydrogeological conditions, the geological factors that form karst conduits were determined. It can be concluded that: (1) Under the influence of faults, karst conduits usually develop towards or along faults; (2) multiple karst conduits form easily on both sides of tectonic fracture zones; (3) both lithology and geological structure affect the formation of blue holes, and when the directions of karst conduits change, blue holes easily form in weak parts of the structure; (4) at springs where two aquifers intersect, with strong chemical dissolution of the lower karst aquifer and mechanical collapse of the upper aquifer, blue holes also form easily; and (5) integrated mise-a-la-masse method, tracer tests and cave detection can accurately discern the distribution and structure of karst conduits. Geological factors can be used to preliminarily delineate the distribution and structure of karst conduits in similar areas based on hydrogeological conditions. Such methods hold great significance for groundwater extraction and protection and engineering construction in karst areas.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号