首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents the settlement of drilled shafts resulting from their structural deformations. Although drilled shafts are widely used as foundations for settlement-sensitive structures such as bridges and high-rise buildings, the structural deformations of drilled shafts are not typically taken into account in the design process. However, if unexpected structural deformations of drilled shafts cause additional settlement to the foundation, the serviceability of the superstructure can be jeopardized. Unfortunately, very few research efforts have been made to quantify the structural deformation of drilled shafts; this needs to be addressed to accurately predict the settlement of drilled shafts. In this study, we investigate the effect of structural deformation on displacement of axially loaded drilled shafts. Finite element analyses were performed to quantify the structural deformation of drilled shafts. The analysis results indicated that the structural deformation of drilled shafts could be quite significant for long drilled shafts. The main factors that affected the structural deformation of drilled shafts were found to be pile length, the material properties of drilled shafts, and the relative humidity of surrounding soil. An approximate equation is proposed to estimate the long-term deformation of drilled shafts.  相似文献   

2.
Abstract

In this article, a simplified approach for the reliability-based design of laterally loaded drilled shafts considering the spatial variability of soil property is presented. This simplified approach utilizes a conventional reliability method implemented using the variance reduction technique. An algorithm for back-calculating the reduction factor and characteristic length for various shaft slenderness ratios is proposed. This simplified approach can yield responses for drilled shafts that are equivalent to those obtained using random field modeling (RFM), which is a far more complex process. The simplified approach does not require the knowledge of random field theory and can be an efficient design tool in geotechnical engineering practice.  相似文献   

3.
大河河口的动力沉积过程一直是陆海相互作用研究的核心内容,其中水体泥沙的垂向交换是河口动力-沉积机制分析中的关键环节。基于2011年12月对长江河口及其邻近海湾采集的大范围、高密度的近底层悬沙、海床表层1~2cm(表层沉积物)和垂向向下约2~10cm的沉积物(次表层沉积物)同步3组303个样品,利用经验正交函数方法,对河口地区的悬沙和沉积物交换过程进行研究。结果表明:近底层水体悬沙的空间分布模式主要以粉砂粒级为主,空间分布差异性不大;表层及次表层沉积物的空间分布模式相似,但较近底层水体悬沙的分布复杂,存在明显的区域性特征,其中南汇边滩水域中部辐散区的沉积物表现为粗粉砂-细砂模式,其他区域由粉砂组分模式组成。近底层水体悬沙、表层和次表层沉积物的第一模态主要反映了粒径较细的泥沙运动,第二模态主要反映了粒径较粗的泥沙运动。在近底层水体悬沙与表层沉积物的垂向交换中,主要交换粒级为粉砂组分粒级。在表层沉积物与次表层沉积物的垂向交换中,南汇边滩中部辐散区的主要交换粒级为粗粉砂-细砂组分粒级,其他区域主要为粉砂组分粒级。  相似文献   

4.
This paper presents a series of full-scale load tests on long bored piles instrumented with strain gauges along the shafts, including eight field tests of piles loaded to failure and one non-destructive pile load test. The load-displacement response, skin friction, end resistance, and the threshold of the pile-soil relative displacement for fully mobilizing skin resistance were discussed. A simple softening model was proposed to describe the degradation behavior of the skin friction along the pile-soil interface and the load-displacement relationship developed at the pile base. It is found that the shaft resistance degradation investigated in the non-destructive load test only occurs at a shallow depth, and the skin friction of deeper soil is not fully developed. However, unlike the results of the non-destructive load tests, the softening is accompanied by a reduction in skin friction and observed to be along the whole pile depth. The thresholds of pile-soil relative displacement for fully mobilizing skin resistances in different soils have been found to be in the range 0.6% to 2.4% of the pile diameter. Moreover, in practical applications, a bilinear model is assumed to be feasible in analyzing the load-settlement relationship developed at the end of non-destructive pile, whereas the load transmission curve of the soils below the pile base corresponds to a softening model in the field tests of piles loaded to failure.  相似文献   

5.
Large-scale field tests were conducted to study set-up effect in open-ended prestressed high-strength concrete pipe piles jacked into stratified soil. Four open-ended prestressed high-strength concrete pipe piles with 13 and 18 m in embedment depth were fully instrumented with fiber Bragg grating sensors and installed. Several restrike dynamic tests were performed on each test pile, with the time interval from 21.5 to 284 hours after installation. Static loading tests (SLTs) were later performed on each test pile at 408 hours after installation to substantiate the dynamic tests. Changes with time in pile bearing capacity and in the shaft and toe resistances were studied based on the results of the pile tests. The development of shaft resistance set-up in different layers was studied in particular. It was found that set-up effect in the shaft resistance is significant and the toe resistance increment was minor. The overall set-up factor of total bearing capacity was found to range from 0.09 to 0.53, and the set-up effect of friction pile is much larger than the end bearing pile. More significant set-up in shaft resistance was observed in fill and alluvium layer. The dimensionless set-up factor A for shaft resistance in marine deposits ranges from 0.5 to 1.43, and it contributes the most to the shaft resistance as the shaft resistance in marine deposits is higher.  相似文献   

6.
A research on super-long piles has been primarily based on cast-in-place bored piles. In this article, field tests associated with selected measuring technologies were conducted on two super-long steel pipe piles in offshore areas to investigate the behaviors and performance of super-long steel pipe piles. The strain along the pile shaft was monitored by adopting the Brillouin optical time domain reflection and fiber Bragg grating techniques. Static load tests were also conducted on two test piles to determine the bearing capacities. In addition, the axial forces, relative displacements between piles and soils and pile shaft resistances were calculated based on the measured strain. According to the results of the static load tests, the ultimate bearing capacities of the two test piles are greater than 15,000 and 15,500 kN. Both of these values meet the design requirements. In addition, the two test piles can be treated as pure friction piles, and the load transfer mechanism and relationships between the pile shafts and relative displacements are also discussed. Finally, recommendations for practical engineering and significant conclusions are presented.  相似文献   

7.
Static load tests on pile group with prototype size were carried out in order to study the behavior and the working properties of the cap—pile group—soil interaction in the pile group foundation. The soil resistance under the cap, the pile shaft resistance and the tip resistance were measured by installing various measuring gauges. Based on these test results, the cap—pile group—soil interaction characteristics were analyzed. The regulations of the soil reaction on the cap, the shaft resistance and the tip resistance of pile, the mechanism of load transfer have been discussed with comparison to the result of the single pile tests. The bearing capacity of pile group is greater than the sum of the bearing capacity of the single pile obtained from testing in the same site in pile group foundation in the case presented here.  相似文献   

8.
A sedimentary succession studied along three parallel seismic lines details a platform-edge progradation of 21–36 km in a northwesterly direction across the northwestern Barents Shelf. The intra-shelf clinoform succession is bounded at bottom and top by Base Olenekian and Early Ladinian seismic reflectors. The ca 800 m thick succession can be resolved into seven distinct clinothems. The system is characterized by an early sub-horizontal platform-edge trajectory with extensive progradation, limited relative sea level rise and restricted accommodation. Thereafter the system outlines a largely ascending trajectory, marking a major rise in relative sea level and creation of significant accommodation. The platform-edge appears to back-step along one line suggesting that relative sea level rise out-paced sediment influx and preserved a clinothem with a trajectory characterized by accretionary transgression. Thereafter the trajectory is overall ascending regressive, with some variation of the trajectory angle, culminating in a flat and finally descending trajectory with oblique clinoforms outlining extensive progradation and another period of limited accommodation. The clinoforms downlap onto a succession of basin-floor deposits which appear to comprise at least two separate periods of deposition, forming two separate units. The first five clinothems downlap onto the first basin-floor unit. The shift to downlap onto the second unit occurs around the second period of extensive platform-edge advance, suggesting limited accommodation promoted bypass of significant amounts of sediment to the basin floor.The Gardarbanken High has been considered an obstacle to Early Triassic sediment progradation in this part of the basin. This inference can be corroborated based on the seismic attributes, which show sediment infill and onlap near the High. The influence is also noticeable in the reduced slope relief near the High, indicating that the basin floor was topographically higher. However, other geometric attributes cannot provide any definitive measures of structural influence.The thickness of preserved topsets and the distance from the platform-edge to the toe pinch-out point of each clinothem is found to be inversely proportional. This relationship is most marked in the fully developed sigmoidal clinoforms, whereas the link appears weaker in the oblique clinoforms. A near-perfect correlation between clinothem average vertical thickness (the average sedimentary rock accumulation within the clinothem) and advance of the toe is found, with only a relatively close relationship between clinothem average vertical thickness and advance of the platform-edge. In the studied system it therefore appears the advance of the toe is governed solely by sediment influx while the advance of the platform-edge is also influenced by relative sea level.  相似文献   

9.
Calibration chamber tests were conducted on open‐ended model piles driven into dried siliceous sands with different soil conditions in order to clarify the effect of soil conditions on load transfer mechanism in the soil plug. The model pile used in the test series was devised so that the bearing capacity of an open‐ended pile could be measured as three components: outside shaft resistance, plug resistance, and tip resistance. Under the assumption that the unit shaft resistance due to pile‐soil plug interaction varies linearly near the pile tip, the plug resistance was estimated. The plug capacity, which was defined as the plug resistance at ultimate condition, is mainly dependent on the ambient lateral pressure and relative density. The length of wedged plug that transfers the load decreases with the decrease of relative density, but it is independent of the ambient pressure and penetration depth. Under several assumptions, the value of earth pressure coefficient in the soil plug can be calculated. It gradually reduces with increase in the longitudinal distance from the pile tip. At the bottom of the soil plug, it tends to decrease with increase in the penetration depth and relative density, and to increase with the increase of ambient pressure. This may be attributed to (1) the decrease of friction angle as a result of increase in the effective vertical stress, (2) the difference in the dilation degree of the soil plug during driving with ambient pressures, and (3) the difference in compaction degree of soil plug during driving with relative densities. Based on the test results, an empirical equation was suggested to compute the earth pressure coefficient to be used in the calculation of plug capacity using one‐dimensional analysis, and it produces proper plug capacities for all soil conditions.  相似文献   

10.
In this article, two full-scale pile loading tests were conducted to observe the field performance of the super-long bored piles, and a simplified approach for nonlinear analysis of the load-displacement behavior of a single pile was presented. The field tests on piles indicates that, under the maximum test load, more than 70% of the pile top settlement is caused by the compression of pile shaft. For practical purposes, the pile top settlement can be reduced through improving the pile shaft strength. When the load reaches the maximum test load, the proportion of the load carried by the pile tip is approximately 30%. The super-long pile is functioning as an end-bearing friction pile. The skin friction at shallow depth is fully mobilized and decreases from a peak value with increasing load. However, the skin friction of deeper soil is not fully developed due to less relative displacement. Furthermore, a BoxLucas1 model is used to capture the relationship between unit skin friction and pile-soil relative displacement, whereas a hyperbolic model is used to describe the relationship between toe stress and pile base displacement. Based on the BoxLucas1 model and the hyperbolic model, a load transfer method is used to clarify the response of a single pile, and a computational flow chart is developed. The efficiency and accuracy of the present method is verified using the field tests on piles. The proposed simple analytical approach is economical and efficient, resulting in savings in time and cost.  相似文献   

11.
潮流场对渤、黄、东海陆架底质分布的控制作用   总被引:10,自引:0,他引:10  
运用二维潮流数学模型,模拟了渤、黄、东海陆架的M2潮汐、潮流。结果表明,渤、黄、东海陆架的潮流有强弱之分以及往复流和旋转汉之别。在此基础上,计算了8种粒径沙的湖平均悬移输沙率、潮平均推移输沙以及相应的输沙率散度。根据输沙率散度的正负,划分了海底冲刷区与淤积区。根据不同粒径泥沙输沙率散度的相对大小,确定出海底的主要底质类型为砂质沉积、粉砂质泥沉积和以粉砂为主的混合沉积。计算结果表明,海底3种主要底负类型的分布格局与海底的冲淤格局以及与输沙率矢量的发散和聚合状况基本一致。在渤、黄、东海陆架,沙脊主要在强往复流区形成,沙席主要在强或较强的旋转流区形成,泥质沉积主要在弱潮流区形成。砂质沉积、泥质沉积以及混合沉积这3种主要底质类型并非孤立存在,而是受渤、黄、东海陆架潮流场控制而形成的一个完整的潮流沉积体系。渤、黄、东海陆架的砂质沉积与泥质沉积并非残留沉积,而是潮流沉积。在没有冷涡的情况下,黄、东海陆架的典型泥质沉积在弱潮流环境中同样可以形成,因此,认为冷涡并非黄、东海陆架典型泥质沉积形成的必要条件。  相似文献   

12.
—A comprehensive analysis is conducted based on observations on topography.tidal current.salinity.suspended sediment and bed load during the years of 1982.1983.1988.1989.1996 and 1997 in theYangtze Estuary.Results show that the deformation of tidal waves is distinct and the sand carrying capaci-ty is large within the mouth bar due to strong tidal currents and large volume of incoming water and sedi-ments.Owing to both temporal and spatial variation of tidal current.deposition and erosion are extremelyactive.In general a change of up to 0.1 m of bottom sediments takes place during a tidal period.The maxi-mum siltation and erosion are around 0.2 m in a spring to neap tides cycle.The riverbed is silted duringflood when there is heavy sediment load.eroded during dry season when sediment load is low.The annualaverage depth of crosion and siltation on the riverbed is around 0.6 m.In particular cases.it may increaseto 1.4 m to 2.4 m at some locations.  相似文献   

13.
《Coastal Engineering》2006,53(11):897-913
For the general purposes of morphodynamic computations in coastal zones, simple formula-based models are usually employed to evaluate sediment transport. Sediment transport rates are computed as a function of the bottom shear stress or the near bed flow velocity and it is generally assumed that the sediment particles react immediately to changes in flow conditions. It has been recognized, through recent laboratory experiments in both rippled and plane bed sheet flow conditions that sediment reacts to the flow in a complex manner, involving non-steady processes resulting from memory and settling/entrainment delay effects. These processes may be important in the cross-shore direction, where sediment transport is mainly caused by the oscillatory motions induced by surface short gravity waves.The aim of the present work is to develop a semi-unsteady, practical model, to predict the total (bed load and suspended load) sediment transport rates in wave or combined wave-current flow conditions that are characteristic of the coastal zone. The unsteady effects are reproduced indirectly by taking into account the delayed settling of sediment particles. The net sediment transport rates are computed from the total bottom shear stress and the model takes into account the velocity and acceleration asymmetries of the waves as they propagate towards the shore.A comparison has been carried out between the computed net sediment transport rates with a large data set of experimental results for different flow conditions (wave-current flows, purely oscillatory flow, skewed waves and steady currents) in different regimes (plane bed and rippled bed) with fine, medium and coarse uniform sand. The numerical results obtained are reasonably accurate within a factor of 2. Based on this analysis, the limits and validity of the present formulation are discussed.  相似文献   

14.
王玉海 《海洋工程》2016,(5):703-717
Wave shapes that induce velocity skewness and acceleration asymmetry are usually responsible for onshore sediment transport, whereas undertow and bottom slope effect normally contribute to offshore sediment transport. By incorporating these counteracting driving forces in a phase-averaged manner, the theoretically-based quasi-steady formula of Wang (2007) is modified to predict the magnitude and direction of net cross-shore total load transport under the coaction of wave and current. The predictions show an excellent agreement with the measurement data on medium and fine sand collected by Dohmen-Janssen and Hanes (2002) and Schretlen (2012) in a full-scale wave flume at the Coastal Research Centre in Hannover, Germany. The modified formula can predict the net onshore transport of fine sand in sheet flows. In particular, it can predict the net offshore transport of medium sand in rippled beds through enlarged bed roughness, as well as the net offshore transport of fine-to-coarse sand in sheet flows with the aid of a new criterion to judge the occurrence of net offshore transport.  相似文献   

15.
根据舟山群岛峡道地区的钻孔资料,在有孔虫、花粉和沉积特性分析结果的基础上,分析了晚更新世海面变化,探讨了晚更新世末期峡道内的地面高程,进而根据海图量算结果,讨论了舟山群岛峡道底部的泥沙冲淤及其对浙闽沿海泥沙供给的影响。本文认为,晚更新世以来舟山群岛地区发生了三次海进海退,其中晚更新世末期低海面时,舟山群岛峡道高程约位于吴淞基面以下38m左右,全新世海侵以来,受峡道水动力的作用,除部分峡道内海湾发生淤积外,舟山群岛峡道底部发生了明显的冲刷,其最大冲刷厚度可达80m左右,为杭州湾乃至整个浙闽沿海提供了大量的泥沙  相似文献   

16.
A set of single- and multi-channel seismic reflection profiles provide insights into the younger Cenozoic sedimentation history of the continental rise in the western Bellingshausen Sea, west and north of Peter I Island. This area has been strongly influenced by glacially controlled sediment supply from the continental shelf, interacting with a westward-flowing bottom current. From south to north, the seismic data show changes in the symmetry and structure of a prominent sediment depocentre. Its southernmost sector provides evidence of sediment drift whereas northwards the data show a large channel-levee complex, with a western levee oriented in the opposite direction to that of the drift in the south. This pattern indicates the northward-decreasing influence of a westward-flowing bottom contour current in the study area. Topographic data suggest the morphologic ridges at Peter I Island to be the main features responsible for variable bottom-current influence, these acting as barrier to the bottom current and entrained sedimentary material. West of Peter I Island, the east-orientated Coriolis force remains effective in deflecting the suspended load of the turbidity currents towards the west, thereby promoting growth of the western channel levee. Calculated sediment accumulation rates based on seismic data reveal Depocentre C to consist of younger Cenozoic material supplied by glacial transport and modified by contour currents in the western Bellingshausen Sea. These findings demonstrate that the shape, structure and distribution of sediment mounds and estimates of sediment accumulation rates can be associated to the influence of bottom currents and their long-term evolution in response to tectonic movements, ice-sheet dynamics and deep-water formation.  相似文献   

17.
《Coastal Engineering》1999,36(3):171-195
A morphological stability analysis is carried out for a long straight coast with a longshore bar. The situation with oblique wave incidence and a wave-driven longshore current is considered. The flow and sediment transport are described by a numerical modelling system. The models comprise: (i) a wave model with depth refraction, shoaling and wave breaking, (ii) a depth integrated model for wave driven currents and (iii) a sediment transport model for the bed load transport and the suspended load transport in combined waves and current. The direction of the sediment transport is taken to be parallel to the depth integrated mean current velocity, neglecting the effects of a bed slope and secondary currents. An instability is found to develop around the bar crest. The instability is periodic in the alongshore direction, and tends to form rip channels and to steepen the offshore face of the bar between the rip channels. The alongshore wave length of the most unstable perturbation is determined for different combinations of the wave conditions and the geometry of the profile.  相似文献   

18.
The objectives of this study are carried out a series of controlled large wave flume experiments using fine-grained sediment from the Huanghe River Delta, exploring the complete sequence of sediment behavior in the bottom boundary layer(BBL) during wave-induced liquefaction. The results show that:(1) The BBL in silty seabed is exposed to a progressive wave, goes through a number of different stages including compaction before liquefaction, sediment liquefaction, and compaction after liquefaction, which determines the range and thickness of BBL.(2) With the introduction of waves, first, the sediment surface has settled by an amount S(S=1–2 cm) in the course of wave loadings with an insufficient accumulation of pore water pressure. And a thin high concentration layer formed the near-bed bottom.(3) Once the liquefaction sets in, the liquefied sediment with an ‘orbital motion' and the sub-liquefied sediment form a two-layer-sediment region. The range of BBL extends downwards and stopped at a certain depth, subsequently, develops upwards with the compaction process. Meanwhile, resuspended sediments diffuse to the upper water column.(4) During the dynamics process of the BBL beneath progressive waves, the re-suspended sediment increment ranked as sediment liquefaction erosion before liquefaction compaction after liquefaction.  相似文献   

19.
Abstract

This study established a Couple Eulerian–Lagrange model to simulate monopile vibratory penetration for the investigation of soil plugging effect during high-frequency penetration of monopiles for wind turbine. Simulation analysis is focused particularly on soil plugging effect of a large diameter monopile during vibratory penetration into sand, clay, or layered soil. The results of the numerical simulation show that soil plugging effect is unlikely to occur during monopile penetration into the clay soil, while partial soil plugging may occur during the sand penetration. Penetration resistance at the pile toe is transferred to the radial stress around the pile wall. At a critical point penetration process, internal shaft friction becomes larger than external shaft friction. Moreover, radial pressure factors increase during partial soil plugging effect. For layered soil, the topsoil not only has great influence on the soil plugging effect, but also affects shaft friction in the subsoil during monopile penetration.  相似文献   

20.
孔德森  刘一  邓美旭  侯迪 《海洋工程》2021,39(1):100-111
采用有限元软件ABAQUS建立了海上风电单桩基础与土相互作用数值计算模型,将波浪、洋流及风荷载等效成双向对称循环荷载,研究了水平循环荷载作用下不同因素对桩身水平位移、剪力和弯矩的影响规律。研究表明,随着循环荷载比的增加,桩身位移零点和桩身剪力反弯点沿埋深逐渐下移,桩身弯矩最大值点位于浅层土体;不同荷载频率时桩身位移在零点以上变化较大,桩身弯矩随着频率的增加逐渐增大;单向循环荷载作用下桩身位移最大,双向对称循环荷载作用下桩身位移最小;壁厚较小时对桩身水平位移影响较大;在位移零点之上范围内可以考虑设计"上厚下薄"的钢管桩,以减小桩身水平位移;不同桩壁厚时桩身剪力曲线在埋深约6D处出现交点,且泥面处桩身弯矩变化不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号