首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The distribution of platinum-group elements (PGEs), together with spinel composition, of podiform chromitites and serpentinized peridotites were examined to elucidate the nature of the upper mantle of the Neoproterozoic Bou Azzer ophiolite, Anti-Atlas, Morocco. The mantle section is dominated by harzburgite with less abundant dunite. Chromitite pods are also found as small lenses not exceeding a few meters in size. Almost all primary silicates have been altered, and chromian spinel is the only primary mineral that survived alteration. Chromian spinel of chromitites is less affected by hydrothermal alteration than that of mantle peridotites. All chromitite samples of the Bou Azzer ophiolite display a steep negative slope of PGE spidergrams, being enriched in Os, Ir and Ru, and extremely depleted in Pt and Pd. Harzburgites and dunites usually have intermediate to low PGE contents showing more or less unfractionated PGE patterns with conspicuous positive anomalies of Ru and Rh. Two types of magnetite veins in serpentinized peridotite, type I (fibrous) and type II (octahedral), have relatively low PGE contents, displaying a generally positive slope from Os to Pd in the former type, and positive slope from Os to Rh then negative from Rh to Pd in the latter type. These magnetite patterns demonstrate their early and late hydrothermal origin, respectively. Chromian spinel composition of chromitites, dunites and harzburgites reflects their highly depleted nature with little variations; the Cr# is, on average, 0.71, 0.68 and 0.71, respectively. The TiO2 content is extremely low in chromian spinels, <0.10, of all rock types. The strong PGE fractionation of podiform chromitites and the high-Cr, low-Ti character of spinel of all rock types imply that the chromitites of the Bou Azzer ophiolite were formed either from a high-degree partial melting of primitive mantle, or from melting of already depleted mantle peridotites. This kind of melting is most easily accomplished in the supra-subduction zone environment, indicating a genetic link with supra-subduction zone magma, such as high-Mg andesite or arc tholeiite. This is a general feature in the Neoproterozoic upper mantle.  相似文献   

2.
The podiform chromite deposit of the Soghan mafic–ultramafic complex is one of the largest chromite deposits in south-east Iran (Esfandagheh area). The Soghan complex is composed mainly of dunite, harzburgite, lherzolite, pyroxenite, chromitite, wehrlite and gabbro. Olivine, orthopyroxene, and to a lesser extent clinopyroxene with highly refractory nature, are the primary silicates found in the harzburgites and dunites. The forsterite content of olivine is slightly higher in dunites (Fo94) than those in harzburgites (Fo92) and lherzolites (Fo89). Chromian spinel mainly occurs as massive chromitite pods and as thin massive chromitite bands together with minor disseminations in dunites and harzburgites. Chromian spinels in massive chromitites show very high Cr-numbers (80–83.6), Mg-numbers (62–69) and very low TiO2 content (averaging 0.17 wt.%) for which may reflect the crystallization of chromite from a boninitic magma. The Fe3 +-number is very low, down to < 0.04 wt.%, in the chromian spinel of chromitites and associated peridotites of the Soghan complex.PGE contents are variable and range from 80 to 153 pbb. Chromitites have strongly fractionated chondrite-normalized PGE patterns, which are characterized by enrichments in Os, Ir and Rh relative to Pt and Pd. Moreover, the Pd/Ir value which is an indicator of PGE fractionation ranges from < 0.08 to 0.24 in chromitite of the Soghan complex. These patterns and the low PGE abundances are typical of ophiolitic chromitites and indicating a high degree of partial melting (about 20–24%) of the mantle source. Moreover, the PdN/IrN ratios in dunites are unfractionated, averaging 1.2, whereas the harzburgites and lherzolites show slightly positive slopes PGE spidergrams, together with a small positive Ru and Pd anomaly, and their PdN/IrN ratio averages 1.98 and 2.15 respectively.The mineral chemistry data and PGE geochemistry, along with the calculated parental melts in equilibrium with chromian spinel of the Soghan chromitites indicate that the Soghan complex was generated from an arc-related magma with boninitic affinity above a supra-subduction zone setting.  相似文献   

3.
Podiform chromitites include both high-Cr and high-Al varieties with distinctly different geochemical characteristics. A comparison of high-Cr and high-Al deposits in western China has demonstrated that both varieties are magmatic in origin and that chromite compositions reflect the degree of partial melting in the mantle source area. The chromitites of the Sartohay ophiolite of Xinjiang Province have chromites with low Cr numbers (<70) and are hosted in highly depleted harzburgites. In both deposits melt/wall rock interaction has produced highly depleted dunite envelopes around the chromitites. In Sartohay, high-Al magmas reacted with lherzolites to produce high-Al dunites and harzburgites, whereas in Luobusa the reaction between more refractory melts and depleted harzburgites yielded only highly depleted dunite envelopes. This study suggests that high-Al deposits can occur in weakly depleted mantle sequences (lherzolite ophiolite type or transitional type) that are locally depleted by melt/rock reaction in the immediate vicinity of the chromitite pods.  相似文献   

4.
The ultramafic massif of Bulqiza, which belongs to the eastern ophiolitic belt of Albania, is a major source of metallurgical chromitite ore. The massif consists of a thick (> 4 km) sequence, composed from the base upward of tectonized harzburgite with minor dunite, a transitional zone of dunite, and a magmatic sequence of wehrlite, pyroxenite, troctolite and gabbro. Only sparse, refractory chromitites occur within the basal clinopyroxene-bearing harzburgites, whereas the upper and middle parts of the peridotite sequence contain abundant metallurgical chromitites. The transition zone dunites contain a few thin layers of metallurgical chromitite and sparse bodies are also present in the cumulate section. The Bulqiza Ophiolite shows major changes in thickness, like the 41–50 wt.% MgO composition similar with forearc peridotite as a result of its complex evolution in a suprasubduction zone (SSZ) environment. The peridotites show abundant evidence of mantle melt extraction at various scales as the orthopyroxene composition change from core to rim, and mineral compositions suggest formation in a forearc, as Fo values of olivine are in 91.1–93.0 harzburgite and 91.5–91.9 in dunite and 94.6–95.9 in massive chromitite. The composition of the melts passing through the peridotites changed gradually from tholeiite to boninite due to melt–rock reaction, leading to more High Cr# chromitites in the upper part of the body. Most of the massive and disseminated chromitites have high Cr# numbers (70–80), although there are systematic changes in olivine and magnesiochromite compositions from harzburgites, to dunite envelopes to massive chromitites, reflecting melt–rock reaction. Compositional zoning of orthopyroxene porphyroblasts in the harzburgite, incongruent melting of orthopyroxene and the presence of small, interstitial grains of spinel, olivine and pyroxene likewise attest to modification by migrating melts. All of the available evidence suggests that the Bulqiza Ophiolite formed in a suprasubduction zone mantle wedge.  相似文献   

5.
The Luobusa ophiolite, Southern Tibet, lies in the Indus–YarlungZangbo suture zone that separates Eurasia to the north fromthe Indian continent to the south. The ophiolite contains awell-preserved mantle sequence consisting of harzburgite, clinopyroxene(cpx)-bearing harzburgite and dunite. The harzburgite containsabundant pods of chromitite, most of which have dunite envelopes,and the cpx-bearing harzburgites host numerous dunite dykes.Dunite also exists as a massive unit similar to those of themantle–crust transition zones in other ophiolites. Allof the dunites in the ophiolite have a similar mineralogy, comprisingmainly olivine with minor orthopyroxene and chromite and tracesof clinopyroxene. They also display similar chemical compositions,including U-shaped chondrite-normalized REE patterns. Mantle-normalizedPGE patterns show variable negative Pt anomalies. Detailed analysisof a chromite-bearing dunite dyke, which grades into the hostcpx-bearing harzburgite, indicates that LREE and Ir decrease,whereas HREE, Pd and Pt increase away from the dunite. Thesefeatures are consistent with formation of the dunite dykes byinteraction of MORB peridotites with boninitic melts from whichthe chromitites were formed. Because the transition-zone dunitesare mineralogically and chemically identical to those formedby such melt–rock reaction, we infer that they are ofsimilar origin. The Luobusa ultramafic rocks originally formedas MORB-source upper mantle, which was subsequently trappedas part of a mantle wedge above a subduction zone. Hydrous meltsgenerated under the influence of the subducted slab at depthmigrated upward and reacted with the cpx-bearing harzburgitesto form the dunite dykes. The modified melts ponded in smallpockets higher in the section, where they produced podiformchromitites with dunite envelopes. At the top of the mantlesection, pervasive reaction between melts and harzburgite producedthe transition-zone dunites. KEY WORDS: melt–rock interaction; REE; PGE; hydrous melt; mantle; ophiolite; Tibet  相似文献   

6.
刘建国  王建 《地质学报》2016,90(6):1182-1194
西昆仑库地蛇绿岩发育小规模的铬铁矿床,矿体呈豆荚状和层状、似层状,均与纯橄岩紧密伴生。这些纯橄岩主要由橄榄石和副矿物尖晶石组成,与方辉橄榄岩相比,橄榄岩中的橄榄石粒径粗(平均2.5mm),Mg#(88~90)低,这与它们全岩低Mg#(90)值,富Al_2O_3、TiO_2、Cr_2O_3、Fe_2O_3相吻合,与熔融残余成因的纯橄岩明显不同,反映了其很可能是由熔体与方辉橄榄岩反应而成。矿体主要由块状、浸染状及脉状铬铁矿石组成;铬铁矿石中的尖晶石具有低而相对稳定的Cr#(43~56),低于富铬型铬铁矿矿床中的铬铁矿(Cr#60)。块状矿石与纯橄岩呈突变接触,矿石中的尖晶石呈浑圆状,包裹有较多橄榄石、辉石等硅酸盐矿物及角闪石等含水硅酸盐矿物;浸染状铬铁矿石中的尖晶石与橄榄石颗粒构成交织结构,或呈云朵状,沿橄榄石颗粒边界相互连接,矿石的结构构造显示了熔/岩反应成因特征。通过计算分析,我们认为该区富铝型铬铁矿石是由拉斑玄武质熔体与地幔橄榄岩反应而成,由于熔体中含有较高的H_2O,参与反应的熔体可能源于弧后扩张脊环境。  相似文献   

7.
The Abdasht complex is a major ultramafic complex in south-east Iran (Esfandagheh area). It is composed mainly of dunite, harzburgite, podiform chromitites, and subordinate lherzolite and wehrlite. The podiform chromitites display massive, disseminated, banded and nodular textures. Chromian spinels in massive chromitites exhibit a uniform and restricted composition and are characterized by Cr# [= Cr / (Cr + Al)] ranging from 0.76 to 0.77, Mg# [= Mg/(Mg + Fe2 +)] from 0.63 to 0.65 and TiO2 < 0.2 wt.%. These values may reflect crystallization of the chromian spinels from boninitic magmas. Chromian spinels in peridotites exhibit a wide range of Cr# from 0.48 to 0.86, Mg# from 0.26 to 0.56 and very low TiO2 contents (averaging 0.07 wt.%). The Fe3 +# is very low, (< 0.08 wt.%) in the chromian spinel of chromitites and peridotites of the Abdasht complex which reflects crystallization under low oxygen fugacities.The distribution of platinum group elements (PGE) in Abdasht chromitites displays a high (Os + Ir + Ru)/(Rh + Pt + Pd) ratio with strongly fractionated chondrite-normalized PGE patterns typical of ophiolitic chromitites. Moreover, the Pd/Ir value, which is an indicator of PGE fractionation, is very low (< 0.1) in the chromitites.The harzburgite, dunite and lherzolite samples are highly depleted in PGE contents relative to chondrites. The PdN/IrN ratios in dunites are unfractionated, averaging 0.72, whereas the harzburgites and lherzolites show slightly positive slopes PGE spidergrams, together with a small positive Ru anomaly, and their PdN/IrN ratio averages 2.4 and 2.3 respectively. Moreover, the PGE chondrite and primitive mantle normalized patterns of harzburgite, dunite and lherzolite are relatively flat which are comparable to the highly depleted mantle peridotites.The mineral chemistry data and PGE geochemistry indicate that the Abdasht chromitites and peridotites were generated from a melt with boninitic affinity under low oxygen fugacity in a supra-subduction zone setting. The composition of calculated parental melts of the Abdasht chromitites is consistent with the differentiation of arc-related magmas.  相似文献   

8.
On the basis of their mineral chemistry, podiform chromitites are divided into high-Al (Cr# = 20–60) (Cr# = 100 1 Cr/(Cr + Al)) and high-Cr (Cr# = 60–80) varieties. Typically, only one type occurs in a given peridotite massif, although some ophiolites contain several massifs that can have different chromitite compositions. We report here the occurrence of both high-Cr and high-Al chromitite in a single massif in China, the Dongbo mafic-ultramafic body in the western Yarlung-Zangbo suture zone of Tibet. This massif consists mainly of mantle peridotites, with lesser pyroxenite and gabbro. The mantle peridotites are mainly composed of harzburgites and minor lherzolites; a few dike-like bodies of dunite are also present. Seven small, lenticular bodies of chromitite ores have been found in the harzburgites, with ore textures ranging from massive through disseminated to sparsely disseminated; no nodular ore has been observed. Individual chromitite pods are 1–3 m long, 0.2–2 m wide and strike NW, parallel to the main trend of the peridotites. Chromitite pods 3, 4, and 5 consist of high-Al chromitite (Cr# = 12–47), whereas pods 1 and 2 are high-Cr varieties (Cr# = 73 to 77). In addition to chromian spinel, all of the pods contain minor olivine, amphibole and serpentine. Mineral structures show that the peridotites experienced plastic deformation and partial melting. The mineralogy and geochemistry of the Dongbo peridotites suggest that they formed originally at a mid-ocean ridge (MOR), and were later modified by suprasubduction zone (SSZ) melts/fluids. We interpret the high-Al chromitites as the products of early mid-ocean ridge basalt (MORB) or arc tholeiite magmas, whereas the high-Cr varieties are thought to have been generated by later SSZ melts.  相似文献   

9.
Chromitite bodies of various sizes associated with dunite envelopes have been found in the Dehsheikh ultramafic massif, in the southeastern part of the outer Zagros ophiolite belt. The chromitites occur as layered and lenticular bodies, and show both magmatic and deformational textures, including massive, disseminated, banded and nodular types. The Dehsheikh chromitites display a variation in Cr# [100 × Cr / (Cr + Al)] from 69 to 78, which is typical of high-Cr chromitites. The Al2O3 and TiO2 contents of chromites range from 10.3 wt.% to 16.9 wt.% and 0.12 wt.% to 0.35 wt.%, respectively. The Al2O3, TiO2, and FeO/MgO values calculated for parental melts of Dehsheikh chromitites are within the range of boninitic melts. Chondrite-normalized distribution patterns of platinum-group elements show relative enrichments in Ru, Ir, and Os, and depletions in Rh, Pd, and Pt that are typical of chromitites associated with ophiolites formed by high degrees of mantle partial melting. The presence of Na-rich amphibole inclusions in chromite grains, together with the mineralogical and chemical composition of the chromitites and estimates of their parental melt compositions are used to help establish the tectono-magmatic setting. It is shown that the Dehsheikh massif is an ophiolite formed in a suprasubduction zone setting. We suggest that the composition of the rocks in this section was influenced by hydrous partial melts which might be formed in the subduction zone. Variable melt/rock interaction produced melt channel networks in the dunite which allowed the parental melt of the chromitite to percolate through them. Similar characteristics have been observed in other ophiolite complexes from the outer Zagros Iranian ophiolitic belt; these are believed to be the product of magmatism in a fore-arc environment.  相似文献   

10.
西藏罗布莎蛇绿岩中不同产出的纯橄岩及成因探讨   总被引:2,自引:2,他引:0  
罗布莎蛇绿岩中的纯橄岩有三种产出情况,除了与豆荚状铬铁矿伴生的薄壳状纯橄岩外,还有产在方辉橄榄岩底部被认为是堆晶岩的厚层状纯橄岩和方辉橄榄岩中的透镜状纯橄岩。厚层状纯橄岩约700~1000m厚,以橄榄石富镁(Fo93~95),单斜辉石低铝富镁(Al2O30.47%~0.85%,Mg#95~97),铬尖晶石高铬低镁(Cr#值平均77,Mg#平均51)为特征。该纯橄岩中的浸染状铬铁矿也是高铬低镁型,但Mg#值(平均59)高于厚层状纯橄岩的副矿物铬尖晶石。薄壳状纯橄岩与厚层状纯橄岩成分相近,其橄榄石Fo92~94,单斜辉石Al2O3<1%和Mg#95~97;铬尖晶石的Cr#值平均71,Mg#值平均52。与薄壳状纯橄岩伴生的块状铬铁矿为高镁高铬型,但Mg#值(平均68)相对更高些,Cr#值平均79。透镜状纯橄岩的特征是橄榄石Fo(91~92)和铬尖晶石Cr#(60左右)均低于前两类纯橄岩,但单斜辉石的Al2O3(1.41%~1.71%)则高于前两者。透镜状纯橄岩的矿物成分与方辉橄榄岩重叠,两者为渐变过渡关系。研究对比表明,罗布莎厚层状纯橄岩不同于经典的蛇绿岩的超镁铁质堆晶岩,认为将其成因解释为拉斑玄武质熔体与地幔橄榄岩的反应较为合理。透镜状纯橄岩与方辉橄榄岩存在成生联系,可能是地幔橄榄岩高度部分熔融的产物,或熔体和方辉橄榄岩在原位发生反应的产物;薄壳状纯橄岩成因与厚层状纯橄岩相同,但与其相伴的块状铬铁矿是否由拉斑玄武质熔体与方辉橄榄岩反应形成,值得商榷。  相似文献   

11.
The mantle section of Al'Ays ophiolite consists of heterogeneously depleted harzburgites, dunites and large-sized chromitite pods. Two chromitite-bearing sites (Site1 and Site2), about 10 km apart horizontally from one another, were examined for their upper mantle rocks. Cr-spinels from the two sites have different chemistry; Cr-rich in Site1 and Al-rich in Site2. The average Cr-ratio = (Cr/(Cr + Al) atomic ratio) of Cr-spinels in harzburgites, dunites and chromitites is remarkably high 0.78, 0.77 and 0.87, respectively, in Site1, compared with those of Site2 which have intermediate ratio averages 0.5, 0.56 and 0.6, respectively. The platinum-group elements (PGE) in chromitites also show contrasting patterns from Site1 to Site2; having elevated IPGE (Os, Ir, Ru) and strongly depleted in PPGE (Rh, Pt, Pd) with steep negative slopes in the former, and gentle negative slopes in the latter. The oxygen fugacity (Δlog fO2) values deduced from harzburgites and dunites of Site1 show a wide variation under reducing conditions, mostly below the FMQ buffer. The Site2 harzburgites and dunites, on the other hand are mostly above the FMQ buffer. Two magmatic stages are suggested for the lithospheric evolution of Al'Ays ophiolite in response to a switch of tectonic setting. The first stage produced a peridotites–chromitites suite with Al-rich Cr-spinels, possibly beneath a mid-ocean ridge setting, or most likely in back-arc rift of a supra-subduction zone setting. The second stage involved higher degrees of partial melting, produced a peridotites–chromitites suite with Cr-rich Cr-spinels, possibly in a fore-arc setting. The coexistence of compositionally different mantle suites with different melting histories in a restricted area of an ophiolite complex may be attributable to a mechanically juxtaposed by mantle convection during recycling. The mantle harzburgites and dunites are apt to be compositionally modified during recycling process; being highly depleted (Site1 case) than their original composition (Site2 case).  相似文献   

12.
The Bulqiza ultramafic massif, which is part of the eastern Mirdita ophiolite of northern Albania, is world renowned for its high-Cr chromitite deposits. High-Cr chromitites hosted in the mantle section are the crystallized products of boninitic melts in a supra-subduction zone (SSZ). However, economically important high-Al chromitites are also present in massive dunite of the mantle-crust transition zone (MTZ). Chromian-spinel in the high-Al chromitites and dunites of the MTZ have much lower Cr# values (100Cr/(Cr+Al)) (47.7–55.1 and 46.5–51.7, respectively) than those in the high-Cr chromitites (78.2–80.4), harzburgites (72.6–77.9) and mantle dunites (79.4–84.3). The chemical differences in these two types of chromitites are reflected in the behaviors of their platinum-group elements (PGE). The high-Cr chromitites are rich in IPGE relative to PPGE with 0.10–0.45 PPGE/IPGE ratios, whereas the high-Al chromitites have relatively higher PPGE/IPGE ratios between 1.20 and 7.80. The calculated melts in equilibrium with the high-Cr chromitites are boninitic-like, and those associated with the high-Al chromitites are MORB-like but with hydrous, oxidized and TiO2-poor features. We propose that the coexistence of both types of chromitites in the Bulqiza ultramafic massif may indicates a change in magma composition from MORB-like to boninitic-like in a proto-forearc setting during subduction initiation.  相似文献   

13.
Mafic-ultramafic fragments of a dismembered ophiolite complex are abundant in the late Precambrian Pan African belt of the Eastern Desert of Egypt and north-east Sudan. The ultramafic bodies in the Eastern Desert of Egypt are mostly characterised by the harzburgite–dunite–chromitite association. Because of their severe metamorphism, almost all primary silicates were converted to secondary minerals and we use the chrome spinel as a reliable petrogenetic indicator. The podiform chromitite deposits are common as small and irregularly shaped masses in the central and southern parts of the Eastern Desert. They strongly vary in texture, degree of alteration and chemical composition of chrome spinel. The podiform chromitites exhibit a wide range of composition from high Cr to high Al varieties. The Cr of chrome spinel ranges from 0.65 to 0.85 in dunite, quite similar in the high-Cr chromitite, whereas it is around 0.5 in harzburgite. Primary hydrous mineral inclusions, amphibole and phlogopite, in chrome spinel are reported for the first time from the Pan African Proterozoic podiform chromitites. The petrological characteristics of Pan African podiform chromitites and associated peridotites of Egypt are similar to those of Phanerozoic ophiolites. The Proterozoic podiform chromitites may have formed in the same way as the Phanerozoic ones, namely by melt-harzburgite reaction and subsequent melt mixing. The similarity of the mantle section of the late Proterozoic and the Phanerozoic ophiolites suggests that the thermal conditions controlling genesis of the crust–mantle system basically have not changed since the late Proterozoic era. The Pan African harzburgite is very similar to abyssal peridotite at fast-spreading ridges, and the high-Cr, low-Ti character of spinel in chromitite and dunite indicates a genetic link with a supra-subduction zone setting. The late Proterozoic ophiolites of Egypt are possibly a fragment of oceanic lithosphere modified by arc-related magmatic rocks, or a fragment of back-arc basin lithosphere. Received: 26 October 1999 / Accepted: 28 June 2000  相似文献   

14.
A new type of podiform chromitite was found at Wadi Hilti in the northern Oman ophiolite. It is within a late-intrusive dunite body, possibly derived from olivine-rich crystal mush, between the sheeted dike complex and upper gabbro. This chromitite forms small (<30 cm in thickness) pods with irregular to lenticular shapes. Neither layering nor graded bedding is observed within the pods. The chromitite is in the upper crust, by far shallower in ophiolite stratigraphy than the other podiform chromitites that have ever been found in the Moho transition zone to the upper mantle. It is distributed along a small felsic to gabbroic melt pool within the dunite body, which was formed by melting of gabbroic blocks captured by the mush. Chromian spinel was precipitated due to mixing of two kinds of melt, a basaltic interstitial melt from the mush and an evolved, possibly felsic, melt formed by the melting of gabbro blocks. The podiform chromitite reported here is strikingly similar in petrography and spinel chemistry to the stratiform chromitite from layered intrusions. The former contains plagioclase and clinopyroxene as matrix silicates instead of olivine as well as includes euhedral and fine spinel with solid mineral inclusions. Chromian spinel of the upper crustal podiform chromitite from Oman has relatively low content of (Cr2O3 + Al2O3), the Cr/(Cr + Al) atomic ratio of around 0.6, and the relatively high TiO2 content ranging from 1 to 3 wt%. We conclude that assimilation of relatively Si-rich materials (crustal rocks or mantle orthopyroxene) by olivine-spinel saturated melts can explain the genesis of any type of chromitite.Editorial responsibility: V. Trommsdorff  相似文献   

15.
The Bulqiza ultmafic massif, which belongs to the eastern Mirdita ophiolite of northern Albania, is world renowned for its high‐Cr chromite resource. The high‐Cr chromitites commonly host in the mantle section, while high‐Al chromitites also present in massive dunite of the mantle‐crust transition zone (MTZ) in this massif. Chromian‐spinel in the MTZ high‐Al chromitites and MTZ dunites have much lower Cr# values [Cr/(Cr+Al)×100] (47.7–55.1 and 46.5–51.7, respectively) than those of chromian‐spinel in the high‐Cr chromitites (78.2–80.4), harzburgites (72.6–77.9) and mantle dunites (79.4–84.3). The high‐Cr chromitites are rich in IPGE relative to PPGE with 0.10–0.45 PPGE/IPGE ratios, whereas the high‐Al chromitites have higher PPGE/IPGE ratios between 1.20 and 7.80. The partial melting degrees of parental magmas for the high‐Cr chromitites are beyond the critical interval (> 25%) and thus prevented sulfide saturation and diluted Pt and Pd in melts, producing high‐Cr chromitites barren of Pt and Pd. However, the degrees for the high‐Al chromitites just enter the critical interval (20–25%) for the effective extraction of PGE from mantle sulfides, which may account for the enrichments of PPGE in high‐Al chromitites. The parental melts of the high‐Cr chromitites have Al2O3 and TiO2 contents of ~10.6–11.4 wt.% and 0.14–0.31 wt.%, whereas the calculated Al2O3 and TiO2 for the high‐Al chromitites are ~14.9–15.9 wt.% and 0.07–0.61 wt.%, respectively. The calculated melts in equilibrium with the high‐Cr chromitites are boninitic‐like, and those with high‐Al chromitites are MORB‐like but with hydrous, oxidized and TiO2‐poor affinities. To make a compromise between the inconsistence above, we proposed that coexistence of both types of chromitites in the Bulqiza ultramafic massif may reflect that their magma compositions transited from MORB‐like to boninitic‐like in a proto‐forearc setting during subduction initiation. Key words: Chromian‐spinel, Platinum‐group elements, high‐Cr and high‐Al chromitite, Mirdita ophiolite, Albania.  相似文献   

16.
Dunite and serpentinized harzburgite in the Cheshmeh-Bid area, northwest of the Neyriz ophiolite in Iran, host podiform chromitite that occur as schlieren-type, tabular and aligned massive lenses of various sizes. The most important chromitite ore textures in the Cheshmeh-Bid deposit are massive, nodular and disseminated. Massive chromitite, dunite, and harzburgite host rocks were analyzed for trace and platinum-group elements geochemistry. Chromian spinel in chromitite is characterized by high Cr~#(0.72-0.78), high Mg~#(0.62–0.68) and low TiO_2(0.12 wt%-0.2 wt%) content. These data are similar to those of chromitites deposited from high degrees of mantle partial melting. The Cr~# of chromian spinel ranges from 0.73 to 0.8 in dunite, similar to the high-Cr chromitite, whereas it ranges from 0.56 to 0.65 in harzburgite. The calculated melt composition of the high-Cr chromitites of the Cheshmeh-Bid is 11.53 wt%–12.94 wt% Al_2O_3, 0.21 wt%–0.33 wt% TiO_2 with FeO/MgO ratios of 0.69-0.97, which are interpreted as more refractory melts akin to boninitic compositions. The total PGE content of the Cheshmeh-Bid chromitite, dunite and harzburgite are very low(average of 220.4, 34.5 and 47.3 ppb, respectively). The Pd/Ir ratio, which is an indicator of PGE fractionation, is very low(0.05–0.18) in the Cheshmeh-Bid chromitites and show that these rocks derived from a depleted mantle. The chromitites are characterized by high-Cr~#, low Pd + Pt(4–14 ppb) and high IPGE/PPGE ratios(8.2–22.25), resulting in a general negatively patterns, suggesting a high-degree of partial melting is responsible for the formation of the Cheshmeh-Bid chromitites. Therefore parent magma probably experiences a very low fractionation and was derived by an increasing partial melting. These geochemical characteristics show that the Cheshmeh-Bid chromitites have been probably derived from a boninitic melts in a supra-subduction setting that reacted with depleted peridotites. The high-Cr chromitite has relatively uniform mantle-normalized PGE patterns, with a steep slope, positive Ru and negative Pt, Pd anomalies, and enrichment of PGE relative to the chondrite. The dunite(total PGE = 47.25 ppb) and harzburgite(total PGE =3 4.5 ppb) are highly depleted in PGE and show slightly positive slopes PGE spidergrams, accompanied by a small positive Ru, Pt and Pd anomalies and their Pdn/Irn ratio ranges between 1.55–1.7 and 1.36-1.94, respectively. Trace element contents of the Cheshmeh-Bid chromitites, such as Ga, V, Zn, Co, Ni, and Mn, are low and vary between 13–26, 466–842, 22-84, 115–179, 826–-1210, and 697–1136 ppm, respectively. These contents are compatible with other boninitic chromitites worldwide. The chromian spinel and bulk PGE geochemistry for the Cheshmeh-Bid chromitites suggest that high-Cr chromitites were generated from Cr-rich and, Ti-and Al-poor boninitic melts, most probably in a fore-arc tectonic setting related with a supra-subduction zone, similarly to other ophiolites in the outer Zagros ophiolitic belt.  相似文献   

17.
The Luobusa ophiolite in the Indus—Yarlung Zangbo sutureof southern Tibet hosts the largest known chromite deposit inChina. The podiform chromitites occur in a well-preserved mantlesequence consisting of harzburgite with abundant lenses of dunite.The harzburgites have relatively uniform bulk-rock compositionswith mg-numbers [100 Mg/(Mg + Fe)] ranging from 89 to 91 andshow flat, unfractionated, chondrite-normalized platinum groupelement (PGE) patterns. Their accessory chromite varies widelyin cr-number [100Cr/(Cr + Al)] (18–66). These rocks areessentially residua left after extraction of mid-ocean ridgebasalt (MORB)-type magmas. The podiform chromitites displaynodular, massive, disseminated and banded textures and typicallyhave dunite envelopes that grade into the surrounding harzburgiteand diopsidic harzburgite with increasing pyroxene contents.They consist of relatively uniform chromite with high cr-numbers(74–82), have strongly fractionated, chondrite-normalizedPGE patterns with enrichment in Os, Ir and Ru relative to Rh,Pt and Pt, and are believed to have formed from a boniniticmagma produced by a second stage of melting. Dunites containaccessory chromite intermediate in composition between thoseof harzburgite and chromitite and are believed to be the productsof reaction between new boninitic magmas and old MORB-type peridotites.The melt-rock reaction removed pyroxene from the peridotitesand precipitated oli-vine, forming dunite envelopes around thechromitite pods. The melts thus became more boninitic in compositionand chromite saturated, leading to precipitation of chromitealone. The interplay of melt-rock interaction, chromite fractionationand magma mixing should lead to many fluctuations in melt composition,producing both massive and disseminated chromitites and phaselayering within individual podiform bodies observed in the Luobusaophiolite. KEY WORDS: boninitic magmas; dunite envelope; melt—rock interaction; MORB peridotities; podiform chromitites *Corresponding author. Present address: Department of Geology, Laurentian University, Sudbury, Ont, Canada P3E 2C6.  相似文献   

18.
达机翁蛇绿岩位于雅鲁藏布江缝合带的西段北亚带,该蛇绿岩主要由地幔橄榄岩、玄武岩以及硅质岩组成,其中地幔橄榄岩以方辉橄榄岩为主,同时含有少量的纯橄榄岩,纯橄岩主要呈不规则透镜状或团块状分布于方辉橄榄岩中。在达机翁地幔橄榄岩中产出有3种不同类型的铬铁矿,分别为块状,豆状以及浸染状铬铁矿。文章主要对达机翁地幔橄榄岩的方辉橄榄岩及豆荚状铬铁矿进行了研究,结合岩石的主量元素和铂族元素,对地幔橄榄岩和豆荚状铬铁矿的成因以及雅鲁藏布江缝合带的找矿远景进行了探讨。达机翁地幔橄榄岩具有较高的Mg O含量以及较低的Al2O3和Ca O等含量,这种亏损的全岩成分指示了达机翁地幔橄榄岩经历了较高的部分熔融作用,同时方辉橄榄岩的PGEs的总量为23.68×10-9~31.02×10-9,高于原始地幔的值,Pd和Cu 2个元素的含量较为分散明显偏离部分熔融曲线,指示了达机翁方辉橄榄岩可能遭受了熔体的改造,在熔体-岩石反应的过程中,导致了富含PPGE的硫化物的加入。达机翁豆荚状铬铁矿为高Cr型铬铁矿,具有IPGE和Rh明显富集以及Pt,Pd明显亏损的特征,不同类型的铬铁矿之间具有一致的PGEs的分配模式。雅鲁藏布江缝合带内大量分布的超镁铁岩体在岩石组合、地球化学特征、成因以及形成时代等方面,均具有相似性,是中国铬铁矿找矿的有利远景区。  相似文献   

19.
Summary ?Many ultramafic complexes, some of which have chromitite bodies, are exposed in the Sangun zone in central Chugoku district, Southwest Japan. Harzburgite is always dominant over dunite, but the dunite/harzburgite ratio varies from complex to complex. Large chromitite bodies are exclusively found in relatively dunite-dominant complexes or portions. The degree of roundness, DR#=[area/(round-length)2] (normalized by a circle’s value: 1/4π), of chromian spinel is variable, depending on lithology of the peridotites. Chromian spinel is mostly anhedral or even vermicular (less than 0.4 in DR#) in harzburgite, and is most frequently euhedral or rounded (within the range of 0.7 to 0.9 in DR#) in dunite. The morphology of spinel is correlated with chemistry: the DR# is positively correlated with Ti content and Fe3+#(=Fe3+/(Cr + Al + Fe3+)), but is not related to Cr#. When chromitite is present in dunite, the spinel is relatively anhedral (vermicular) and low in Ti and Fe3+# in the dunite whereas it is relatively euhedral and high in Ti and Fe3+# in surrounding harzburgite. We define these spinels as “extraordinary” spinels, which are commonly found in Wakamatsu mine area in the Tari-Misaka complex, which exploits the largest chromite body in Japan. The rocks with the “extraordinary” spinels show transitional lithologies (a gradual boundary, one meter to several tens of meters in width) between dunite and harzburgite with “ordinary” spinels. The formation of dunite and chromitite is interpreted as a result of the reaction of harzburgite with a relatively Ti-rich magma (back-arc basin or MORB-like magma) and related magma mixing, as discussed by Arai and Yurimoto (1994). The dike-like occurrence of the dunite and chromitite indicates that the reaction took place along melt conduits (=fractures) less than 200 m in width. Podiform chromitites were formed only when the reaction zone was relatively wide (several tens of meters in width), that is, only when the degree of interaction was relatively high. The magma modified by the reaction percolated, possibly by porous flow from the reaction zone outward, and changed the texture and chemistry of chromian spinel, on the scale of several tens of meters. This type of melt transport, or melt flow through fractures with a melt percolation aureole, may be prevalent in the uppermost mantle. Received February 8, 2000;/revised version accepted December 22, 2000  相似文献   

20.
The ultramafic sequence and associated chromitites of the Nan-Uttaradit ophiolite in the northeastern part of Thailand have been studied in the field and by applying petrography and geochemistry to whole rock samples and minerals. The ultramafic rocks comprise irregulary shaped bodies of dunite, harzburgite, orthopyroxene-rich lherzolite and orthopyroxene-rich harzburgite, clinopyroxene-rich dunite and intrusive clinopyroxenite-websterite bodies. Three types of chromitite were distinguished. Type I chromitite lenses and type II layers which are hosted in orthopyroxenite in the northern part and in dunite in the central part of the ophiolite. Type III chromitite forms lenses or layers in clinopyroxenites in the central and southern parts of the belt. According to the modal and chemical composition the peridotites and orthopyroxenites are strongly refractory. They originated during different stages of interaction between percolating melts and peridotite. The chromitites of types I and II, which are very rich in Cr (up to 68 wt.% Cr203), crystallized from a boninitic parental magma under highly reducing conditions in the northern part and moderate oxygen fugacities (FMQ) in the central part of the ophiolite. The chromitite of type III which are characterized by the highest Fe3+/(Fe3+ + Cr + Al) -ratios, and hosted in intrusive clinopyroxenite-websterite-rocks, cumulated from a CaO-rich transitional boninitic melt under fO2 conditions around FMQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号