首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper explores optimal near-term technology R&D in the face of uncertain damages caused by the buildup of greenhouse gases. The paper puts particular emphasis on understanding how optimal near-term R&D expenditures might vary based on the technologies pursued in the R&D program. The exploration is conducted in the context of varying impacts from R&D on the global abatement cost function. The R&D planning problem is considered first within a theoretical framework and is then pursued in a stylized application using the DICE model. The paper provides intuition into the circumstances under which near-term technology R&D might increase or decrease under uncertainty, thereby serving as a hedge against climate uncertainty.  相似文献   

2.
In this two-part paper we evaluate the effect of “endogenizing” technological learning and strategic behavior of agents in economic models used to assess climate change policies. In the first part we show the potential impact of R&D policies or demonstration and deployment (D&D) programs in the context of stringent stabilization scenarios. In the second part we show how game-theoretic methods can be implemented in climate change economic models to take into account three types of strategic interactions: (i) the market power of the countries benefiting from very low abatement costs on international markets for CO2 emissions, (ii) the strategic behavior of governments in the domestic allocation of CO2 emissions quotas, and (iii) the non-cooperative behavior of countries and regions in the burden sharing of CO2 concentration stabilization. The two topics of endogenous learning and game-theoretic approach to economic modeling are two manifestations of the need to take into account the strategic behavior of agents in the evaluation of climate change policies. In the first case an R&D policy or a demonstration and deployment (D&D) program are put in place in order to attain a cost reduction through the learning effect; in the second case the agents (countries) reply optimally to the actions decided by the other agents by exploiting their strategic advantages. Simulations based on integrated assessment models illustrate the approaches. These studies have been conducted under the Swiss NCCR-Climate program.  相似文献   

3.
CO2 capture and storage (CCS) in geological reservoirs may be part of a strategy to reduce global anthropogenic CO2 emissions. Insight in the risks associated with underground CO2 storage is needed to ensure that it can be applied as safe and effective greenhouse mitigation option. This paper aims to give an overview of the current (gaps in) knowledge of risks associated with underground CO2 storage and research areas that need to be addressed to increase our understanding in those risks. Risks caused by a failure in surface installations are understood and can be minimised by risk abatement technologies and safety measures. The risks caused by underground CO2 storage (CO2 and CH4 leakage, seismicity, ground movement and brine displacement) are less well understood. Main R&D objective is to determine the processes controlling leakage through/along wells, faults and fractures to assess leakage rates and to assess the effects on (marine) ecosystems. Although R&D activities currently being undertaken are working on these issues, it is expected that further demonstration projects and experimental work is needed to provide data for more thorough risk assessment.  相似文献   

4.
We investigate an important scientific uncertainty facing climate-change policymakers, namely, the impact of potential abrupt climatic change. We examine sequential decision strategies for abating climate change where near-term policies are viewed as the first of a series of decisions which adapt over the years to improving scientific information. We compare two illustrative near-term (1992–2002) policies - moderate and aggressive emission reductions - followed by a subsequent long-term policy chosen to limit global-mean temperature change to a specified ‘climate target’. We calculate the global-mean surface temperature change using a simple climate/ocean model and simple models of greenhouse-gas concentrations. We alter model parameters to examine the impact of abrupt changes in the sinks of carbon dioxide, the sources of methane, the circulation of the oceans, and the climate sensitivity, ΔT 2x. Although the abrupt changes increase the long-term costs of responding to climate change, they do not significantly affect the comparatively small cost difference between near-term strategies. Except for an abrupt increase in ΔT 2x, the investigated abrupt climate changes do not significantly alter the values of the climate target for which each near-term strategy is preferred. In contrast, innovations that reduce the cost of limiting greenhouse-gas emissions offer the potential for substantial abatement cost savings, regardless of which level of near-term abatement is selected.  相似文献   

5.
为探讨道路交通部门节能减排的决策依据,在总结低碳车辆技术主要种类基础上,重点评述了车辆动力系统和燃料替代技术的低碳化发展现状与趋势,包括全生命周期能效和温室气体排放情况。为进一步支持车辆技术低碳化,除加强综合节能技术和混合动力技术应用、电池技术升级和燃料电池技术研发之外,需加快生物燃料二代技术的研发进程和煤基燃料路线中二氧化碳捕获和封存技术等低碳技术的应用。  相似文献   

6.
Concerns have been raised that near-term black carbon abatement strategies for global warming mitigation would interfere with the longer-term CO2 abatement efforts. In response, we put forward a “combined target and metric approach”, a theoretical framework, in which the time horizon of the metric is linked to the specific target of the climate policy. In this approach, a shorter time horizon for the metric is justified only when the overall climate policy is tightened; the lower the target level of the climate policy, the earlier the year of the target. Employing a consistent time perspective for the metric and target means that enhanced near-term reduction of short-lived climate forcers does not reduce the importance of the CO2 abatement, since the overall climate target is stricter.  相似文献   

7.
The Chinese government actively follows the low-carbon development pattern and has set the definite targets of reducing carbon emissions by 2030. The industrial sector plays a significant role in China's economic growth and CO2 emissions. This is the first study to present a specific investigation on the retrospective decomposition (1993–2014) and prospective trajectories (2015–2035) of China's industrial CO2 emission intensity (ICEI) and industrial CO2 emissions (ICE), aiming at China Industrial Green Development Plan 2016–2020 targets and China's 2030 CO2 emission-reduction targets. We introduce process carbon intensity, investment and R&D factors into the decomposition model and make a combination of dynamic Monte Carlo simulation and scenario analysis to identify whether and how the targets would be realized from a sector-specific perspective. The results indicate that investment intensity is the primary driver for the increase in ICEI, while R&D intensity and energy intensity are the leading contributors to the reduction in ICEI. Under existing policies, it is very possible for the industrial sector to achieve the 2020 and 2030 intensity-reduction targets. However, the realization of 2030 emission-peak target has some uncertainties and needs extra efforts in efficiency improvement and structural adjustment. All the five scenarios would achieve the 2020 and 2030 intensity-reduction targets, except Scenario N4 for China Industrial Green Development Plan 2016–2020 target. Nonetheless, only three scenarios would realize the 2030 emission-peak target. With strong efficiency improvement and structural adjustment, ICE would hit the peak in 2025. In contrast, with high/low efficiency improvement and weak structural adjustment, ICE would fail to reach the peak before 2035. Both ICEI and ICE have substantial mitigation potentials with the enhancement of efficiency improvement and structural adjustment. Finally, we suggest that the Chinese government should raise the baseline requirements of efficiency improvement and structural adjustment for the industrial sector to achieve China’s 2030 targets.  相似文献   

8.
Limiting climate change to 2 °C with a high probability requires reducing cumulative emissions to about 1600 GtCO2 over the 2000–2100 period. This requires unprecedented rates of decarbonization even in the short-run. The availability of the option of net negative emissions, such as bio-energy with carbon capture and storage (BECCS) or reforestation/afforestation, allows to delay some of these emission reductions. In the paper, we assess the demand and potential for negative emissions in particular from BECCS. Both stylized calculations and model runs show that without the possibility of negative emissions, pathways meeting the 2 °C target with high probability need almost immediate emission reductions or simply become infeasible. The potential for negative emissions is uncertain. We show that negative emissions from BECCS are probably limited to around 0 to 10 GtCO2/year in 2050 and 0 to 20 GtCO2/year in 2100. Estimates on the potential of afforestation options are in the order of 0–4 GtCO2/year. Given the importance and the uncertainty concerning BECCS, we stress the importance of near-term assessments of its availability as today’s decisions has important consequences for climate change mitigation in the long run.  相似文献   

9.
《Climate Policy》2013,13(4):273-292
Abstract

The US decision not to ratify the Kyoto Protocol and the recent outcomes of the Bonn and Marrakech Conferences of the Parties have important implications for both the effectiveness and the efficiency of future climate policies. Among these implications, those related with technical change and with the functioning of the international market for carbon emissions are particularly relevant, because these variables have the largest impact on the overall abatement cost to be borne by Annex B countries in the short and in the long run. This paper analyses the consequences of the US decision to withdraw from the Kyoto/Bonn Protocol both on technological innovation and on the price of emission permits (and, as a consequence, on abatement costs). In particular, the analysis highlights mechanisms and feedbacks related to technological innovation, technological spillovers and R&D which could be relevant and which modify some policy relevant conclusions. First, we identify two feedback effects which explain why our results lead to a less significant fall in the price of permits than in most empirical analyses recently circulated. We show that the US defection from the Kyoto Protocol, by inducing a decline in the demand and price of emission permits, lowers the incentives to undertake energy-saving R&D. As a consequence, emissions increase and feed back on the demand and supply of permits, thus implying a lower decline in the price of permits than previously estimated. At the same time, as a result of the reduced R&D investments and the augmented emissions, climate change damages intensify and require an increase in investments that are again coupled with a growth of emissions. By thus again increasing the demand for permits and reducing their supply, this effect enhances the previous mechanism. Notwithstanding the lower decline in the price of permits, the paper still identifies a smaller price than would occur with a US participation. Therefore, we emphasise in a second step the crucial role of Russia in climate negotiations due to a large increase in Russia's bargaining power.  相似文献   

10.
While most long-term mitigation scenario studies build on a broad portfolio of mitigation technologies, there is quite some uncertainty about the availability and reduction potential of these technologies. This study explores the impacts of technology limitations on greenhouse gas emission reductions using the integrated model IMAGE. It shows that the required short-term emission reductions to achieve long-term radiative forcing targets strongly depend on assumptions on the availability and potential of mitigation technologies. Limited availability of mitigation technologies which are relatively important in the long run implies that lower short-term emission levels are required. For instance, limited bio-energy availability reduces the optimal 2020 emission level by more than 4 GtCO2eq in order to compensate the reduced availability of negative emissions from bioenergy and carbon capture and storage (BECCS) in the long run. On the other hand, reduced mitigation potential of options that are used in 2020 can also lead to a higher optimal level for 2020 emissions. The results also show the critical role of BECCS for achieving low radiative forcing targets in IMAGE. Without these technologies achieving these targets become much more expensive or even infeasible.  相似文献   

11.
Can near-term public support of renewable energy technologies contain the increase of mitigation costs due to delays of implementing emission caps at the global level? To answer this question we design a set of first and second best scenarios to analyze the impact of early deployment of renewable energy technologies on welfare and emission timing to achieve atmospheric carbon stabilization by 2100. We use the global multiregional energy?Ceconomy?Cclimate hybrid model REMIND-R as a tool for this analysis. An important design feature of the policy scenarios is the timing of climate policy. Immediate climate policy contains the mitigation costs at less than 1% even if the CO2 concentration target is 410?ppm by 2100. Delayed climate policy increases the costs significantly because the absence of a strong carbon price signal continues the carbon intensive growth path. The additional costs can be decreased by early technology policies supporting renewable energy technologies because emissions grow less, alternative energy technologies are increased in capacity and their costs are reduced through learning by doing. The effects of early technology policy are different in scenarios with immediate carbon pricing. In the case of delayed climate policy, the emission path can be brought closer to the first-best solution, whereas in the case of immediate climate policy additional technology policy would lead to deviations from the optimal emission path. Hence, technology policy in the delayed climate policy case reduces costs, but in the case of immediate climate policy they increase. However, the near-term emission reductions are smaller in the case of delayed climate policies. At the regional level the effects on mitigation costs are heterogeneously distributed. For the USA and Europe early technology policy has a positive welfare effect for immediate and delayed climate policies. In contrast, India looses in both cases. China loses in the case of immediate climate policy, but profits in the delayed case. Early support of renewable energy technologies devalues the stock of emission allowances, and this effect is considerable for delayed climate policies. In combination with the initial allocation rule of contraction and convergence a relatively well-endowed country like India loses and potential importers like the EU gain from early renewable deployment.  相似文献   

12.
The Global Warming Potential (GWP) index is currently used to create CO2-equivalent emission totals for multi-gas greenhouse targets. While many alternatives have been proposed, it is not possible to uniquely define a metric that captures the different impacts of emissions of substances with widely disparate atmospheric lifetimes, which leads to a wide range of possible index values. We examine the sensitivity of emissions and climate outcomes to the value of the index used to aggregate methane emissions using a technologically detailed integrated assessment model. The methane index is varied between 4 and 70, with a central value of 21, which is the 100-year GWP value currently used in policy contexts. We find that the sensitivity to index value is, at most, 10–18 % in terms of methane emissions but only 2–3 % in terms of the maximum total radiative forcing change, with larger regional emissions differences in some cases. The choice of index also affects estimates of the cost of meeting a given end of century forcing target, with total two-gas mitigation cost increasing by 7–9 % if the index is increased, and increasing in most scenarios from 4 to 23 % if the index is lowered, with a slight (1 %) decrease in total cost in one case. We find that much of the methane abatement occurs as the induced effect of CO2 abatement rather than explicit abatement, which is one reason why climate outcomes are relatively insensitive to the index value. We also find that the near-term climate benefit of increasing the methane index is small.  相似文献   

13.
Activities to reduce net greenhouse gas emissions by biological soil or forest carbon sequestration predominantly utilize currently known, readily implementable technologies. Many other greenhouse gas emission reduction options require future technological development or must wait for turnover of capital stock. Carbon sequestration options in soils and forests, while ready to go now, generally have a finite life, allowing use until other strategies are developed. This paper reports on an investigation of the competitiveness of biological carbon sequestration from a dynamic and multiple strategy viewpoint. Key factors affecting the competitiveness of terrestrial mitigation options are land availability and cost effectiveness relative to other options including CO2 capture and storage, energy efficiency improvements, fuel switching, and non-CO2 greenhouse gas emission reductions. The analysis results show that, at lower CO2 prices and in the near term, soil carbon and other agricultural/forestry options can be important bridges to the future, initially providing a substantial portion of attainable reductions in net greenhouse gas emissions, but with a limited role in later years. At higher CO2 prices, afforestation and biofuels are more dominant among terrestrial options to offset greenhouse gas emissions. But in the longer run, allowing for capital stock turnover, options to reduce greenhouse gas emissions from the energy system and biofuels provide an increasing share of potential reductions in total US greenhouse gas emissions.  相似文献   

14.
Carbon dioxide (CO2) sequestration has been proposed as a key component in technological portfolios for managing anthropogenic climate change, since it may provide a faster and cheaper route to significant reductions in atmospheric CO2 concentrations than abating CO2 production. However, CO2 sequestration is not a perfect substitute for CO2 abatement because CO2 may leak back into the atmosphere (thus imposing future climate change impacts) and because CO2 sequestration requires energy (thus producing more CO2 and depleting fossil fuel resources earlier). Here we use analytical and numerical models to assess the economic efficiency of CO2 sequestration and analyze the optimal timing and extent of CO2 sequestration. The economic efficiency factor of CO2 sequestration can be expressed as the ratio of the marginal net benefits of sequestering CO2 and avoiding CO2 emissions. We derive an analytical solution for this efficiency factor for a simplified case in which we account for CO2 leakage, discounting, the additional fossil fuel requirement of CO2 sequestration, and the growth rate of carbon taxes. In this analytical model, the economic efficiency of CO2 sequestration decreases as the CO2 tax growth rate, leakage rates and energy requirements for CO2 sequestration increase. Increasing discount rates increases the economic efficiency factor. In this simple model, short-term sequestration methods, such as afforestation, can even have negative economic efficiencies. We use a more realistic integrated-assessment model to additionally account for potentially important effects such as learning-by-doing and socio-economic inertia on optimal strategies. We measure the economic efficiency of CO2 sequestration by the ratio of the marginal costs of CO2 sequestration and CO2 abatement along optimal trajectories. We show that the positive impacts of investments in CO2 sequestration through the reduction of future marginal CO2 sequestration costs and the alleviation of future inertia constraints can initially exceed the marginal sequestration costs. As a result, the economic efficiencies of CO2 sequestration can exceed 100% and an optimal strategy will subsidize CO2 sequestration that is initially more expensive than CO2 abatement. The potential economic value of a feasible and acceptable CO2 sequestration technology is equivalent – in the adopted utilitarian model – to a one-time investment of several percent of present gross world product. It is optimal in the chosen economic framework to sequester substantial CO2 quantities into reservoirs with small or zero leakage, given published estimates of marginal costs and climate change impacts. The optimal CO2 trajectories in the case of sequestration from air can approach the pre-industrial level, constituting geoengineering. Our analysis is silent on important questions (e.g., the effects of model and parametric uncertainty, the potential learning about these uncertainties, or ethical dimension of such geoengineering strategies), which need to be addressed before our findings can be translated into policy-relevant recommendations.  相似文献   

15.
This paper synthesizes results of the multi-model Energy Modeling Forum 27 (EMF27) with a focus on climate policy scenarios. The study included two harmonized long-term climate targets of 450 ppm CO2-e (enforced in 2100) and 550 pm CO2-e (not-to-exceed) as well as two more fragmented policies based on national and regional emissions targets. Stabilizing atmospheric GHG concentrations at 450 and 550 ppm CO2-e requires a dramatic reduction of carbon emissions compared to baseline levels. Mitigation pathways for the 450 CO2-e target are largely overlapping with the 550 CO2-e pathways in the first half of the century, and the lower level is achieved through rapid reductions in atmospheric concentrations in the second half of the century aided by negative anthropogenic carbon flows. A fragmented scenario designed to extrapolate current levels of ambition into the future falls short of the emissions reductions required under the harmonized targets. In a more aggressive scenario intended to capture a break from observed levels of stringency, emissions are still somewhat higher in the second half due to unabated emissions from non-participating countries, emphasizing that a phase-out of global emissions in the long term can only be reached with full global participation. A key finding is that a large range of energy-related CO2 emissions can be compatible with a given long-term target, depending on assumptions about carbon cycle response, non-CO2 and land use CO2 emissions abatement, partly explaining the spread in mitigation costs.  相似文献   

16.
This article illustrates the main difficulties encountered in the preparation of GHG emission projections and climate change mitigation policies and measures (P&M) for Kazakhstan. Difficulties in representing the system with an economic model have been overcome by representing the energy system with a technical-economic growth model (MARKAL-TIMES) based on the stock of existing plants, transformation processes, and end-use devices. GHG emission scenarios depend mainly on the pace of transition in Kazakhstan from a planned economy to a market economy. Three scenarios are portrayed: an incomplete transition, a fast and successful one, and even more advanced participation in global climate change mitigation, including participation in some emission trading schemes. If the transition to a market economy is completed by 2020, P&M already adopted may reduce emissions of CO2 from combustion by about 85 MtCO2 by 2030 – 17% of the emissions in the baseline (WOM) scenario. One-third of these reductions are likely to be obtained from the demand sectors, and two-thirds from the supply sectors. If every tonne of CO2 not emitted is valued up to US$10 in 2020 and $20 in 2030, additional P&M may further reduce emissions by 110 MtCO2 by 2030.  相似文献   

17.
Previous attempts to estimate the supply of greenhouse gas emission reductions from reduced emissions from deforestation (RED) have generally failed to incorporate policy developments, country-specific abilities and political willingness to supply offsets for developed countries’ emissions. To address this, we estimate policy-appropriate projections of creditable emission reductions from RED. Two global forest carbon models are used to examine major assumptions affecting the generation of credits. The results show that the estimated feasible supply of RED credits is significantly below the biophysical mitigation potential from deforestation. A literature review identified an annual RED emission reduction potential between 1.6 and 4.3 Gt CO2e. Feasible RED supply estimates applying the OSIRIS model were 1.74 Gt CO2e annually between 2011 and 2020, with a cumulative supply of 17.4 Gt CO2e under an ‘own-efforts’ scenario. Estimates from the Forest Carbon Index were very low at $5/t CO2e with 8 million tonne CO2e annually, rising to 1.8 Gt CO2e at $20/t CO2e. Cumulative abatement between 2011 and 2020 was 9 billion Gt CO2e ($20/t CO2e). These volumes were lower, sometimes dramatically, at prices of $5/t CO2e suggesting a non-linear supply of credits in relation to price at a low payment level. For policy makers, the results suggest that inclusion of RED in a climate framework increases abatement potential, although significant constraints are imposed by political and technical issues.  相似文献   

18.
The relationship between R&D investments and technical change is inherently uncertain. In this paper we combine economics and decision analysis to incorporate the uncertainty of technical change into climate change policy analysis. We present the results of an expert elicitation on the prospects for technical change in carbon capture and storage. We find a significant amount of disagreement between experts, even over the most mature technology; and this disagreement is most pronounced in regards to cost estimates. We then use the results of the expert elicitations as inputs to the MiniCAM integrated assessment model, to derive probabilistic information about the impacts of R&D investments on the costs of emissions abatement. We conclude that we need to gather more information about the technical and societal potential for Carbon Storage; cost differences among the different capture technologies play a relatively smaller role.  相似文献   

19.
Motorized individual transport strongly contributes to global CO2 emissions, due to its intensive usage of fossil fuels. Current political efforts addressing this issue (i.e. emission performance standards in the EU) are directed towards car manufacturers. This paper focuses on the demand side. It examines whether CO2 emissions per kilometer is a relevant attribute in car choices. Based on a choice experiment among potential car buyers from Germany, a mixed logit specification is estimated. In addition, distributions of willingness-to-pay measures for an abatement of CO2 emissions are obtained. The results suggest that the emissions performance of a car matters substantially, but its consideration varies heavily across the sampled population. In particular, some evidence on gender, age and education effects on climate concerns is provided.  相似文献   

20.
CO2减排的宏观经济代价对处于不同发展阶段的国家有着巨大的差异,对此给出科学的估计具有重要的科学和现实意义。本文运用基于投入产出的多目标规划对中国CO2减排的宏观经济成本进行了估算。结果表明:CO2排放控制对我国经济的影响十分显著,在目前条件下,我国2010年CO2减排的宏观经济成本为3100~4024元/t CO2;而且减排的力度越大,相应的单位减排的宏观经济成本越高。采掘业、石油行业、化学工业、金属冶炼等行业和部门是CO2的高排放部门,但同时也是实现减排较有潜力的部门。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号