首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Epigenic karst systems exhibit strong connectivity to surface recharge. In land use dominated by extensive agriculture and farming, epigenic karst aquifers are highly vulnerable to surface contaminants from point and nonpoint sources. Currently, the karstic landscapes of the southeastern Kentucky platform (USA) are impacted by agriculture and the rapid proliferation of concentrated-animal-feeding operations. Analysis of karst aquifer responses to storm events provides qualitative information regarding aquifer–recharge flow paths and groundwater residence time, and knowledge of spatial and temporal variations in recharge and flow is crucial to the understanding of the fate of surface contaminants. Time-series correlation analyses on long-term physicochemical data recorded at the outlet of Grayson Gunnar Cave, an epigenic karst system located along the Cumberland escarpment in southeastern Kentucky, revealed the existence of two separate conduit branches responding 4–8 h apart from each other. Recorded storm response times range from 4 h for flushing and dilution to 7 h for recovery. An estimated 6 million L of stored groundwater is discharged from both branches during major storms, and the fastest responding branch accounts for the majority (80%) of the groundwater reserve being discharged through the spring. As evidenced by groundwater residence time (7 days), recharge is likely characterized by localized infiltration of rain water from subsurface sinkholes to the conduit branches with no contribution of regional or lateral groundwater flow.  相似文献   

2.
Conspicuous sulfide-rich karst springs flow from Cretaceous carbonates in northern Sierra de Chiapas, Mexico. This is a geologically complex, tropical karst area. The physical, geologic, hydrologic and chemical attributes of these springs were determined and integrated into a conceptual hydrogeologic model. A meteoric source and a recharge elevation below 1,500 m are estimated from the spring-water isotopic signature regardless of their chemical composition. Brackish spring water flows at a maximum depth of 2,000 m, as inferred from similar chemical attributes to the produced water from a nearby oil well. Oil reservoirs may be found at depths below 2,000 m. Three subsurface environments or aquifers are identified based on the B, Li+, K+ and SiO2 concentrations, spring water temperatures, and CO2 pressures. There is mixing between these aquifers. The aquifer designated Local is shallow and contains potable water vulnerable to pollution. The aquifer named Northern receives some brackish produced water. The composition of the Southern aquifer is influenced by halite dissolution enhanced at fault detachment surfaces. Epigenic speleogenesis is associated with the Local springs. In contrast, hypogenic speleogenesis is associated with the brackish sulfidic springs from the Northern and the Southern environments.  相似文献   

3.
Karst aquifer studies often focus on allogenic water inputs and large conduit flow. However, diffuse recharge can be significant, particularly in unconfined eogenetic karst aquifers that retain high matrix permeability. This study examines an unconfined region of the upper Floridan aquifer (USA) that hosts a sinking stream, its resurgence, and a large conduit system. Daily diffuse recharge was approximated using a water-budget method and ranged from 17% of precipitation during a low precipitation year to >53% during the highest precipitation year, illustrating the highly variable nature of diffuse recharge in this region. The total allogenic input via the sinking stream over the 5 years of the study was significantly larger than the volume of diffuse recharge. However, only about 2% of the allogenic recharge flows from the conduit into the surrounding aquifer. That flow is restricted to storm events when hydraulic heads in the conduits exceed those in the surrounding aquifer. The estimated volume of dissolution is similar for allogenic recharge and diffuse recharge to the unconfined region surrounding the conduits, but dissolution from the diffuse recharge is distributed over a larger area than dissolution from allogenic recharge. These results exemplify how recharge type impacts flow and water–rock interactions in eogenetic karst aquifers.  相似文献   

4.
Environmental tracers sampled from the carbonate Madison aquifer on the eastern flank of the Black Hills, South Dakota, USA indicated the approximate locations of four major karst conduits. Contamination issues are a major concern because these conduits are characterized by direct connections to sinking streams, high groundwater velocities, and proximity to public water supplies. Objectives of the study were to estimate approximate conduit locations and assess possible anthropogenic influences associated with conduits. Anomalies of young groundwater based on chlorofluorocarbons (CFCs), tritium, and electrical conductivity (EC) indicated fast moving, focused flow and thus the likely presence of conduits. δ18O was useful for determining sources of recharge for each conduit, and nitrate was a useful tracer for assessing flow paths for anthropogenic influences. Two of the four conduits terminate at or near a large spring complex. CFC apparent ages ranged from 15 years near conduits to >50 years in other areas. Nitrate-N concentrations >0.4 mg/L in groundwater were associated with each of the four conduits compared with concentrations ranging from <0.1 to 0.4 mg/L in other areas. These higher nitrate-N concentrations probably do not result from sinking streams but rather from other areas of infiltration.  相似文献   

5.
The Xiangxi River basin, South China, is a steep terrane with well-developed karst features and an important Cambrian-Ordovician aquifer. Meteoric water in this mountainous area features a mean δ18O elevation gradient of –2.4?‰/km. This gradient was used to estimate mean recharge elevations of 760 m for Shuimoxi (SMX) spring, 1,060 m for Xiangshuidong (XSD) spring, and 1,430 m for drill hole ZK03, indicating multiple flow paths in the Cambrian-Ordovician karst aquifer. Mean residence times of 230 and 320 days and ~2 years were estimated for these features, respectively, using the damped running average model that predicts the isotopic variations in groundwater from those in precipitation. Groundwater in the regional karst flow system has the longest residence time, the highest recharge elevation, the longest flow paths, the lowest addition of anthropogenic components, and the greatest amount of water–rock interaction as indicated by its higher dissolved solids, Mg2+ concentrations and Mg/Ca ratios than the springs. In contrast, the local and shallow karst flow systems respond rapidly to recharge events. Artificial tracer tests prove that these shallow karst systems can also quickly transmit anthropogenic contaminants, indicating that they are highly vulnerable to human impacts, which include the enrichment of NO3 . The intensity of water–rock interaction and groundwater vulnerability are mainly determined by the structure and dynamics of the multiple karst flow systems.  相似文献   

6.
Understanding the transference of water resources within hydrogeological systems, particularly in coastal aquifers, in which groundwater discharge may occur through multiple pathways (through springs, into rivers and streams, towards the sea, etc.), is crucial for sustainable groundwater use. This research aims to demonstrate the usefulness of the application of conventional recharge assessment methods coupled to isotopic techniques for accurately quantifying the hydrogeological balance and submarine groundwater discharge (SGD) from coastal carbonate aquifers. Sierra Almijara (Southern Spain), a carbonate aquifer formed of Triassic marbles, is considered as representative of Mediterranean coastal karst formations. The use of a multi-method approach has permitted the computation of a wide range of groundwater infiltration rates (17–60%) by means of direct application of hydrometeorological methods (Thornthwaite and Kessler) and spatially distributed information (modified APLIS method). A spatially weighted recharge rate of 42% results from the most coherent information on physiographic and hydrogeological characteristics of the studied system. Natural aquifer discharge and groundwater abstraction have been volumetrically quantified, based on flow and water-level data, while the relevance of SGD was estimated from the spatial analysis of salinity, 222Rn and the short-lived radium isotope 224Ra in coastal seawater. The total mean aquifer discharge (44.9–45.9 hm3 year?1) is in agreement with the average recharged groundwater (44.7 hm3 year?1), given that the system is volumetrically equilibrated during the study period. Besides the groundwater resources assessment, the methodological aspects of this research may be interesting for groundwater management and protection strategies in coastal areas, particularly karst environments.  相似文献   

7.
Groundwater in mountainous karst regions is vital for regional water budgets and freshwater supply. Owing to increasing water demand and climate change, detailed knowledge of the highly heterogeneous alpine aquifer systems is required. Multi-tracer analyses have been conducted in the steep karstic Wetterstein Mountains, which includes Germany’s highest summit, Zugspitze (2,962 m asl). Results of artificial tracer tests demonstrate well-developed flow paths through the unsaturated zone (up to 1,000 m thickness). Flow paths cross topographic divides and contribute to deep drainage systems underneath alpine valleys. Cross-formational flow has been identified. Quantitative analysis of tailing-dominated breakthrough curves and stable isotopes (18O) has enabled determination of the mean transit-time distribution. A fast-flow component with transit times between 3 and 13 days was found in karst conduits and open fissures, dependent on flow conditions. An intermediate-flow component, showing mean transit times of about 2.9–4.9 months, was found in well-drained fissures and fractures. A slow-flow component with mean transit times greater than 1 year is attributable to slow flow and low storage in the poorly drained fissures and rock matrix. The conceptual model enables a better understanding of drainage, water resources and vulnerability of the high-alpine karst system.  相似文献   

8.
Karst aquifers contribute to supplying drinking water to almost a quarter of the world´s population. Their complex dynamics requires specific approaches aimed at recognizing their singularities, analyzing its vulnerability, and ensuring water resources quality. In this paper, the results of processing and modeling five breakthrough tracer curves obtained under different hydrodynamic conditions in the main conduit of Egino karst aquifer (Basque Country, Spain) are analyzed together with those involving pressure injections of the tracer in the saturated zone of the karst massif recharge area. In the conduit, transport is immediate and highly efficient (recovery rates above 84% and dispersion coefficients from 15.04 to 84.35 m2/min); tracer retentions increase as flow rates decrease and no significant contributions to its surroundings are observed. In contrast, tracer transport from the massif recharge area is more complex: after injection at a pressure of 1 MPa, most tracer remains in the surrounding of the injection borehole, retained in a saturated medium of low effective fracture porosity (? f ?=?1.02?×?10?4, assuming a radial divergent flow model); subsequently, the main tracer mobilization to the spring was registered with the first rains, with 0.088 m/min mean velocity and high concentrations per unit mass being injected (C p /M0?=?0.03 mg/L/kg), which is evidence that the tracer reaches soon the karst conduit network. In any case, a decreasing tracer presence is registered at the injection zone during a hydrological cycle. In both cases, the observed non-linearity of transport processes should be considered in the development of vulnerability approaches, modeling efforts, and mapping. Furthermore, in the case of karst massif recharge areas, as the presence of pollutants may have a significant impact on the springs and persist over time, their management and protection needs must be revised in each specific site. Simultaneously, quality-monitoring programs at the springs must be adapted to the aquifers recognized dynamics.  相似文献   

9.
The Gavbast karstic aquifer located in southern Iran is in direct contact with an exposed salt diapir. To assess the influence of the diapir on the quality of groundwater in the karstic aquifer, electrical conductivity, total dissolved solids, flow rate, temperature and major ion concentrations were measured at 57 sampling sites, including springs, surface waters and wells. A conceptual model of groundwater flow is proposed for the Gavbast karstic aquifer based on the geological setting, water budget, local base of erosion, and hydrochemistry of the sampling sites. The model suggests two subbasins in the Gavbast Anticline draining into two distinct discharging alluvial sections. Unexpectedly, groundwater discharging from the carbonate Gavbast aquifer is saline or brackish and water is of chloride type. The study indicates that the source of salinity of the Gavbast aquifers is infiltration of surface diapir-derived brine into the aquifer. The contribution of the diapir brine in the Gavbast karst aquifer is calculated about 4 L/s, using chloride mass balance. Construction of salt basins to evaporate brine discharging from the diapir springs is proposed to reduce the salinity of karst water. A row of strategically placed wells in the Gavbast karst aquifer would potentially exploit large volumes of fresh groundwater before it is contaminated by the salt. Such low-cost remediation should allow the agricultural exploitation of 40 km2 of currently barren land.  相似文献   

10.
In order to study the function, hydrodynamic behavior, and hydraulic properties of the karst aquifers in Izeh, southwest Iran, time series analysis was applied to the precipitation, spring discharge, and piezometric head data of two representative karst systems of Zagros (Ilam-Sarvak and Asmari Formations). Time series analysis was applied to two karst aquifers, those of Asmari and Ilam-Sarvak Formations. The daily precipitations of anticlines were estimated based on the precipitation–elevation function which was applied on digital elevation model (DEM) of the area. The mean estimated daily precipitations were considered in bivariate time series analysis as input data of each karst system. The total length of time series was about 2.7 years, extending from May 2007 to December 2009. During the research, several one-parameter probe data loggers were installed, which daily measure the water surfaces in karst aquifers. Time series analysis was applied for describing Izeh karst aquifers with a focus on both univariate (autocorrelation and spectral analysis) and bivariate (cross-correlation, gain function, and coherency function) methods. The results show that Asmari karst aquifer in Kamarderaz Anticline has a large storage capacity. Because of lacking a well-organized karst network, in the Asmari karst aquifer, baseflow dominates with low contribution of quick-flow. In the Ilam-Sarvak karst aquifer (Shavish and Tanush Anticlines), the karstification occurred in fractures and small diameter conduits, which caused to quick-flow between dense limestone. The Ilam-Sarvak karst aquifer could be regarded as a transition between two extreme types of karst, e.g., highly karstified system and in the opposite, extremely diffused one. The analysis of well hydrograph in Ilam-Sarvak karst aquifer shows that the karst aquifer has a low storage capacity. Unlike Asmari karst aquifer, the fractures and small diameter conduits in Ilam-Sarvak karst aquifer are more enhanced, producing a better developed karst network. Contrary to the typical karst systems, however, diffuse flow and conduit flow coexist in the Asmari Formation.  相似文献   

11.
The karst groundwater in northern China is an important source of water supply. Its capacity for self-renewal is a key factor affecting its sustainable use. The Pingyi–Feixian karst aquifer in central and southern Shandong Province is a typical karst water source, contributing 54% to the total groundwater taken from the region. In this study, 25 groups of water samples were collected from the Pingyi–Feixian karst aquifer in November 2013. The compositions of isotopes of tritium (3H), carbon-13 (13C), and carbon-14 (14C) were measured. As indicated by the tritium values between 7.1 and 12.2 TU, the Pingyi–Feixian karst groundwater is primarily originated from both historical atmospheric precipitation and modern precipitation. The 14C ages corrected by δ13C were between 146 and 5403 years. Specifically, the shallow groundwater is younger than deep groundwater. Groundwater age tends to increase along the flow path. The ages of the groundwater in recharge area were between 146 and 1348 years, while the ages of deep groundwater in flowing area were generally between 2000 and 4000 years. The ages of the groundwater in discharge area with little anthropic exploitation were larger than 4500 years, whereas these with large amounts of exploitation were less than 1500 years. The shallower the groundwater, the stronger its capacity for renewal. The renewable capacity of karst groundwater in discharge area was significantly affected by anthropic exploitation. The karst groundwater in the areas with less exploitation showed the weakest capacity, whereas that in the area with intensive exploitation was much older and had a stronger renewable capacity.  相似文献   

12.
Physical and hydraulic properties of sediment from two karst aquifers were measured to determine (1) the similarity of sediment between karst aquifer systems and (2) the importance of sediment in modeling flow through karst aquifers. The sediment from the two systems was similar in size and composition. Within both aquifers, the silt-sized sediment was composed primarily of quartz, with minor amounts of plagioclase and clays. Hydraulic conductivity of the sediment measured directly (falling-head test) ranged from 1.61×10−7 to 1.33×10−6 m s–1 and estimated using the Campbell equation ranged from 8.30×10−8 to 8.98×10−7 m s–1. These values of hydraulic conductivity fall within the span of hydraulic conductivities for carbonate rocks, indicating that the sediment and carbonate matrix could be represented as one mathematical unit in modeling flow through karst aquifers. Statistical agreement in the hydraulic conductivity values generated by the two methods indicates that the estimation technique could be used to calculate hydraulic conductivities; thus allowing karst scientist to collect bulk sediment samples instead of having to collect cores from within karst aquifers. Electronic Publication  相似文献   

13.
龙涧泉岩溶水系统特征   总被引:2,自引:2,他引:0  
文章以地下水系统理论为指导,对龙涧泉岩溶水系统的边界条件、人工干预条件下地下水动力场演化特征等方面进行了系统的研究。根据区域地质、构造、地形地貌和水文地质条件,探究了龙涧泉岩溶水系统,圈定了系统的范围、边界性质、流动系统内部及其与外部系统之间的关系,确定龙涧泉为系统的唯一天然排泄口,龙涧泉岩溶水系统与白浪岩溶水系统无直接水力联系。龙涧泉岩溶水系统岩溶水补给来源主要是大气降水、河流入渗及侧向径流补给,现状条件下总补给量为864.42万m3/a,多年平均补给量为836.81万m3/a;排泄主要是水源地开采和矿山排水,现状开采量为4 117.2万m3/a。由于开采量大于允许开采量,并超过了总补给量,区内岩溶水一直处于超采状态。2004—2008年矿区岩溶水实测年均下降1.61 m/a,多年(1984—2008)水位平均降幅为5.68 m/a,最大降幅17.42 m/a。此外还讨论了岩溶水系统的补给、排泄条件,提出了龙涧泉岩溶水开发、保护、复泉与管理龙涧泉岩溶水系统的建议。   相似文献   

14.
降雨对裂隙型岩溶含水系统演化影响的数值模拟研究   总被引:5,自引:5,他引:0  
本文在构建有降雨入渗及河流补给的裂隙型岩溶含水系统的概念模型基础上,采用有限差分数值方法,利用裂隙渗流立方定律及Dreybort(1996)经过实验总结出的碳酸钙溶蚀经验公式,定量地计算了裂隙型岩溶含水系统经过10 000年溶蚀的演化形态及岩溶泉的变化。模拟发现,岩溶含水系统的溶蚀主要发生在降雨入渗面处、河流补给处和岩溶泉的出露点附近。随着溶蚀的进行,岩溶含水系统的潜水位不断下降部分岩溶泉被疏干,通过计算岩溶泉汇流管道的隙宽变化,发现岩溶含水系统会出现明显的差异性溶蚀。在模拟过程中调节降雨量的大小发现降雨入渗对有河流补给的岩溶含水系统的演化影响并不显著。   相似文献   

15.
The quantification of submarine and intertidal groundwater discharge (SiGD) or purely submarine groundwater discharge (SGD) from coastal karst aquifers presents a major challenge, as neither is directly measurable. In addition, the expected heterogeneity and intrinsic structure of such karst aquifers must be considered when quantifying SGD or SiGD. This study applies a set of methods for the coastal karst aquifer of Bell Harbour in western Ireland, using long-term onshore and offshore time series from a high-resolution monitoring network, to link catchment groundwater flow dynamics to groundwater discharge as SiGD. The SiGD is estimated using the “pollution flushing model”, i.e. a mass-balance approach, while catchment dynamics are quantified using borehole hydrograph analysis, single-borehole dilution tests, a water balance calculation, and cross-correlation analysis. The results of these analyses are then synthesised, describing a multi-level conduit-dominated coastal aquifer with a highly fluctuating overflow regime draining as SiGD, which is in part highly correlated with the overall piezometric level in the aquifer. This concept was simulated using a hydraulic pipe network model built in InfoWorks ICM [Integrated Catchment Modeling]® version 7.0 software (Innovyze). The model is capable of representing the overall highly variable discharge dynamics, predicting SiGD from the catchment to range from almost 0 to 4.3 m3/s. The study emphasises the need for long-term monitoring as the basis for any discharge studies of coastal karst aquifers. It further highlights the fact that multiple discharge locations may drain the aquifer, and therefore must be taken into consideration in the assessment of coastal karst aquifers.  相似文献   

16.
Groundwater response to stream stage fluctuations was studied in two unconfined alluvial aquifers using a year-long time series of stream stages from two pools along a regulated stream in West Virginia, USA. The purpose was to analyze spatial and temporal variations in groundwater/surface-water interaction and to estimate induced infiltration rate and cumulative bank storage during an annual cycle of stream stage fluctuation. A convolution-integral method was used to simulate aquifer head at different distances from the stream caused by stream stage fluctuations and to estimate fluxes across the stream–aquifer boundary. Aquifer diffusivities were estimated by wiggle-matching time and amplitude of modeled response to multiple observed storm events. The peak lag time between observed stream and aquifer stage peaks ranged between 14 and 95 hour. Transient modeled diffusivity ranged from 1,000 to 7,500 m2/day and deviated from the measured and calculated single-peak stage-ratio diffusivity by 14–82 %. Stream stage fluctuation displayed more primary control over groundwater levels than recharge, especially during high-flow periods. Dam operations locally altered groundwater flow paths and velocity. The aquifer is more prone to surface-water control in the upper reaches of the pools where stream stage fluctuations are more pronounced than in the lower reaches. This method could be a useful tool for quick assessment of induced infiltration rate and bank storage related to contamination investigations or well-field management.  相似文献   

17.
Artificial tracer experiments were conducted in the mature karst system of Jeita (Lebanon) under various flow conditions using surface and subsurface tracer injection points, to determine the variation of transport parameters (attenuation of peak concentration, velocity, transit times, dispersivity, and proportion of immobile and mobile regions) along fast and slow flow pathways. Tracer breakthrough curves (TBCs) observed at the karst spring were interpreted using a two-region nonequilibrium approach (2RNEM) to account for the skewness in the TBCs’ long tailings. The conduit test results revealed a discharge threshold in the system dynamics, beyond which the transport parameters vary significantly. The polynomial relationship between transport velocity and discharge can be related to the variation of the conduit’s cross-sectional area. Longitudinal dispersivity in the conduit system is not a constant value (α?=?7–10 m) and decreases linearly with increasing flow rate because of dilution effects. Additionally, the proportion of immobile regions (arising from conduit irregularities) increases with decreasing water level in the conduit system. From tracer tests with injection at the surface, longitudinal dispersivity values are found to be large (8–27 m). The tailing observed in some TBCs is generated in the unsaturated zone before the tracer actually arrives at the major subsurface conduit draining the system. This work allows the estimation and prediction of the key transport parameters in karst aquifers. It shows that these parameters vary with time and flow dynamics, and they reflect the geometry of the flow pathway and the origin of infiltrating (potentially contaminated) recharge.  相似文献   

18.
Corrected groundwater 14C ages from the carbonate aquifer in Yucca Flat at the former Nevada Test Site (now the Nevada National Security Site), USA, were evaluated by comparing temporal variations of groundwater 36Cl/Cl estimated with these 14C ages with published records of meteoric 36Cl/Cl variations preserved in packrat middens (piles of plant fragments, fecal matter and urine). Good agreement between these records indicates that the groundwater 14C ages are reasonable and that 14C is moving with chloride without sorbing to the carbonate rock matrix or fracture coatings, despite opposing evidence from laboratory experiments. The groundwater 14C ages are consistent with other hydrologic evidence that indicates significant basin infiltration ceased 8,000 to 10,000 years ago, and that recharge to the carbonate aquifer is from paleowater draining through overlying tuff confining units along major faults. This interpretation is supported by the relative age differences as well as hydraulic head differences between the alluvial and volcanic aquifers and the carbonate aquifer. The carbonate aquifer 14C ages suggest that groundwater velocities throughout much of Yucca Flat are about 2 m/yr, consistent with the long-held conceptual model that blocking ridges of low-permeability rock hydrologically isolate the carbonate aquifer in Yucca Flat from the outlying regional carbonate flow system.  相似文献   

19.
Nitrogen budget of a typical subterranean river in peak cluster karst area   总被引:2,自引:0,他引:2  
Karst groundwater is one of the important water resources for people in the world. There is an estimate that by 2028 karst groundwater will supply more than 80% of people in the world. However, several areas in the world are characterized by high nitrate concentrations in karst aquifers. In China, karst groundwater is also threatened by extensive use of fertilizer and pesticides, industry waste, septic systems and poultry, hog or cattle manure. In order to understand the water quality of a subterranean river in south China, especially the dynamic variation of nitrate, nitrogen input and output were determined via auto-monitored apparatus, manual observation and samples from 2004 to 2008 in Guancun subterranean river drainage area. Land use and anthropogenic activities were also investigated frequently. The results showed the range of nitrate variation was 2.56–15.40 mg l−1, with an average value of 6.60 mg l−1. Spatial variation of nitrate concentrations showed nitrate rose where there were villages and agriculture distribution. Long series of nitrate and discharge monitoring revealed there was a nitrate peak in spring just before the beginning of rainy season. Three rainfall events were selected for analysis of relations among hydrological process, water chemistry, and nitrate of the spring. The flood processes of the spring were divided into three or four phases according to change of water level and water chemistry. They were dominated by initial condition of aquifer, piston flow in soil and vadose, piston flow in conduit, diffuse recharge, and bypass recharge. The original condition of aquifer and rainfall pulse controlled recharge flow and changes of nitrate and hydro-chemical graphs of the spring. The quantity of nitrogen input in a year was 66.61 t, and the output was 21.24 t. Nitrogen leaching loss in base flow accounted for 76.11% in a year. Some measures should be taken to protect karst water in the very near future, so that health risks to the local people can be decreased.  相似文献   

20.
Karst aquifers are known for their wide distribution of water transfer velocities. From this observation, a multiple geochemical tracer approach seems to be particularly well suited to provide a significant assessment of groundwater flows, but the choice of adapted tracers is essential. In this study, several common tracers in karst aquifers such as physicochemical parameters, major ions, stable isotopes, and δ13C to more specific tracers such as dating tracers – 14C, 3H, 3H–3He, CFC-12, SF6 and 85Kr, and 39Ar – were used, in a fractured karstic carbonated aquifer located in Burgundy (France). The information carried by each tracer and the best sampling strategy are compared on the basis of geochemical monitoring done during several recharge events and over longer time periods (months to years).This study’s results demonstrate that at the seasonal and recharge event time scale, the variability of concentrations is low for most tracers due to the broad spectrum of groundwater mixings. The tracers used traditionally for the study of karst aquifers, i.e., physicochemical parameters and major ions, efficiently describe hydrological processes such as the direct and differed recharge, but require being monitored at short time steps during recharge events to be maximized. From stable isotopes, tritium, and Cl contents, the proportion of the fast direct recharge by the largest porosity was estimated using a binary mixing model. The use of tracers such as CFC-12, SF6, and 85Kr in karst aquifers provides additional information, notably an estimation of apparent age, but they require good preliminary knowledge of the karst system to interpret the results suitably. The CFC-12 and SF6 methods efficiently determine the apparent age of baseflow, but it is preferable to sample the groundwater during the recharge event. Furthermore, these methods are based on different assumptions such as regional enrichment in atmospheric SF6, excess air, and flow models among others. 85Kr and 39Ar concentrations can potentially provide a more direct estimation of groundwater residence time. Conversely, the 3H–3He method is inefficient in the karst aquifer for dating due to 3He degassing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号