首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Many uncertainty factors need be dealt with in the prediction of seismic hazard for a 10-year period.Restricted by these uncertainties,the result of prediction is also uncertain to a certain extent,so the probabilistic analysis method of seismic hazard should be adopted.In consideration of the inhomogeneity of the time,location,and magnitude of future earthquakes and the probabilistic combination of the background of long-term seismic hazard(geology,geophysical field,etc.)and the precursors of earthquake occurrence,a model of probabilistic prediction of seismic hazard in a period of 10 years s proposed.Considering the inhomogeneity of data and earthquake precursors for different regions in China,a simplified model is also proposed in order to satisfy the needs of different regions around the country.A trial in North China is used to discuss the application of the model.The method proposed in this paper can be used in the probabilistic prediction of seismic hazard in a period of 10 years.According to the  相似文献   

2.
In this paper, a new finite element model (FEM) in consideration of regional stress field and an earthquake triggering factor C are proposed for studying earthquake triggering and stress field evolution in an earthquake sequence. The factor C is defined as a ratio between the shear stress and the frictional strength on a slip surface, and it can be used to tell if earthquake is triggered or not. The new FEM and the factor C are used to study the aftershock triggering of the 1976 Tangshan earthquake sequence. The results indicate that the effects of the stress field and the heterogeneity of the Tangshan earthquake fault zone on the aftershock triggering are very important. The aftershocks fallen in the earthquake triggering regions predicted by the new FEM are more than those fallen in the regions of ΔCFS⩾0 predicted by seismic dislocation theory. Supported by National Natural Science Foundation of China (Grant Nos. 40474013 and 40821062)  相似文献   

3.
—Based on the original stress release model of seismicity proposed by Vere-Jones (1978), this paper has developed a stochastic coupled stress release model of time-dependent seismicity, which considers the earthquake interaction and stress transfer between different seismic subregions. As an example, the model is applied to a statistical analysis of the historical earthquake catalog with magnitude M ≥ 6.0 during the period from 1480 to 1996 in North China. According to the Akaike information criterion (AIC), the results show that the coupled stress release model is better than the original model, which demonstrates the existence of long-range correlations between different seismic subregions. We also apply both the stochastic (original and developed coupled) models to analyze the synthetic catalog produced by a cellular automata model, which is based on mechanics of a slide-spring-damper system to model the fault network. The stress release model provides a good fit to the synthetic regional stress, and the coupled stress release model provides an improvement in fit to the synthetic catalog over the original model.  相似文献   

4.
Coupled stress release model is proposed in the paper considering the interaction between different parts based on stress release model by Vere-Jones, and is used to historical earthquake data from North China. The results by this model are compared with the results by original stress release model using AIC criterion. The results show that coupled stress release model is better than original model.  相似文献   

5.
本研究以5年为时间窗,1年为滑动步长构建自变量序列,建立了新疆各研究区的投影寻踪自回归中长期地震预测模型;同时应用应变积累释放模型探讨了各区不同时段应变积累与释放特征,依据各区的应变积累水平及其地震活动分期特征判定未来地震趋势。综合分析两个模型的地震趋势预测意见,给出了新疆各研究区未来5年(2006-2010年)的地震危险性判定意见。  相似文献   

6.
The studies of earthquake stress transfer and its influence on regional seismicity have found that earthquake occurrences are highly interactive and correlated rather than isolated and random in traditional point in recently years. A lot of phenomena in earthquake observations such as aftershock distribution, stress shadow, earthquake interaction and migration were well explained based on the theory of earthquake stress interaction. It is important that understanding the process of earthquake interaction could give an insight into the physical mechanism of earthquake cycle, and could help us assess the seismic hazard in future.It has long been recognized that regional stress accumulated by tectonic motion is released when earthquake occurs. When earthquakes occur, the accumulated stress does not vanish completely, but is redistributed through the process of stress transfer, and then the redistributed stress may trigger potential earthquakes. The increment of Coulomb failure stress loading in the certain regions may improve the seismic activities. By contrast, the decrement of Coulomb failure stress in the areas of stress shadow where the stress on faults may unload could lead to the decrement of seismic activities.On August 3, 2014, an MS6.5 earthquake occurred in Zhaotong-Ludian region, Yunnan Province, China, killing and injuring hundreds of people. Therefore, it is critical to outline the areas with potential aftershocks before reconstruction and re-settlement so as to avoid future disasters. Based on the elastic dislocation theory and multi-layered lithospheric model, we calculate the co-stress changes caused by the Zhaotong-Ludian earthquakes to discuss its influences on aftershock distribution and surrounding faults. It is shown that the Coulomb stress changes based on the rupture in the NNW direction can explain better the aftershock distribution. It indicates that the NNW direction may represent the real rupture. The aftershocks mainly distribute in the regions with increased stress along main rupture and west to the rupture. In other regions with increased stress, the distributions of aftershock are rare which may indicate the low tectonic stress accumulation in these regions. The stress accumulation and corresponding seismic hazard on the southern part of Zhaotong Fault, Qiaojia segment of Zemuhe-Xiaojiang Fault and northeastern part of Lianfeng Fault are further increased by the Zhaotong-Ludian earthquake. We should pay special attention to the southern part of Zhaotong Fault where seismic activity is very high in recently years and the increment of Coulomb failure stress in this area is more than 0.1bar(0.1bar is the threshold of earthquake triggering). In order to make a more objective and comprehensive discussion, we calculate the sensitivity of the parameters such as effective coefficient of friction, the calculated depth and multilayered crustal model.  相似文献   

7.
中国大陆地震活动分期及其与构造运动的关系   总被引:2,自引:1,他引:2  
黄忠贤  陈虹 《中国地震》1996,12(4):403-410
利用应变积累释放曲线的方法,讨论中国各主要地震区带的平静-活跃期现象及其与构造运动之间的联系。中国西南地区的地震活动反映了由印度-欧亚板块碰撞引起的动力作用由西向东,由南向北的推过程。  相似文献   

8.
Introduction Whether static stress change generated by earthquakes can trigger subsequent earthquakes heretofore is still in debate. Some researchers believe that seismic Coulomb failure stress change generated by earthquake can affect the seismicity nearby (King, et al, 1994; Toda, et al, 1998; Stein, 1999; Seeber, Armbruster, 2000). However, some researchers believe that this model is wrong. For example, Beroza and Zoback (1993) found that stress change generated by the 1989 Loma Prieta …  相似文献   

9.
China’s seas and adjacent regions are affected by interactions among the Eurasian plate, the western Pacific plate, and the Philippine Sea plate. Both intraplate and plate-edge earthquakes have occurred in these regions and the seismic activities are frequent. The coastal areas of China are economically developed and densely populated. With the development and utilization of marine energy and resources along with the development of national economy, the types and quantity of construction projects in the marine and coastal areas have increased, once an earthquake happens, it will cause huge damage and loss to these areas, therefore, the earthquake-related research for these sea areas cannot be ignored and the need for study on these areas is increasingly urgent. One type of essential basic data for marine seismic research is a complete, unified earthquake catalog, which is an important database for seismotectonics, seismic zoning, earthquake prediction, earthquake prevention, and disaster reduction. Completeness and reliability analysis of an earthquake catalog is one of the fundamental research topics in seismology.
At present, four editions of earthquake catalogs have been officially published in China, as well as the earthquake catalogue compiled in the national fifth-generation earthquake parameter zoning map, these catalogs are based on historical data, seismic survey investigations, and various instrumental observations. However, these catalogs have earlier data deadlines and contain the earthquake records for only the offshore regions of China, which are extensions of coastal land. Distant sea regions, subduction zones, and adjacent sea regions have not been included in these catalogs. Secondly, there were no cross-border areas involved in the compilation of earthquake catalogs in the past. It was not required to use magnitudes measured by other countries’ seismic networks and observation agencies to develop an earthquake catalog with a uniform magnitude scale, moreover, there was no formula suitable for the conversion of magnitude scale in China’s seas areas and adjacent regions. Little research has been conducted to compile and analyze the completeness of a unified earthquake catalog for China’s seas and adjacent regions. Therefore, in this study, we compiled earthquake data from the seismic networks of China and other countries for China’s seas and adjacent regions. The earthquake-monitoring capabilities of different sea areas at different time periods were evaluated, and the temporal and spatial distribution characteristics of epicentral location accuracy for China’s seas and adjacent regions were analyzed. We used the orthogonal regression method to obtain conversion relationships between the surface wave magnitude, body wave magnitude, and moment magnitude for China’s seas and adjacent regions, and established magnitude conversion formulae between the China Seismic Network and the ML magnitude of the Taiwan Seismic Network and the MS magnitude of the Philippine Seismic Network. Finally, we developed an earthquake catalog with uniform magnitude scales for China’s seas and adjacent regions.
On the basis of the frequency-magnitude distribution obtained from the magnitude-cumulative frequency relationship (N-T) and the Gutenberg-Richter(GR)law, we conducted a completeness analysis of the unified earthquake catalog for China’s seas and adjacent regions, Then, we identified the beginning years of each magnitude interval at different focal depth ranges and different seismic zones in the earthquake catalog.
This study marks the first time that a unified earthquake catalog has been compiled for China’s seas and adjacent regions, based on the characteristics of seismicity in the surrounding sea regions, which fills the gap in the compilation of the earthquake catalogue of China’s seas and adjacent areas. The resulting earthquake catalog provides a basis for seismotectonics, seismicity study, and seismic hazard analysis for China’s seas and adjacent regions. The catalog also provides technical support for the preparation of seismic zoning maps as well as for earthquake prevention and disaster reduction in project planning and engineering construction in the sea regions. In addition, by evaluating the earthquake-monitoring capability of the seismic networks in China’s seas and adjacent regions and analyzing the completeness of the compiled unified earthquake catalog, this study provides a scientific reference to improve the earthquake-monitoring capability and optimizing the distribution of the seismic networks in these regions.  相似文献   

10.
优化减震距离   总被引:1,自引:0,他引:1       下载免费PDF全文
本文对中国大陆内部不同时段发生的七级地震和六级地震分别进行统计分析,求得不同震级的优势地震间距,减震距离以及地震间距随时间变化的关系式。提出地震间距的数值分布可用正态概率分布函数描述,并得到含有时间参量的地震间距概率密度函数。此外,根据弹性位错理论,求得一次地震后在减震距离处所产生的位移,进而求出平均位移速率。  相似文献   

11.
采用更加符合长期变形和震后短期变形的Burgers流变模型,模拟了华北地区1303年以来6.5级以上地震引起的同震和震后库仑应力演化.结合华北地区历史地震期幕活动特征,分析了不同活跃期之间、同一活跃期内不同地震之间的库仑应力加卸载效应.结果表明:华北地区不同活跃期的强震主体活动区受控于历史强震的库仑应力加载作用;每个活跃期内强震活动主体区在空间上的迁移与该活跃期内首个7.5级以上地震的触发作用有关;华北地区每个活跃期内强震活动在时间上表现出的"平静期—活跃警告期—高潮期—剩余释放期"应该是区域动力加载过程的一种表现.岩石圈流变松弛效应引起的库仑应力变化对华北地区强震活动时空演化有显著的促进作用.本研究讨论了库仑应力变化在华北地区历史地震活动时空演化过程中可能扮演的角色,为探索华北地区强震活动空间迁移和韵律特征蕴含的构造动力学过程,以及与之相关的地震危险性判定提供参考依据.  相似文献   

12.
使用广西数字地震台网记录的2013年6月-7月广西平果ML1.0-3.0震群162次地震波形资料,采用Brune(1970)模型,通过几何扩散校正、介质衰减校正、仪器校正等,将速度记录谱归算为震源位移谱,利用遗传算法计算拐角频率及零频极限,然后计算地震矩、应力降等小震震源参数,系统分析各参数之间的关系.研究表明:近震震级、地震矩、震源破裂半径、拐角频率、应力降等之间可以拟合为对数或半对数的线性关系;地震应力降、视应力与震源破裂半径没有明显的依赖关系,但与地震矩成正相关关系;与其他地区的同类研究结果基本一致,获得各参数的定标关系相近,尤其是通过最小二乘法拟合应力降与地震矩之间的关系后,与浙江珊溪水库地区的应力降与地震矩之间的关系有很强的一致性;与其他地区的应力降及视应力降相比较,本研究区属于低应力释放地区,但由于此次研究的地震事件时间跨度较短,且时间段比较集中,对该地区的应力释放水平还需跟踪研究.  相似文献   

13.
在地震危险性分析和预测研究中,随着数值模拟技术的进步和对地球动力学过程认识的不断深入,有可能发挥越来越重要的作用.数值模拟一个区域内部的构造变形,在正常时期与观测结果应该是比较接近的,而当局部地方处于孕震临界失稳状态时,其实测结果就有可能与模拟结果不协调,据此有可能为地震的中期至短期预测提供有价值的信息;应用数值模拟方...  相似文献   

14.
2014年2月12日,在新疆于田县发生了里氏7.3级地震.在该地震震中附近,前人研究证明发育了大量规模不同的活动断层(如康西瓦断裂与贡嘎错断裂等).根据地震触发理论,地震发生后因地壳同震变形会导致其周边不同性质断裂破裂应力发生变化,进而影响其地震的潜在危险性.本文利用地震远场波形记录,反演了该地震滑动模型.之后,根据弹性无限半空间位错理论,计算了该地震在近场范围内活动断裂上的同震应力变化.其目的在于讨论于田地震引起的附近断裂上的库仑应力变化以及这些活动断裂可能潜在的地震危险性.在地震发生后,从国际地震学联合会(IRIS)地震数据中心,下载了震中距离介于30°~90°的地震远场波形记录,为保证台站方位角分布均匀,从中挑选了27个不同方位角的高信噪比地震记录参与理论地震图的生成和波形反演过程.我们采用广义射线理论计算生成远场理论地震波形数据.每个子断层参数的反演则利用基于全局化反演的快速模拟退火反演方法.在有限断层反演过程中,我们采用了强调波形拟合的相关误差函数作为待反演的目标函数,拟合的断层参数使目标函数为最小.之后,根据弹性无限半空间位错理论,以库仑破裂准则为基础,结合反演得到的地震震源机制解和地震位错模型,计算该地震引起的近场断层面上库仑应力的变化.由远场波形计算结果可以看到,于田地震的震源深度为10km,地震断层的倾角约71.9°,破裂面上最大的同震位移达到210cm,以左旋走滑为主并具有正倾滑分量,地震能量主要在前15s内释放.由此得到该地震的地震矩为2.91×1019 N·m,地震震级为Mw6.9.于田地震引发的余震,大致分布在三个区域内:普鲁断裂北部、康西瓦断裂东部和贡嘎错断裂中部.弹性应力计算结果表明,于田地震导致阿尔金断裂西段、普鲁断裂中段、康西瓦断裂东段和贡嘎错断裂中段的静态库仑应力明显增加,其中以康西瓦断裂东段和贡嘎错断裂中段应力增量为最大,分别达到了0.05 MPa和0.04 MPa.大量研究证明,当地震所导致的库仑应力变化大于0.01 MPa时将具有明显的地震触发作用.根据本文结果,2014年于田Mw6.9地震使普鲁断裂、贡嘎错断裂和康西瓦断裂上的库仑应力增量均超过了触发阈值,具有被触发出地震的潜在危险.因此,在以后的地震学研究中,应加强对该三条断裂地震危险性的研究和监测.此外,近6年以来,研究区域发生了3次6级以上的地震.这些地震均沿着贡嘎错断裂,由南西向北东迁移,逐步靠近阿尔金断裂,并且逐渐由正倾滑型地震转变为走滑型地震.阿尔金断裂的走滑速率达到了9mm·a-1,所以,尽管本次地震导致的阿尔金断裂库仑应力增量小于0.01 MPa,阿尔金的地震危险性也应该加强监测.  相似文献   

15.
经常观察到这样的现象:活化的克拉通在其演化的不同阶段经历过裂谷作用,在这些地区有分割的地堑构造,有些地堑已变成现代的活跃地震带,如中国山西临汾地堑,中国河北邢台地堑和美国的新马德里地堑。大量资料表明,这些地区的地震成因与许多地质、地球物理条件有关,而不仅仅是活动断层。以临汾地堑为例,地震发生过程涉及到下列因素:(1)地堑周围强度较大的变质岩,这些岩体在区域应力场作用下产生应力积累;(2)地堑内5-  相似文献   

16.
In this paper, the method which can combine different seismic data with the different precision and completeness, even the palaeo-earthquake data, has been applied to estimate the yearly seismic moment rate in the seismic region. Based on this, the predictable model of regional time-magnitude has been used in North China and Southwest China. The normal correlation between the time interval of the events and the magnitude of the last strong earthquake shows that the model is suitable. The value of the parameter c is less than the average value of 0.33 that is obtained from the events occurred in the plate boundary in the world. It is explained that the correlativity between the recurrence interval of the earthquake and the magnitude of the last strong event is not obvious. It is shown that the continental earthquakes in China are different from that occurred in the plate boundary and the recurrence model for the continental events are different from the one for the plate boundary events. Finally the seismic risk analysis based on this model for North China and Southwest China is given in this paper.  相似文献   

17.
Coulomb stress change on active faults is critical for seismic hazard analysis and has been widely used at home and abroad. The Sichuan-Yunnan region is one of the most tectonically and seismically active regions in Mainland China, considering some highly-populated cities and the historical earthquake records in this region, stress evolution and seismic hazard on these active faults capture much attention. From the physical principal, the occurrence of earthquakes will not only cause stress drop and strain energy release on the seismogenic faults, but also transfer stress to the surrounding faults, hence alter the shear and normal stress on the surrounding faults that may delay, hasten or even trigger subsequent earthquakes. Previously, most studies focus on the coseismic Coulomb stress change according to the elastic dislocation model. However, the gradually plentiful observation data attest to the importance of postseismic viscoelastic relaxation effect during the analysis of seismic interactions, stress evolution along faults and the cumulative effect on the longer time scale of the surrounding fault zone. In this paper, in order to assess the seismic hazard in Sichuan-Yunnan region, based on the elastic dislocation theory and the stratified viscoelastic model, we employ the PSGRN/PSCMP program to calculate the cumulative Coulomb stress change on the main boundary faults and in inner blocks in this region, by combining the influence of coseismic dislocations of the M≥7.0 historical strong earthquakes since the Yongsheng M7.8 earthquake in 1515 in Sichuan-Yunnan region and M≥8.0 events in the neighboring area, and the postseismic viscoelastic relaxation effect of the lower crust and upper mantle. The results show that the Coulomb stress change increases significantly in the south section of the Xianshuihe Fault, the Anninghe Fault, the northern section of the Xiaojiang Fault, the southern section of the Longmen Shan Fault, the intersection of the Chuxiong-Jianshui Fault and the Xiaojiang Fault, and the Shawan section of the Litang Fault, in which the cumulative Coulomb stress change exceeds 0.1MPa. The assuming different friction coefficient has little effect on the stress change, as for the strike-slip dominated faults, the shear stress change is much larger than the normal stress change, and the shear stress change is the main factor controlling the Coulomb stress change on the fault plane. Meanwhile, we compare the Coulomb stress change in the 10km and 15km depths, and find that for most faults, the results are slightly different. Additionally, based on the existing focal mechanism solutions, we add the focal mechanism solutions of the 5 675 small-medium earthquakes(2.5≤M≤4.9)in Sichuan-Yunnan region from January 2009 to July 2019, and invert the directions of the three principal stresses and the stress shape factor in 0.1°×0.1° grid points; by combining the grid search method, we compare the inverted stress tensors with that from the actual seismic data, and further obtain the optimal stress tensors. Then, we project the stress tensors on the two inverted nodal planes separately, and select the maximum Coulomb stress change to represent the stress change at the node. The results show that the cumulative Coulomb stress change increase in the triple-junction of Sichuan-Yunnan-Tibet region is also significant, and the stress change exceeds 0.1MPa. Comprehensive analysis of the Coulomb stress change, seismic gaps and seismicity parameters suggest that more attention should be paid to the Anninghe Fault, the northern section of the Xiaojiang Fault, the south section of the Xianshuihe Fault, the southern section of the Longmen Shan Fault and the triple-junction of the Sichuan-Yunnan-Tibet region. These results provide a basis for future seismic hazard analysis in the Sichuan-Yunnan region.  相似文献   

18.
—Measurements indicate that stress magnitudes in the crust are normally limited by the frictional equilibrium on pre-existing, optimally oriented faults. Fault zones where these limitations are frequently reached are referred to as seismic zones. Fault zones in the crust concentrate stresses because their material properties are different from those of the host rock. Most fault zones are spatially relatively stable structures, however the associated seismicity in these zones is quite variable in space and time. Here we propose that this variability is attributable to stress-concentration zones that migrate and expand through the fault zone. We suggest that following a large earthquake and the associated stress relaxation, shear stresses of a magnitude sufficient to produce earthquakes occur only in those small parts of the seismic zone that, because of material properties and boundary conditions, encourage concentration of shear stress. During the earthquake cycle, the conditions for seismogenic fault slip migrate from these stress-concentration regions throughout the entire seismic zone. Thus, while the stress-concentration regions continue to produce small slips and small earthquakes throughout the seismic cycle, the conditions for slip and earthquakes are gradually reached in larger parts of, and eventually the whole, seismogenic layer of the seismic zone. Prior to the propagation of an earthquake fracture that gives rise to a large earthquake, the stress conditions in the zone along the whole potential rupture plane must be essentially similar. This follows because if they were not, then, on entering crustal parts where the state of stress was unfavourable to this type of faulting, the fault propagation would be arrested. The proposed necessary homogenisation of the stress field in a seismic zone as a precursor to large earthquakes implies that by monitoring the state of stress in a seismic zone, its large earthquakes may possibly be forecasted. We test the model on data from Iceland and demonstrate that it broadly explains the historical, as well as the current, patterns of seismogenic faulting in the South Iceland Seismic Zone.  相似文献   

19.
Source spectra,corner frequency and zero frequency amplitudes in near-source conditions were measured using waveform data from 989 earthquakes with magnitudes larger than ML2.0 observed by the Beijing Digital Telemetry Seismic Network in the Capital Circle Region of China and its surrounding areas from January 2002 to June 2006 by the Brune model.Relevant formulas that were used for the calculation of dynamic source parameters include rupture radius,seismic moment,seismic energy,stress drop,and apparent stress.Scaling relations and characteristics of temporal-spatial variations of these dynamic parameters before the MS5.1 Wenan earthquake in Hebei Province that occurred on July 20,2006 were analyzed.Results show that apparent stress,stress drop,and the ratio of seismic energy to the rupture radius had relatively high values in some areas before the Wenan earthquake.These high-value concentration areas were mainly distributed in the North China Plain seismic zone.As is seen from the time curves,parameters,such as apparent stress,stress drop,and ratio of seismic energy to rupture radius underwent significant ascending processes before the Wenan earthquake,but the variation in the corner frequency showed a descending trend.This result might be related to the enhancement of stress in the North China Plain seismic zone before the earthquake.  相似文献   

20.
Accelerating strain energy released by the generation of intermediate magnitude preshocks in a broad (critical) region, and decelerating energy released in a narrower (seismogenic) region, is considered as a distinct premonitory pattern useful in research for intermediate-term earthquake prediction. Accelerating seismicity in the broad region is satisfactorily interpreted by the critical earthquake model and decelerating seismicity in the narrower region is attributed to stress relaxation due to pre-seismic sliding. To facilitate the identification of such patterns an algorithm has been developed on the basis of data concerning accelerating and decelerating preshock sequences of globally distributed already occurred strong mainshocks. This algorithm is applied in the present work to identify regions, which are currently in a state of accelerating seismic deformation and are associated with corresponding narrower regions, which are in a state of decelerating seismic deformation in California. It has been observed that a region which includes known faults in central California is in a state of decelerating seismic strain release, while the surrounding region (south and north California, etc.) is in a state of accelerating seismic strain release. This pattern corresponds to a big probably oncoming mainshock in central California. The epicenter, magnitude and origin time, as well as the corresponding model uncertainties of this probably ensuing big mainshock have been estimated, allowing a forward testing of the model's efficiency for intermediate-term earthquake prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号