首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《Marine Geology》2006,225(1-4):23-44
The morphodynamics of inlets and ebb-tidal deltas reflect the interaction between wave and tidal current-driven sediment transport and significantly influence the behaviour of adjacent shorelines. Studies of inlet morphodynamics have tended to focus on sand-dominated coastlines and reference to gravel-dominated or ‘gravel-rich’ inlets is rare. This work characterises and conceptualises the morphodynamics of a meso-tidal sand–gravel inlet at the mouth of the Deben estuary, southeast England. Behaviour of the inlet and ebb-tidal delta over the last 200 yr is analysed with respect to planform configuration and bathymetry. The estuary inlet is historically dynamic, with ebb-tidal shoals exhibiting broadly cyclic behaviour on a 10 to 30 yr timescale. Quantification of inlet parameters for the most recent cycle (1981–2003) indicate an average ebb delta volume of 1 × 106 m3 and inlet cross-sectional area of 775 m2. Bypassing volumes provide a direct indicator of annual longshore sediment transport rate over this most recent cycle of 30–40 × 103 m3 yr 1. Short-term increases in total ebb-tidal delta volume are linked to annual variability in the north to northeasterly wind climate. The sediment bypassing mechanism operating in the Deben inlet is comparable to the ‘ebb delta breaching’ model of FitzGerald [FitzGerald, D.M., 1988. Shoreline erosional–depositional processes associated with tidal inlets, in: Aubrey, D.G., Weishar, L. (Ed.), Hydrodynamics and Sediment Dynamics of Tidal Inlets. Springer-Verlag Inc., New York, pp. 186–225.], although the scales and rates of change exhibited are notably different to sand-dominated systems. A systematic review of empirical models of sand-dominated inlet and ebb-tidal delta morphodynamics (e.g. those of [O'Brien, M.P., 1931. Estuary tidal prisms related to entrance areas. Civil Engineering, 1, 738–739.; Walton, T.L., and Adams, W.D., 1976. Capacity of inlet outer bars to store sand. Proceedings of 15th Coastal Engineering Conference, 1919–1937.; Gaudiano, D.J., Kana, T.W., 2001. Shoal bypassing in mixed energy inlets: geomorphic variables and empirical predictions for nine South Carolina inlets. J. Coast. Res., 17, (2), 280–291.]) shows the Deben system to be significantly smaller yet characterised by a longer bypassing cycle than would be expected for its tidal prism. This is attributed to its coarse-grained sedimentology and the lower efficiency of sediment transporting processes.  相似文献   

2.
The barrier-inlet system along the Gulf Coast of peninsular Florida has one of the most diverse morphologies of any barrier system in the world. The delicate balance between tidal- and wave-generated processes on this low-energy coast permits only slight changes in either of these processes to result in significant and rapidly developing morphologic responses. Some of these responses are the result of natural phenomena such as hurricanes opening tidal inlets, closure of inlets due to longshore transport of sediment, and changes in the availability of sediment. Tidal prism is the primary factor in controlling inlet morphology and is greatly influenced by anthropogenic activities in the backbarrier area. Human activity has also modified the coast in many ways over the past several decades, beginning with the construction of the first causeways in the 1920s. The various modifications by development have resulted in important morphodynamic changes in the barrier-inlet system. These include hardening the coast on the beach and at inlets, dredging and filling in backbarrier environments, and construction of fill-type causeways connecting the islands to the mainland. Construction of seawalls and jetties has inhibited normal coastal processes. Examples include the downdrift erosion at Blind Pass and Big Sarasota Pass. Construction of fill-type causeways between the barriers and the mainland has created artificial tidal divides that reduce the tidal prism at some inlets, thereby resulting in instability or closure such as Blind Pass and Dunedin Pass. This is further exacerbated by dredge and fill construction that reduces tidal prism by reducing the area of open water in the backbarrier. Dredging of the Intracoastal Waterway also results in a negative impact on selected inlets by channeling tidal flux away from some inlets. Impacts of these changes inhibit the barrier/inlet environments from responding to open coast processes.  相似文献   

3.
Tidal channels and inlets in alluvial environments are interconnected dynamic systems that react to changing physical conditions (such as sea level rise) as well as to anthropogenic impact (such as dredging and bank protection works). Past research resulted in an empirical equilibrium relationship for inlets between the tidal prism (P) and the cross-sectional area in a tidal inlet (A). Constant PA relationships were found along several tidal basins.  相似文献   

4.
《Coastal Engineering》1999,37(1):37-56
The seasonal closure of tidal inlets is a common and important coastal phenomena. However, studies which have been specifically geared to identify processes governing seasonal inlet closure are almost non-existent. Hence, this study was undertaken to gain insight into processes governing seasonal inlet closure. To determine the processes governing this phenomenon, Wilson Inlet, Western Australia, a typical seasonally open tidal inlet is taken as a case study. The study comprised of a field experiment over the summer of 1995, and a numerical modeling exercise employing a morphodynamic model. Results of the field study imply that longshore processes may not be the cause of inlet closure, but that onshore sediment transport due to persistent swell wave conditions in summer may govern seasonal closure of the inlet. Application of a morphodynamic model, which includes both cross-shore and longshore processes, to Wilson Inlet conclusively shows that seasonal closure of the inlet is due to onshore sediment transport under typical summer conditions. The effects of summer streamflow and storm events, which are not uncommon, are also examined using the morphodynamic model. The effect of both streamflow and storm events on the `open duration' of the inlet is shown to be dependent on the intensity and timing of the event.  相似文献   

5.
象山港潮滩坡度对潮动力影响的数值研究   总被引:2,自引:0,他引:2  
象山港属于狭长型半封闭港湾,湾内分布有大面积潮滩。多年以来象山港内实施了大量海岸工程及养殖工程,湾内潮滩坡度发生了显著变化。基于非结构网格和有限体积数值模式(FVCOM)建立象山港三维潮动力模型,研究湾内不同区域潮滩坡度变化对象山港潮动力过程的影响机理。结果表明:潮滩坡度下降将增大湾内纳潮量,进而增大M2分潮振幅和迟角,反之则反。铁港潮滩坡度的减小(增大),将改变底部耗散项,进而增大(减小)M4分潮振幅。由于M2和M4分潮的振幅在湾顶较大,所以湾顶(铁港)潮滩坡度对象山港潮动力过程的影响明显大于侧岸(西沪港)。西沪港潮滩坡度对象山港潮动力过程的影响是局部的。铁港、西沪港潮滩坡度对湾内潮汐不对称、余流及潮能影响显著。铁港潮滩坡度的改变均会减弱湾内落潮占优程度。西沪港区域潮滩坡度的减小将减弱湾内落潮占优趋势,反之则反。铁港和西沪港潮滩坡度的减小,将增大余流大小及潮能密度,进而潮能耗散增大,反之则反。研究结果对河口海岸潮滩区域的工程建设及生态修复有重要参考价值。  相似文献   

6.
A new numerical model was developed to simulate regional sediment transport and shoreline response in the vicinity of tidal inlets based on the one-line theory combined with the reservoir analogy approach for volumetric evolution of inlet shoals. Sand bypassing onshore and sheltering effects on wave action from the inlet bar and shoals were taken into account. The model was applied to unique field data from the south coast of Long Island, United States, including inlet opening and closure. The simulation area extended from Montauk Point to Fire Island Inlet, including Shinnecock and Moriches Inlets. A 20-year long time series of hindcast wave data at three stations along the coast were used as input data to the model. The capacity of the inlet shoals and bars to store sand was estimated based on measured cross-sectional areas of the inlets as well as on comprehensive bathymetric surveys of the areas around the inlet. Several types of sediment sources and sinks were represented, including beach fills, groin systems, jetty blocking, inlet bypassing, and flood shoal and ebb shoal feeding. The model simulations were validated against annual net longshore transport rates reported in the literature, measured shorelines, and recorded sediment volumes in the flood and ebb shoal complexes. Overall, the model simulations were in good agreement with the measured data.  相似文献   

7.
Process-based modeling of morphodynamics of a tidal inlet system   总被引:1,自引:0,他引:1  
The morphodynamic evolution of an idealized inlet system is investigated using a 2-D depthaveraged process-based model,incorporating the hydrodynamic equations,Englund-Hansen’s sediment transport formula and the mass conservation equation.The model has a fixed geometry,impermeable boundaries and uniform sediment grain size,and driven by shore-parallel tidal elevations.The results show that the model reproduces major elements of the inlet system,i.e.,flood and ebb tidal deltas,inlet channel.Equilibrium is reached after several years when the residual transport gradually decreases and eventually diminishes.At equilibrium,the flow field characteristics and morphological patterns agree with the schematized models proposed by O’Brien (1969) and Hayes (1980).The modeled minimum cross-sectional entrance area of the tidal inlet system is comparable with that calculated with the statistical P-A relationship for tidal inlets along the East China Sea coast.The morphological evolution of the inlet system is controlled by a negative feedback between hydrodynamics,sediment transport and bathymetric changes.The evolution rates decrease exponentially with time,i.e.,the system develops rapidly at an early stage while it slows down at later stages.Temporal changes in hydrodynamics occur in the system;for example,the flood velocity decreases while its duration increases,which weakens the flood domination patterns.The formation of the multi-channel system in the tidal basin can be divided into two stages;at the first stage the flood delta is formed and the water depth is reduced,and at the second stage the flood is dissected by a number of tidal channels in which the water depth increases in response to tidal scour.  相似文献   

8.
The stability analysis for a double-inlet bay system is applied to an inlet system resembling Big Marco Pass and Capri Pass on the lower west coast of Florida. Since the opening of Capri Pass in 1967, the length of Big Marco Pass has increased from 2000 m in 1967 to 3000 m in 1988 and the cross-sectional area has decreased from 1200 m2 in 1967 to 1000 m2 in 1988. Since 1967, the cross-sectional area of Capri Pass has steadily increased and in 1988 was 700 m2. Tides off the inlets are of the mixed type with a diurnal range of 1 m. The gross littoral transport rate in the vicinity of the inlets is estimated at 150,000 m3 yr−1.For each inlet the maximum tidal velocities are calculated as a function of the gorge cross-sectional areas using a lumped-parameter model to describe the hydrodynamics of the flow. In the model it is assumed that the bay level fluctuates uniformly and the bay surface area remains constant. The velocities are used to calculate the tidal maximum of the bottom shear stress in each inlet as a function of the cross-sectional areas of the two inlets (=closure surface). Values of the equilibrium shear stress are derived from an empirical relationship between cross-sectional area and tidal prism for stable inlets along the west coast of Florida. Closure surfaces and equilibrium stress values are calculated for values of friction factors ranging from F=4×10−3 to F=6×10−3. Using the closure surfaces and equilibrium stress values, the equilibrium flow curve for each inlet is determined. The equilibrium flow curve represents the locus of the combination of cross-sectional areas for which the actual bottom shear stress in the inlet equals the equilibrium shear stress.Based on the equilibrium flow curves and the known values of the cross-sectional areas of the two inlets in 1988, it is expected that, ultimately, Big Marco Pass will close and Capri Pass will remain as the sole inlet with a cross-sectional area of 1250 m2 and a maximum tidal velocity pertaining to a diurnal tide of 0.85 m s−1.  相似文献   

9.
《Coastal Engineering》2004,51(10):967-990
Inlet relocation is a coastal management tool that, when applied to a migrating inlet, involves the artificial opening of a new tidal inlet along the historic migration path of the inlet. The old inlet is then artificially closed, or it is left open and will eventually close if the new inlet captures the entire tidal prism. Two inlets were relocated in such a manner in Southern Portugal and then were the subject of a monitoring program that included the acquisition of quantitative (topo-bathymetric surveys) data. Data was acquired for 4 years after the relocation at one of the inlets (Ancão Inlet) and for 2 years at the other (Fuzeta Inlet). The data obtained from the monitoring program were analysed together with the wave climate and then compared with historical information on the natural inlets, in order to assess the degree of success of the relocation actions. One of the relocations studied, Ancão Inlet, was considered to be successful even though an initial unexpected behaviour produced some material damage to property. On the contrary, the relocation of Fuzeta Inlet did not have the expected results, and the new inlet was affected by the same problems as the old one.It was found that the most important factor for a relocation action to succeed is the correct choice of the opening location. A theoretical procedure to enhance the possibilities of relocation success is suggested. (1) Hydrodynamic studies are needed in order to determine if the present conditions are similar to the historical ones. (2) The position for the inlet opening is chosen according to the hydrodynamic conditions, but there are other factors to be taken into account, i.e., the historical migration paths and typical inlet width of the natural inlet; the hydrodynamics of the backbarrier; the morphology of the backbarrier and, for multi-inlet barrier island systems, the proximity to adjacent inlets. (3) Once the position is chosen, environmental impact studies should be made in order to assess the risk of the relocation for the ecosystems of the area. Only if the environmental impact studies are favourable should a relocation action be performed.  相似文献   

10.
《Coastal Engineering》1999,37(1):1-36
Seasonally open tidal inlets usually occur in microtidal, wave-dominated coastal environments where strong seasonal variations of streamflow and wave climate are experienced. These inlets are closed to the ocean for a number of months every year due to the formation of sand bars across their entrances. The annual closure of these inlets inhibits ocean access for boats and could also cause deterioration of water quality in the estuary/lagoon connected to the inlet. As these estuaries/lagoons are commonly used as harbours or recreational facilities there is increased interest in keeping the inlets permanently open. A process-based numerical model capable of simulating inlet closure is invaluable in terms of identifying the natural processes governing inlet closure. As a further step, this type of model could also be used to determine the effect of any proposed engineering solutions to keep the inlet open on the adjacent beaches. A morphodynamic model capable of simulating the seasonal closure of inlets, which includes both longshore (LST) and cross-shore transport (CST) processes, was developed in this study. Application of the model to two idealised scenarios indicated that cross-shore processes govern inlet behaviour when LST rates were low. The Dean's criterion [Dean, R.G., 1973. Heuristic models of sand transport in the surf zone. Proc. Conf. on Eng. Dynamics in the Surf Zone, Sydney, pp. 208–214.] for on–offshore transport was employed to show that, for small offshore wave incidence angles, onshore transport aided inlet closure when the offshore wave steepness (Ho/Lo) was less than the critical wave steepness (Ho/Lo)crit, while offshore transport helped to keep the inlet open when (Ho/Lo) was greater than (Ho/Lo)crit. LST was found to be the dominant process leading to inlet closure when (Ho/Lo) was much larger than (Ho/Lo)crit or when the offshore wave incidence angle was large.  相似文献   

11.
通过对潮汐汊道稳定性与均衡断面面积定义的探讨,明确了O Brien等、Kreeke与Bruun对潮汐汊道稳定性定义的差异。通过不同方法求解一维水力学与连续方程,计算了海南陵水新村潮汐汊道的封闭曲线,并采用华南沿海A-P关系得出的均衡流速曲线及Soulsby临界流速曲线,计算了新村潮汐汊道的均衡断面面积,根据O Brien等与Kreeke的稳定性定义对新村潮汐汊道的稳定性进行了判别。结果表明,在大、小潮期用不同方法及不同的断面变化方式得出的稳定均衡断面面积(A2)在同样的均衡流速曲线下基本一致,而小潮期的稳定均衡断面面积要小于大潮期,最大流速处的断面面积(Acc)要大于大潮期。A2、Acc及饱满系数为0.8时对应的断面面积三者之间具有较大的差异。用封闭曲线求取潮汐汊道均衡断面面积并进行稳定性判断,在概念上有一定意义,可以作为潮汐汊道稳定性判断的一个依据,但通过求解一维水力学与连续方程以获取均衡断面面积则具有较大的局限性与不确定性。应通过中长期的野外观测、数值模拟与物理模型,以确定潮汐汊道的水动力特征以及地形演变规律,得出A-P关系进而求出均衡断面面积,并结合Bruun方法判定潮汐汊道的稳定性。  相似文献   

12.
The “Furkert‐Heath” relationship for tidal inlet stability reviewed   总被引:1,自引:1,他引:0  
The “Furkert‐Heath” relationship is a commonly used method of assessing the stability of New Zealand inlets. However, the equation published by Heath in 1975 was incorrectly calculated which has led to misinterpretation of data in some cases. Recalculation resulted in a new linear relation, presented here, between the inlet gorge cross‐sectional area A and tidal prism O. Misuses of the “Furkert‐Heath” equation are identified including: extrapolating predictions beyond the data field; neglecting errors inherent in measurement of A and O; method of characterising sedimentation regime; neglecting confidence limits of data; using A‐O relationships as the sole indicator of inlet stability; and applying the relationship to inlets other than barrier‐enclosed inlets.  相似文献   

13.
Research into the response of coastlines to the opening and stabilisation of inlets has been limited by the availability of suitable data, the shortcomings of existing formulae when applied to different inlets, and the difficulties particular to multi-inlet situations. Our appraisal of methodologies for studying inlet dynamics leads us to formulate a new approach for investigating inlet evolution and stability based on combining sediment budget computations (using best estimates and uncertainty analysis) and inlet hydraulic parameter analysis.The approach developed is applied to a stabilised inlet, located within a multi-inlet system (Faro-Olhão Inlet, Ria Formosa, Southern Portugal), which was opened starting 1929 and has since been dredged periodically to maintain navigability. A series of digital maps was produced based on multi-year data acquired from charts, surveys, and aerial photos. The maps were used to compute sediment volumes for six coastal cells delineated on the basis of the morphological features of the inlet. Cell volumes and fluxes were calculated for three periods (1929–1962, 1962–1978, and 1978–2001), and overall sediment budgets were calculated for the latter two periods. Inlet hydraulic parameters measured included tidal prism, inlet channel cross-sectional area and hydraulic radius, and maximum depth of the inlet throat, and were tracked over 9 bathymetric surveys from 1947–2004. The computed budget reveals that the inlet is only at present reaching volumetric equilibrium. However, the analysis of channel cross-sectional area and radius indicates parameter stability around 1978–1985, 20–25 years before the inlet started to reach volumetric equilibrium. It is hypothesised that the observed stability in parameters for the inlet post-1978 is related to the presence of fixed jetties and to a stratigraphic control that prevents further deepening, and not to the achievement of a dynamic equilibrium.The findings indicate that the coupling of sediment budget computation and inlet parameter analysis is useful for understanding historical sediment pathways and magnitudes, and for analysing the evolution of an inlet towards equilibrium. Although the analysis of inlet parameter evolution is valuable for examining the locational/geometrical stability of an inlet, it needs to be used in conjunction with sediment budget computations in order to properly infer inlet equilibrium. Moreover, existing formulae used to infer inlet stability, which relate cross-sectional area to tidal prism, should be reviewed with a view to including other external variables (e.g., stratigraphic controls) and to making their application more flexible to cope with the range of different inlet conditions. For multi-inlet systems, the coupling of morphology and hydrodynamics analysis should be extended to all inlets in order to infer the stability of the overall system based on the distribution of the tidal prism through time and the patterns of inlet circulation and sediment transport.  相似文献   

14.
A study of the East Frisian Islands has shown that the plan form of these islands can be explained by processes of inlet sediment bypassing. This island chain is located on a high wave energy, high tide range shoreline where the average deep-water significant wave height exceeds 1.0 m and the spring tidal range varies from 2.7 m at Juist to 2.9 m at Wangerooge. An abundant sediment supply and a strong eastward component of wave power (4.4 × 103 W m−1) have caused a persistent eastward growth of the barrier islands. The eastward extension of the barriers has been accommodated more by inlet narrowing, than by inlet migration.

It is estimated from morphological evidence that a minimum of 2.7 × 105 m3 of sand is delivered to the inlets each year via the easterly longshore transport system. Much of this sand ultimately bypasses the inlets in the form of large, migrating swash bars. The location where the swash bars attach to the beach is controlled by the amount of overlap of the ebb-tidal delta along the downdrift inlet shoreline. The configuration of the ebbtidal delta, in turn, is a function of inlet size and position of the main ebb channel. The swash bar welding process has caused preferential beach nourishment and historical shoreline progradation. Along the East Frisian Islands this process has produced barrier islands with humpbacked, bulbous updrift and bulbous downdrift shapes. The model of barrier island development presented in this paper not only explains well the configuration of the German barriers but also the morphology of barriers along many other mixed energy coasts.  相似文献   


15.
本文以丁字湾等基岩海湾为例,论述了黄渤海沿岸海湾-溺谷型潮汐汉道的地貌结构,尤其着重于口门段深槽及涨、落潮三角洲。认为涨、落潮三角洲的发育状况与入湾河流的供沙量、纳潮水域容量、被浪作用、潮差以及口少卜海域的开阔程度有关;泻湖型潮汐汉道的落潮三角洲的典型模式可以应用于海湾-溺谷型潮汐汉道,但涨潮三角洲因受基岩海湾的复杂岸线的限制而不能充分发育。本文还讨论了海湾型潮汐汉道与半开敞海湾在动力和形态中的差异。  相似文献   

16.
《Coastal Engineering》2004,51(3):207-221
This study focuses on the prediction of the long-term morphological evolution of tidal basins due to human interventions. New analytical results have been derived for an existing model [ASMITA, Aggregated Scale Morphological Interaction between a Tidal inlet and the Adjacent coast; Stive, M.J.F., Capobianco, M., Wang, Z.B., Ruol, P., Buijsman, M.C., 1998. Morphodynamics of a Tidal Lagoon and adjacent Coast. 8th International Biennial Conference on Physics of Estuaries and Coastal Seas, The Hague, September 1996, 397–407.]. Through linearisation of the model equations a set of time scales is obtained that describe the main features of the morphological evolution of tidal inlets. The magnitude of these system time scales is determined by inlet geometry and sediment exchange processes. The nature and degree of interventions determine which time scales are dominant. We focus on five different tidal inlets in the Wadden Sea. For these inlets, the system time scales have been estimated. The model has been applied to simulate the morphological response of the Marsdiep and Vlie inlets to the closure of the Zuiderzee in 1932. In this way, the model and associated system time scales for each of these inlets have been validated. Results show that in both inlets, the channels display the largest adaptation time. It will take at least a century before the channels and hence the tidal inlet systems reach a new morphological equilibrium.  相似文献   

17.
Finite element numerical modelling based on field data is used to study the tidal and tidally induced residual circulation dynamics of a coupled “restricted” and “leaky” coastal lagoon system located in the Magdalen Islands, Gulf of Saint-Lawrence. Havre-aux-Maisons Lagoon (HML) is of a “restricted” nature with a neutral inlet in terms of tidal asymmetry. Grande-Entrée Lagoon (GEL) is of a “leaky” nature with a marked ebb dominance at the inlet due to direct interactions between the main astronomical tidal constituents. The imbalance caused by the different tidal filtering characteristics of both inlets combines with the internal morphological asymmetries of the system to produce a residual throughflow from HML to GEL. The residual circulation is also characterized by strongest values at both inlets, very weak residual currents in HML deep basin and a dipole of residual eddies over the deeper areas of GEL. Further investigations including numerical tracer experiments will be necessary to achieve a full understanding of the long term circulation of this lagoonal system.  相似文献   

18.
《Coastal Engineering》2001,42(2):115-142
The Arcachon Lagoon on the French Atlantic coast is a triangular shaped lagoon of 20 km on a side connected to the ocean by a 3-km wide inlet between the mainland and an elongated sand spit. This tidal inlet exhibits a particularly active morphology due to locally strong tidal currents and rough wave conditions. During the past 300 years, minimum and maximum spatial extents of the Cap Ferret sand spit have varied by 8 km while one or two channels have alternately allowed circulation between the lagoon and the ocean. These impressive morphological changes have never prevented regular flushing of the lagoon, eventhough the spit came as close as 300 m from the coast during the 18th century. According to Bruun's concept of tidal inlet stability [Theory and Engineering (1978), 510 pp.], the balance between longshore littoral transport and the tidal prism ensures the perpetuity of the inlet.Process modeling was believed to give better insight into the respective roles of tides and waves in driving the long-term morphological changes of the inlet. A two-dimensional horizontal morphodynamic model was therefore developed, combining modules for hydrodynamics, waves, sediment transport and bathymetry updates. The use of process models at a scale of decades requires a schematization of the input conditions. We defined representative mean annual wave and tide conditions with respect to sediment transport, i.e. conditions that induce the same annual transport as measured in the field. Driven by these representative conditions, simulations run from the 1993 bathymetry show that the tide is responsible for the opening of a new channel at the extremity of the sand spit (where tidal currents are the strongest), while waves induce a littoral transport responsible for the longshore drift of sand bodies across the inlet. One particular simulation consisted in running the model from a hypothetical initial topography where the channels are filled with sand and the entire inlet is set to a constant depth (3 m). The results show the reproduction of a channel and bar system comparable to historical observations, which supports the idea that the lagoon is unlikely to be disconnected from the ocean, provided tide and wave conditions remain fairly constant in the following decades.  相似文献   

19.
What is a wave-dominated coast?   总被引:10,自引:0,他引:10  
During the past decade or so, various coasts have been designated as wave-dominated or tide-dominated. Typically there is an association made between coastal morphology and the dominant process that operates on the coast in question. Most authors consider long, smooth, barrier coasts with few inlets and poorly developed ebb deltas as “wave-dominated”. These coasts are associated with microtidal ranges. Conversely, mesotidal coasts tend to develop short, drumstick-shaped barriers with well-developed ebb deltas. They are considered as tide-dominated barriers. Such generalizations may be restricted to coasts with moderate wave energy although this is commonly not stated.

Exceptions to these stated generalizations are so numerous that wave energy and tidal prism must also be included in characterizing coasts. The relative effects of waves and tides are of extreme importance. It is possible to have wave-dominated coasts with virtually any tidal range and it is likewise possible to have tide-dominated coasts even with very small ranges. The overprint of tidal prism will also produce tide-dominated morphology on coasts with microtidal ranges.  相似文献   


20.
《Coastal Engineering》2006,53(2-3):255-263
To study the adaptation of the morphology of the Frisian Inlet after basin reduction an aggregate model is developed. In the model, especial attention is given to the sand transport to the down-drift coast. In developing the model the inlet system is divided into three elements, the ebb tidal delta, the Zoutkamperlaag and the tidal flats. Based on observations during the first 18 years after basin reduction the adaptation time scale of the tidal flats is expected to be much larger than that of the ebb tidal delta and the Zoutkamperlaag, essentially reducing the inlet schematization to a two-element system. The dependent variables in the model are the sand volume of the ebb tidal delta and the water volume of the channel. The governing equations are non-linear and for quantitative accurate results are solved numerically. To demonstrate the nature of the solution the equations are linearized assuming the morphological state is close to equilibrium. The linearized equations are solved analytically and the solution is applied to a hypothetical case where the tidal prism of the Frisian Inlet is reduced by 10%. From the analytical solution it follows that the adaptation of the volumes of the two elements, delta and channel, is governed by two system time scales. These system time scales are functions of two local time scales. The local time scales pertain to the adaptation of one element assuming the other element has reached equilibrium. Because there are two system scales the adaptation of the volumes of the delta and channel is not exponential and is not necessarily monotonic. For example, initially the transport of sand to the down-drift coast is larger than the long-shore sand transport entering the inlet system from the up-drift coast, then becomes smaller and after some time increases again to reach the value of the up-drift long-shore sand transport. Comparison of the numerical solution for the actual reduction in tidal prism of 30% with the analytical solution for the 10% reduction in tidal prism shows qualitatively the same results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号