首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Elevated erosional notches and emergent marine deposits developed on limestone headlands along the Taormina coastline of northeastern Sicily testify to recent shoreline uplift. Although located at the southern prolongation of the Calabrian seismogenic belt, a zone of active extensional tectonics and rapid late Quaternary uplift, the study area lacks historical and instrumental evidence for significant earthquakes. A prominent notch level at an elevation of +4.5 and +5.0 m at Mazzaro and Capo Sant'Alessio, respectively, is dated by 14C assay of associated marine boring molluscs (Lithophaga) to be coincident with the 5000 yr BP deceleration of global eustatic rise, the mid-Holocene quasi-stillstand. These first radiometric dates of Holocene emergence along the northeastern Sicily coast indicate time-averaged uplift rates of 1.1 – 1.8 mm/yr. Well-defined erosional notches postdating the mid-Holocene quasistillstand, however, imply coastal uplift was not gradual but instead involved occasional abrupt crustal movements, probably the result of large paleoseismic earthquakes along the coastal-bounding normal faults. The results support a need for a re-evaluation of the earthquake potential of the Sicilian sector of the Apenninic seismogenic belt.  相似文献   

2.
This study aims to contribute a possible explanation for magma migration within volcanoes located in contractional tectonic settings, based on field data and physically-scaled experiments. The data demonstrate the occurrence of large stratovolcanoes in areas of coeval reverse faulting, in spite of the widely accepted idea that volcanism can develop only in extensional/transcurrent tectonic settings. The experiments simulate the propagation of deformation from substrate reverse faults with different attitudes and locations into volcanoes. The substrate fault splits into two main shear zones within the volcano: A shallow-dipping one, with reverse motion, propagates towards the lower volcano flank, and a steeper-dipping one, with normal motion, propagates upwards. In plan view, the reverse fault zone is arcuate and convex outwards, whereas the normal fault zone is rectilinear. Structural field surveys at volcanoes located in contractional settings show similar features: The Plio–Quaternary Trohunco and Los Cardos–Centinela volcanic complexes (Argentina) lie above Plio–Quaternary reverse faults. The Late Pleistocene–Holocene El Reventador volcano (Ecuador) is also located in a coeval contractional tectonic belt. These volcanoes show curvilinear reverse faults along one flank and rectilinear extensional fracture zones across the crater area, consistent with the experiments. These data consistently suggest that magma migrates along the substrate reverse fault and is channelled along the normal fault zone across the volcano.  相似文献   

3.
Structural observations carried out on the volcanic Island of Pantelleria show that the tectonic setting is dominated by NNE trending normal faults and by NW-striking right-lateral strike-slip faults with normal component of motion controlled by a ≈N 100°E oriented extension. This mode of deformation also controls the development of the eruptive fissures, dykes and eruptive centres along NNE–SSW belts that may thus represent the surface response to crustal cracking with associated magma intrusions. Magmatic intrusions are also responsible for the impressive vertical deformations that affect during the Late Quaternary the south-eastern segment of the island and producing a large dome within the Pantelleria caldera complex. The results of the structural analysis carried out on the Island of Pantelleria also improves the general knowledge on the Late Quaternary tectonics of the entire Sicily Channel. ESE–WNW directed extension, responsible for both the tectonic and volcano-tectonic features of the Pantelleria Island, also characterizes, at a greater scale, the entire channel as shown by available geodetic and seismological data. This mode of extension reactivates the older NW–SE trending fault segments bounding the tectonic troughs of the Channel as right-lateral strike-slip faults and produces new NNE trending pure extensional features (normal faulting and cracking) that preferentially develop at the tip of the major strike-slip fault zones. We thus relate the Late Quaternary volcanism of the Pelagian Block magmatism to dilatational strain on the NNE-striking extensional features that develop on the pre-existing stretched area and propagate throughout the entire continental crust linking the already up-welled mantle with the surface.  相似文献   

4.
利用甘肃岷县漳县6.6级地震区所在的青藏块体东北缘地区的区域水准、GPS、流动重力和跨断层短测线等地形变监测资料,结合地质构造、动力环境和已往的研究结果,分析了不同类型资料反映的震前区域性地壳变形背景、断层形变异常特征和可能的机理.结果认为:(1)岷县漳县6.6级地震前西秦岭、六盘山等构造区不同程度地存在着GPS水平挤压闭锁高应变积累、垂直隆升异常高梯度带和重力升、降差异剧烈变化等中长期背景;(2)震前到震时发震断裂附近及其外围相关构造区域断层形变异常在空间和时间上的起伏波动变化显著,尤其是汶川地震以来的波动变化在一定程度上反映了与本区构造比邻的龙门山断裂带剧烈右旋错动对本区的影响,与本次岷县6.6级地震过程有关;(3)本区有地形变监测资料积累以来缺乏6级以上震例,虽然存在不同程度的中长期形变背景异常,但何时进入短期-短临阶段确实很难把握,需要不断积累总结和探索提高.  相似文献   

5.
The Longmenshan fault zone is divided into three sections from south to north in the geometric structure. The middle and northern segments are mainly composed of three thrust faults, where the deformation of foreland is weak. The geometric structure of the southern segment is more complex, which is composed of six fault branches, where the foreland tectonic deformation is very strong. The Wenchuan MS8.0 earthquake occurred in the middle of the Longmenshan in 2008, activating the bifurcation of two branches, the Yingxiu-Beichuan and the Guixian-Jiangyou faults. In 2013, the Lushan MS7.0 earthquake occurred in the southern Longmenshan, whose seismogenic structure was considered to be a blind fault. After the Lushan earthquake, the seismic hazard in the southern Longmenshan has been widely concerned. At present, the studies on active tectonics in the southern Longmenshan are limited to the Dachuan-Shuangshi and the Yanjing-Wulong faults. The Qingyi River, which flows across the southern Longmenshan, facilitates to study fault slip by the deformation of river terraces. Based on satellite imagery and high-resolution DEM analysis, we measured the fluvial terraces along the Qingyi river in detail. During the measurement, the Sichuan network GPS system (SCGNSS)was employed to achieve a precision of centimeter grade. Besides, the optical luminescence dating (OSL)method was employed to date the terraces' ages. And the late Quaternary activities of the six branch faults in the southern Longmen Shan were further analyzed. The Gengda-Longdong, Yanjing-Wulong and the Xiao Guanzi faults (west branch of the Dachuan-Shuangshi fault)all show thrust slip and displaced the terrace T2. Their average vertical slip rates in the late Quaternary are 0.21-0.30mm/a, 0.12-0.21mm/a and 0.10-0.12mm/a, respectively. Since the Late Quaternary, vertical slip of the east branch of the Dachuan-Shuangshi fault was not obvious, and the arc-like Jintang tectonic belt was not active. Crustal shortening rate of the southern Longmenshan thrust fault zone in the late Quaternary is 0.48-0.77mm/a, which equals about half of the middle segment of the Longmenshan. Based on the previous study on the tectonic deformation of the foreland, we consider that the foreland fold belt in the southern Longmenshan area has absorbed more than half of the crustal shortening. The three major branch faults in the southern Longmenshan are active in the late Quaternary, which have risk of major earthquakes.  相似文献   

6.
Integrated geological, geodetic and marine geophysical data provide evidence of active deformation in south-western Sicily, in an area spatially coincident with the macroseismic zone of the destructive 1968 Belice earthquake sequence. Even though the sequence represents the strongest seismic event recorded in Western Sicily in historical times, focal solutions provided by different authors are inconclusive on possible faulting mechanism, which ranges from thrusting to transpression, and the seismogenic source is still undefined. Interferometric (DInSAR) observations reveal a differential ground motion on a SW–NE alignment between Campobello di Mazara and Castelvetrano (CCA), located just west of the maximum macroseismic sector. In addition, new GPS campaign-mode data acquired across the CCA alignment documents NW–SE contractional strain accumulation. Morphostructural analysis allowed to associate the alignment detected through geodetic measurements with a topographic offset of Pleistocene marine sediments. The on-land data were complemented by new high-resolution marine geophysical surveys, which indicate recent contraction on the offshore extension of the CCA alignment. The discovery of archaeological remains displaced by a thrust fault associated with the alignment provided the first likely surface evidence of coseismic and/or aseismic deformation related to a seismogenic source in the area. Results of the integrated study supports the contention that oblique thrusting and folding in response to NW–SE oriented contraction is still active. Although we are not able to associate the CCA alignment to the 1968 seismic sequence or to the historical earthquakes that destroyed the ancient Greek city of Selinunte, located on the nearby coastline, our result must be incorporated in the seismic hazard evaluation of this densely populated area of Sicily.  相似文献   

7.
汉中盆地及邻区地壳结构和地震活动性研究   总被引:2,自引:1,他引:1       下载免费PDF全文
为了进一步探查汉中盆地的深部动力学机制和孕震构造特征,本文基于背景噪声成像、多频接收函数和面波联合反演以及莫霍面Ps震相时深转换方法反演了汉中盆地及其邻区的地壳S波速度和厚度,并进一步对比分析了研究区深部结构与地震活动性之间的关系。结果表明:汉中盆地不同区域的浅表沉积厚度和速度存在差异;部分区域莫霍面处的速度变化平缓,Ps震相与P震相的振幅比<0.2;汉中盆地内部鲜有地震发生,其周边10 km范围内地震分布主要受到断层控制;4—16 km震源深度上下界面大致对应于低速体底层和高速体顶层。本文获得的非均匀分布的沉积厚度、渐变的壳幔过渡带结构与汉中盆地长期处于秦岭构造带、大巴山褶皱带以及青藏地块交界区的三联点构造位置密切相关。   相似文献   

8.
青藏高原东缘龙门山构造带是研究青藏高原地壳物质向东侧向挤出的焦点地区.为探索龙门山构造带活动构造特征及其与发震构造的关系,本文通过布置垂直龙门山构造带南段芦山地震震源区的大地电磁测深剖面,运用多种数据处理手段,得到研究区可靠的电性结构,并通过与已有龙门山中段和北段剖面进行对比分析.研究表明:(1)青藏高原东缘岩石圈存在明显的低阻异常带--松潘岩石圈低阻带,该低阻异常带沿龙日坝断裂-岷山断裂-龙门山后山断裂分布,形成松潘-甘孜地块向扬子地块俯冲的深部动力学模式,通过统计研究区的历史强震,发现震源主要沿低阻异常带东侧分布,同时,低阻异常带也是低速度、低密度异常带,松潘岩石圈低阻带可能是扬子地块的西缘边界;(2)青藏高原物质东移过程中,受到克拉通型四川盆地的强烈阻挡,龙门山构造带表层岩块和物质发生仰冲推覆,表现为逆冲推覆特征的薄皮构造,中下地壳和上地幔顶部物质向龙门山构造带岩石圈深部俯冲,印支运动晚期,扬子古板块持续向华北板块俯冲,在上述构造运动作用下,呈现出刚性的上扬子地块西缘高阻楔形体向西插入柔性青藏块体的楔状构造;(3)根据电性结构推断,芦山地震受到深部上里隐伏壳幔韧性剪切带向上扩展的影响,构成芦山地震的深部主要动力来源;汶川地震的发生,在龙门山南段形成应力加载区,是触发或加快芦山地震孕育发生的另一个动力来源.  相似文献   

9.
Re-measured GPS data have recently revealed that a broad NE trending dextral shear zone exists in the eastern Bayan Har block about 200 km northwest of the Longmenshan thrust on the eastern margin of the Qinghai-Tibet Plateau. The strain rate along this shear zone may reach up to 4-6 mm/a. Our interpretation of satellite images and field observations indicate that this dextral shear zone corresponds to a newly generated NE trending Longriba fault zone that has been ignored before. The northeast segment of the Longriba fault zone consists of two subparallel N54°±5°E trending branch faults about 30 km apart, and late Quaternary offset landforms are well developed along the strands of these two branch faults. The northern branch fault, the Longriqu fault, has relatively large reverse component, while the southern branch fault, the Maoergai fault, is a pure right-lateral strike slip fault. According to vector synthesizing principle, the average right-lateral strike slip rate along the Longriba fault zone in the late Quaternary is calculated to be 5.4±2.0 mm/a, the vertical slip rate to be 0.7 mm/a, and the rate of crustal shortening to be 0.55 mm/a. The discovery of the Longriba fault zone may provide a new insight into the tectonics and dynamics of the eastern margin of the Qinghai-Tibet Plateau. Taken the Longriba fault zone as a boundary, the Bayan Har block is divided into two sub-blocks: the Ahba sub-block in the west and the Longmenshan sub-block in the east. The shortening and uplifting of the Longmenshan sub-block as a whole reflects that both the Longmenshan thrust and Longriba fault zone are subordinated to a back propagated nappe tectonic system that was formed during the southeastward motion of the Bayan Har block owing to intense resistance of the South China block. This nappe tectonic system has become a boundary tectonic type of an active block supporting crustal deformation along the eastern margin of the Qinghai-Tibet Plateau from late Cenozoic till now. The Longriba fault zone is just an active fault zone newly-generated in late Quaternary along this tectonic system.  相似文献   

10.
本文采用欧拉反褶积、场源参数成像(SPI)、场源边界提取(SED)、莫霍面反演、地壳三维可视化等多源方法,对青藏高原东北缘地区的布格重力场进行反演与分析,深入研究该地区的深部结构与变形特征,探讨区域深部孕震环境及动力学机制.研究表明,青藏高原东北缘的布格重力场整体呈负异常值,具有明显的分区性,表现出鄂尔多斯盆地异常值相对偏高、阿拉善块体次之、青藏高原块体极低的特点,其中海源断裂系形成了一条宽缓的弧形重力梯度条带,梯度值达1.2 mGal·km^-1.欧拉结果显示,鄂尔多斯盆地相比于青藏高原块体而言,场源点具有较强的均一性,场源强度值高(密度值高)且深度稳定在25~32 km范围内,而高原块体的中下地壳尺度广泛分布着低密度异常体.SPI图可知,海源弧形断裂系位于“浅源异常”弧形区,反映其地壳较为活跃,易发生中强地震.SED图揭示青藏高原地壳向东北扩展,经过几大断裂系的调节后运动矢量向东或东南转化,SED与GPS、SKS运动特征大致相同,说明地表-地壳-地幔的运动特征有着较强的一致性.青藏高原东北缘地区壳幔变形是连贯的,加之莫霍面由北向南、由东向西是逐渐加深的,因此属于垂向连贯变形机制,不符合下地壳管道流动力学模式.区域形成了似三联点构造格局,其中海源弧形断裂系的深部地壳结构复杂,高低密度异常体复杂交汇,是青藏高原、阿拉善、鄂尔多斯三大块体相互作用的重要枢纽,其运动学特征总体为中段走滑尾端逆冲,而断裂系正处于大型的弧形莫霍面斜坡带之上,具备强震的深部孕震环境,因此大尺度的运动调节与深部孕震条件共同促使了该地区中强震的多发.  相似文献   

11.
In the Central Mediterranean region, the production of chemically diverse volcanic products (e.g., those from Mt. Etna and the Aeolian Islands archipelago) testifies to the complexity of the tectonic and geodynamic setting. Despite the large number of studies that have focused on this area, the relationships among volcanism, tectonics, magma ascent, and geodynamic processes remain poorly understood. We present a tomographic inversion of P-wave velocity using active and passive sources. Seismic signals were recorded using both temporary on-land and ocean bottom seismometers and data from a permanent local seismic network consisting of 267 seismic stations. Active seismic signals were generated using air gun shots mounted on the Spanish Oceanographic Vessel ‘Sarmiento de Gamboa’. Passive seismic sources were obtained from 452 local earthquakes recorded over a 4-month period. In total, 184,797 active P-phase and 11,802 passive P-phase first arrivals were inverted to provide three different velocity models. Our results include the first crustal seismic active tomography for the northern Sicily area, including the Peloritan–southern Calabria region and both the Mt. Etna and Aeolian volcanic environments. The tomographic images provide a detailed and complete regional seismotectonic framework and highlight a spatially heterogeneous tectonic regime, which is consistent with and extends the findings of previous models. One of our most significant results was a tomographic map extending to 14 km depth showing a discontinuity striking roughly NW–SE, extending from the Gulf of Patti to the Ionian Sea, south-east of Capo Taormina, corresponding to the Aeolian–Tindari–Letojanni fault system, a regional deformation belt. Moreover, for the first time, we observed a high-velocity anomaly located in the south-eastern sector of the Mt. Etna region, offshore of the Timpe area, which is compatible with the plumbing system of an ancient shield volcano located offshore of Mt. Etna.  相似文献   

12.
2016年1月21日01时13分在青海省海北州门源县发生了MS6.4地震,震中位置位于青藏高原东北缘地区祁连造山带内的祁连—海原断裂带冷龙岭断裂部分附近,震源深度约11.4 km,震源机制解显示该次地震为一次纯逆冲型地震.我们于2015年7—8月期间完成了跨过祁连造山带紧邻穿过2016年1月21日青海门源MS6.4地震震中区的大地电磁探测剖面(DKLB-M)和古浪地震大地电磁加密测量剖面(HYFP).本文对所采集到的数据进行了先进的数据处理和反演工作,获得了二维电性结构图.结合青藏高原东北缘地区最新获得的相对于欧亚板块2009—2015年GPS速度场分布特征,1月21日门源MS6.4地震主震与余震分布特征以及其他地质与地球物理资料等,探讨了门源MS6.4地震的发震断裂,断裂带空间展布、延伸位置,分析了门源MS6.4地震孕震环境与地震动力学背景等以及祁连山地区深部构造特征等相关问题.所获结论如下:2016年门源MS6.4地震震源区下存在较宽的SW向低阻体,推测冷龙岭断裂下方可能形成了明显的力学强度软弱区,这种力学强度软弱区的存在反映了介质的力学性质并促进了地震蠕动、滑移和发生;冷龙岭北侧断裂可能对门源MS6.4地震主震和余震的发生起控制作用,而该断裂为冷龙岭断裂在青藏高原北东向拓展过程中产生的伴生断裂,表现出逆冲特征;现今水准场、重力场、GPS速度场分布特征以及大地电磁探测结果均表明祁连—海原断裂带冷龙岭断裂部分为青藏高原东北缘地区最为明显的一条边界断裂,受控于青藏高原北东向拓展和阿拉善地块的阻挡作用,冷龙岭断裂附近目前正处于青藏高原北东向拓展作用最强烈、构造转化最剧烈的地区,这种动力学环境可能是门源MS6.4地震发生的最主要原因,与1927年古浪MS8.0地震和1954年民勤MS7.0地震相似,2016年门源MS6.4地震的发生同样是青藏高原北东向拓展过程中的一次地震事件.  相似文献   

13.
通过分析青藏高原东部的活动断裂资料和GPS速度场数据,试图阐述活动地块的几何学、运动学和形变特征。初步认为:(1)第四纪特别是晚更新世以来的活动地块边界带与早期的构造单元边界密切相关,但也具有明显的新生性;(2)根据两种资料推导出的各个活动地块的运动学特征基本上是吻合的,其中鲜水河-玉树-玛尼断裂带是一条重要的分界线,其南、北部活动地块的运动方式差异明显;(3)除了活动地块的边界带强烈活动外,各个地块内部也显示出很强的变形;(4)晚更新世以来,青藏高原地壳的运动学和形变特征表现为在印度板块挤压力作用下,活动地块在向NE方向的运动过程中遇到稳定地块阻挡,调节方式是地壳增厚以及南、北部地块分别向SE-SSE和NWW-W方向的构造软弱部位水平侧向迁移。  相似文献   

14.
为了清晰认识发生于青藏高原西北部2008年与2014年的两次于田MS7.3地震发震构造环境与构造地貌特征,本文利用DEM(数字高程模型)数据分析"喀喇昆仑—西昆仑—康西瓦地区"的地形地貌特征,结合区域活动断裂研究资料、相对于塔里木盆地的两期GPS速度场资料和区域运动学特征等讨论两次MS7.3地震所处的青藏高原西北部区域构造环境和地壳运动学特征,分析喀喇昆仑断裂、阿尔金断裂康西瓦段、龙木错-邦达错断裂及贡嘎错断裂所围限的西昆仑地块的地质构造背景、阿尔金断裂西南端发震断裂活动性及孕震环境等发震构造基本条件;进而利用"地形剖面"方法及断裂分布特征分析震源区的地形地貌特征,给出晚第四纪以来的地貌形态与发震构造的关系,从区域构造地貌学和GPS地壳运动学的角度探讨中上地壳变形特征及孕震过程;最后讨论区域孕震构造、克尔牙张性裂谷演化过程和地球动力学背景等。通过地形剖面及区域地貌综合分析新疆于田2008年MS7.3拉张型发震构造和2014年MS7.3走滑拉张型地震的发震构造特点的区别,认为2014年发生的地震可能与2008年MS7.3地震同震库伦应力变化、触发过程及震后变形过程密切相关,并且青藏高原西北部地区存在明显的东西向拉张性构造单元,可能与青藏高原10~15 Ma以来的地壳减薄过程有关。  相似文献   

15.
再探中国大陆第四纪地壳运动时程   总被引:1,自引:0,他引:1       下载免费PDF全文
冯希杰 《地震地质》1999,21(1):84-87
以柴达木盆地新构造运动发生的期次、黄河兰州谷地出现的突出构造事件、阿尔金断裂带第四纪所经历的大运动阶段、攀西裂谷区新构造运动分期、北京地区南段新构造运动波动、全国一些地区断裂活动时序等为例证,再次证明了第四纪以来中国大陆地壳活动具有明显的时段性,4次强烈的构造活动分别发生在上新世末至早更新世初、早更新世中晚期、中更新世中晚期和全新世。其中,以中更新世中晚期地壳活动强度最大、波及范围最广  相似文献   

16.
2013年4月20日发生在龙门山南段的芦山MS7.0地震是继发生在龙门山中北段的汶川MS8.0地震之后的又一次强震。本文通过震后地表变形特征、余震分布、震源机制解、石油地震勘探剖面、历史地震数据等资料,结合前人对龙门山南段主干断裂、褶皱构造特征的研究以及野外实地考察,应用活动褶皱及"褶皱地震"的相关理论,初步分析芦山地震的发震构造模式。认为芦山地震为典型的褶皱地震,发震断裂为前山或山前带一隐伏断裂。构造挤压产生的地壳缩短大部分被褶皱构造吸收。认为龙门山南段前缘地区具有活褶皱-逆断层的运动学特征,表明龙门山逆冲作用正向四川盆地内部扩展。  相似文献   

17.
安徽地区历史及现代地震活动与断裂活动性关系研究   总被引:2,自引:0,他引:2  
安徽地区处于华北板块与扬子板块沿着大别造山带的陆一陆碰撞变形带,构造背景复杂多样,断裂十分发育。郯庐断裂带长期控制着两侧的构造格局,大别山东缘的霍山地区多条断裂在晚第四纪有新活动。史料记载表明安徽地区历史地震以中强震为主,最高震级为M6 1/4级。根据区域地震地质、历史地震近年最新研究成果,对第四纪特别是晚第四纪以来的断裂活动习性做出归纳和分类,并分析历史地震、1970年后有仪器记载以来中等强度地震和小地震密集与断裂活动的相关性,为中长期地震预测提供依据。  相似文献   

18.
A recent investigation on the northern margin of the Hyblean Plateau in south-eastern Sicily highlights the occurrence of a clayey diapiric intrusion into the foreland carbonate series. The piercing body, exposed along a ∼270 long and ∼30 m deep NE-SW elongated quarry, consists of serpentinite-bearing clayey material. As suggested by the internal contractional features and by its geometric relations with the adjacent rocks, the clayey body intruded in the foreland series producing on its flanks a set of domino-arranged normal faults which nucleated as a result of gravitative collapse. Taking into account previous petrological studies, which provided information about the origin of the mud, a deep geodynamic model for the northern part of the Hyblean Plateau is here presented. The mud diapirs originated from the uprising of pre-existing serpentinite bodies and others products of alteration probably developed along an ancient ridge-transform intersection where a hydrothermally altered mantle wedge occurred. This interpretation is supported by seismic, magnetic and gravimetric anomalies beneath the analyzed area and has implications on its geodynamic evolution.  相似文献   

19.
Recent tectonic stress field and major earthquakes of the Bohai Sea basin   总被引:3,自引:0,他引:3  
Introduction The present Bohai Sea is a half-closed shallow one in the continent, located at the northeast to North China, with an area about 7.3104 km2. Geologically, it is situated in the northern North China basin and of a short development history. Previous studies (WANG, LI, 1983; Institute of Oceanology, Chinese Academy of Sciences, 1985; HUANG, et al, 1993) show that the Fu-jian-Lingnan uplift in the East China Sea continental shelf sank gradually into the oceanic bottom, mak…  相似文献   

20.
In 2010, a 500-km-long wide-angle reflection/refraction seismic profile was completed, running northwest from the central Sichuan Basin. This profile orthogonally crosses the meizoseismal area of great Wenchuan earthquake of 12 May 2008, which occurred in the central part of the Longmenshan. The profile also passes through the northwestern Sichuan Plateau, along which a new deep seismic sounding observation system was set up that was much improved over previous datasets and enabled abundant observations to be recorded. Seismic wave phase records that reflect the structural characteristics of different tectonic blocks, especially the complicated phase features associated with the Wenchuan earthquake, were calculated and analyzed in detail. A 2D crustal P-wave velocity model for the orogenic belt in the central Longmenshan and its margins was determined, and crustal structure differences between the stable Sichuan Basin and the thickened northwestern Sichuan Plateau were characterized. Lithological variations within the upper and lower crust in the interior of the plateau, especially a great velocity decrease and plastic rheological properties associated with strong lithologic weakening in lower crust, were detected. From west to east in the lower crust beneath the orogenic belt lying between the Sichuan Basin and the northwestern Sichuan Plateau, a giant shovel-like upwelling is observed that dips gently in the lower part and at higher angles in the upper part; this is inferred to be related to the fault systems in the central Longmenshan. An upwelling in the upper-middle crust along the eastern margin of the orogenic belt is associated with steeply dipping thrusts that strongly uplift the upper crust and crystalline basement beneath a central fault system in the Longmenshan. The data, combined with an understanding of the regional tectonic stress field and previous geological results, enable a discussion of basin-and-range coupling, orogenic tectonics, the crustal fault system, and the seismogenic tectonic environment of the central Longmenshan along the eastern margin of the Qinghai-Tibet Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号