首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Earthquake simulation technologies are advancing to the stage of enabling realistic simulations of past earthquakes as well as characterizations of more extreme events, thus holding promise of yielding novel insights and data for earthquake engineering. With the goal of developing confidence in the engineering applications of simulated ground motions, this paper focuses on validation of simulations for response history analysis through comparative assessments of building performance obtained using sets of recorded and simulated motions. Simulated ground motions of past earthquakes, obtained through a larger validation study of the Southern California Earthquake Center Broadband Platform, are used for the case study. Two tall buildings, a 20‐story concrete frame and a 42‐story concrete core wall building, are analyzed under comparable sets of simulated and recorded motions at increasing levels of ground motion intensity, up to structural collapse, to check for statistically significant differences between the responses to simulated and recorded motions. Spectral shape and significant duration are explicitly considered when selecting ground motions. Considered demands include story drift ratios, floor accelerations, and collapse response. These comparisons not only yield similar results in most cases but also reveal instances where certain simulated ground motions can result in biased responses. The source of bias is traced to differences in correlations of spectral values in some of the stochastic ground motion simulations. When the differences in correlations are removed, simulated and recorded motions yield comparable results. This study highlights the utility of physics‐based simulations, and particularly the Southern California Earthquake Center Broadband Platform as a useful tool for engineering applications.  相似文献   

2.
Two existing, contemporary ground motion selection and modification procedures – (i) exact conditional spectrum (CS‐exact) and (ii) generalized conditional intensity measure (GCIM) – are evaluated in their ability to accurately estimate seismic demand hazard curves (SDHCs) of a given structure at a specified site. The amount of effort involved in implementing these procedures to compute a single SDHC is studied, and a case study is chosen where rigorous benchmark SDHCs can be determined for evaluation purposes. By comparing estimates from ground motion selection and modification procedures with the benchmark, we conclude that estimates from CS‐exact are unbiased in many of the cases considered. The estimates from GCIM are even more accurate, as they are unbiased for most – but not all – of the cases where estimates from CS‐exact are biased. We find that it is possible to obtain biased SDHCs from GCIM, even after employing a very diverse collection of intensity measures to select ground motions and implementing its bias‐checking feature, because it is usually difficult to identify intensity measures that are truly ‘sufficient’ for the response of a complex, multi‐degree‐of‐freedom system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Modern engineering design methods require ground motion time histories as input for non-linear dynamic structural analysis. Non-linear dynamic methods of analysis are increasingly applied in the context of probabilistic risk assessments and for cost-effective design of critical infrastructures. In current engineering practice artificial time histories matching deterministic design spectra or probabilistic uniform hazard spectra are most frequently used for engineering analysis. The intermediate step of generation of response spectra can lead to a biased estimate of the potential damage from earthquakes because of insufficient consideration of the true energy content and strong motion duration of earthquakes. Thus, assessment of seismic risk may seem unrealistic. An engineering approach to the development of three-component ground motion time histories has been established which enables consideration of the typical characteristics of seismic sources, regional ground motion attenuation, and the main geotechnical characteristics of the target site. Therefore, the approach is suitable for use in scenario-based risk analysis a larger number of time histories are required for representation of the seismic hazard. Near-field effects are implemented in the stochastic source model using engineering approximations. The approach is suggested for use in areas of low seismicity where ground motion records of larger earthquakes are not available. Uncertainty analysis indicates that ground motions generated by individual earthquakes are well constrained and that the usual lognormal model is not the best choice for predicting the upper tail of the distribution of the ground motions.  相似文献   

4.
A generalized conditional intensity measure (GCIM) approach is proposed for use in the holistic selection of ground motions for any form of seismic response analysis. The essence of the method is the construction of the multivariate distribution of any set of ground‐motion intensity measures conditioned on the occurrence of a specific ground‐motion intensity measure (commonly obtained from probabilistic seismic hazard analysis). The approach therefore allows any number of ground‐motion intensity measures identified as important in a particular seismic response problem to be considered. A holistic method of ground‐motion selection is also proposed based on the statistical comparison, for each intensity measure, of the empirical distribution of the ground‐motion suite with the ‘target’ GCIM distribution. A simple procedure to estimate the magnitude of potential bias in the results of seismic response analyses when the ground‐motion suite does not conform to the GCIM distribution is also demonstrated. The combination of these three features of the approach make it entirely holistic in that: any level of complexity in ground‐motion selection for any seismic response analysis can be exercised; users explicitly understand the simplifications made in the selected suite of ground motions; and an approximate estimate of any bias associated with such simplifications is obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A stochastic ground‐motion simulation and modification technique is developed to generate energy‐compatible and spectrum‐compatible (ECSC) synthetic motions through wavelet packet characterization and modification in both frequency and time domains. The ECSC method significantly advances traditional spectral matching approaches, because it generates ground motions that not only match the target spectral accelerations, but also match Arias intensity build‐up and significant durations. The great similarity between the ECSC simulated motions and the actual recorded motions is demonstrated through one‐to‐one comparison of a variety of intensity measures. Extensive numerical simulations were also performed to validate the performance of the ECSC ground motions through nonlinear analyses of elasto‐plastic oscillators. The ECSC method can be easily implemented in the generalized conditional intensity measure framework by directly simulating a set of motions following a targeted distribution of multiple intensity measures. Therefore, the ECSC method has great potential to be used in performance‐based earthquake design and analysis. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
The last decade of performance‐based earthquake engineering (PBEE) research has seen a rapidly increasing emphasis placed on the explicit quantification of uncertainties. This paper examines uncertainty consideration in input ground‐motion and numerical seismic response analyses as part of PBEE, with particular attention given to the physical consistency and completeness of uncertainty consideration. It is argued that the use of the commonly adopted incremental dynamic analysis leads to a biased representation of the seismic intensity and that when considering the number of ground motions to be used in seismic response analyses, attention should be given to both reducing parameter estimation uncertainty and also limiting ground‐motion selection bias. Research into uncertainties in system‐specific numerical seismic response analysis models to date has been largely restricted to the consideration of ‘low‐level’ constitutive model parameter uncertainties. However, ‘high‐level’ constitutive model and model methodology uncertainties are likely significant and therefore represent a key research area in the coming years. It is also argued that the common omission of high‐level seismic response analysis modelling uncertainties leads to a fallacy that ground‐motion uncertainty is more significant than numerical modelling uncertainty. The author's opinion of the role of uncertainty analysis in PBEE is also presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper the effect of causal parameter bounds (e.g. magnitude, source‐to‐site distance, and site condition) on ground motion selection, based on probabilistic seismic hazard analysis (PSHA) results, is investigated. Despite the prevalent application of causal parameter bounds in ground motion selection, present literature on the topic is cast in the context of a scenario earthquake of interest, and thus specific bounds for use in ground motion selection based on PSHA, and the implications of such bounds, is yet to be examined. Thirty‐six PSHA cases, which cover a wide range of causal rupture deaggregation distributions and site conditions, are considered to empirically investigate the effects of various causal parameter bounds on the characteristics of selected ground motions based on the generalized conditional intensity measure (GCIM) approach. It is demonstrated that the application of relatively ‘wide’ bounds on causal parameters effectively removes ground motions with drastically different characteristics with respect to the target seismic hazard and results in an improved representation of the target causal parameters. In contrast, the use of excessively ‘narrow’ bounds can lead to ground motion ensembles with a poor representation of the target intensity measure distributions, typically as a result of an insufficient number of prospective ground motions. Quantitative criteria for specifying bounds for general PSHA cases are provided, which are expected to be sufficient in the majority of problems encountered in ground motion selection for seismic demand analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A broader consensus on the number of ground motions to be used and the method of scaling to be adopted for nonlinear response history analysis (RHA) of structures is yet to be reached. Therefore, in this study, the effects of selection and scaling of ground motions on the response of seismically isolated structures, which are routinely designed using nonlinear RHA, are investigated. For this purpose, isolation systems with a range of properties subjected to bidirectional excitation are considered. Benchmark response of the isolation systems is established using large sets of unscaled ground motions systematically categorized into pulse-like, non-pulse-like, and mixed set of motions. Different subsets of seven to 14 ground motions are selected from these large sets using (a) random selection and (b) selection based on the best match of the shape of the response spectrum of ground motions to the target spectrum. Consequences of weighted scaling (also commonly referred to as amplitude scaling or linear scaling) as well as spectral matching are investigated. The ground motion selection and scaling procedures are evaluated from the viewpoint of their accuracy, efficiency, and consistency in predicting the benchmark response. It is confirmed that seven time histories are sufficient for a reliable prediction of isolation system displacement demands, for all ground motion subsets, selection and scaling procedures, and isolation systems considered. If ground motions are selected based on their best match to the shape of the target response spectrum (which should be preferred over randomly selected motions), weighted scaling should be used if pulse-like motions are considered, either of weighted scaling or spectral matching can be used if non-pulse-like motions are considered, and an average of responses from weighted-scaled and spectrum-matched ground motions should be used for a mixed set of motions. On the other hand, the importance of randomly selected motions in representing inherent variability of response is recognized and it is found that weighted scaling is more appropriate for such motions.  相似文献   

9.
Amplitude scaling is commonly used to select ground motions matching a target response spectrum. In this paper, the effect of scaling limits on ground motion selection, based on the conditional spectrum framework, is investigated. Target spectra are computed for four probabilistic seismic hazard cases in Western United States, and 16 ground motion suites are selected using different scaling limits (ie, 2, 5, 10, and 15). Comparison of spectral acceleration distributions of the selected ground motion suites demonstrates that the use of a scaling limit of 2 yields a relatively poor representation of the target spectra, because of the small limit leading to an insufficient number of available ground motions. It is also shown that increasing scaling limit results in selected ground motions with generally increased distributions of Arias intensity and significant duration Ds5-75, implying that scaling limit consideration can significantly influence the cumulative and duration characteristics of selected ground motions. The ground motion suites selected are then used as input for slope displacement and structural dynamic analyses. Comparative results demonstrate that the consideration of scaling limits in ground motion selection has a notable influence on the distribution of the engineering demand parameters calculated (ie, slope displacement and interstory drift ratio). Finally, based on extensive analyses, a scaling limit range of 3 to 5 is recommended for general use when selecting ground motion records from the NGA-West2 database.  相似文献   

10.
The selection of representative input ground motions (IGMs) is important for a proper nonlinear response time history analysis (NLRHA) of modern structures. The prevailing IGM selection procedure requires that the response spectra of selected ground motions are matched with the code-specified design spectra, while the effect of the frequency contents combination in the time domain on the multimode interactions is not considered. Ignoring the effect of the frequency contents combination in the time domain of IGMs may cause significant variations in the analysis results for selected IGMs, although they are matched to the same design spectrum. In this paper, a modal-based ground motion selection (MGMS) procedure is proposed as a supplement to spectrum matching-based IGM selection procedures for selecting proper IGMs that can sufficiently induce the multimode interactions. In the proposed procedure, three equivalent single-degree-of-freedom (ESDOF) systems are developed by pushover analysis. NLRHA is then conducted for these ESDOF systems with a set of 20 seed IGMs chosen by the spectrum-matching–based selection procedure. Finally, seven IGMs are selected from the seed IGMs for NLRHA in the full structural model. To verify MGMS, seismic demands of high-rise buildings were computed by NLRHA with seven MGMS-selected IGMs, seven IGMs with closest spectrum matching, and groups of seven randomly selected IGMs derived from three different sets of 20 seed IGMs. The computed seismic demands with MGMS-IGMs show very good agreement with the mean demands determined using the whole set of seed IGMs, while the deviation is much lesser compared with those groups of randomly selected IGMs.  相似文献   

11.
Simulation of Ground Motion Using the Stochastic Method   总被引:29,自引:0,他引:29  
  相似文献   

12.
土-结构相互作用效应对结构基底地震动影响的试验研究   总被引:3,自引:0,他引:3  
利用土与结构动力相互作用振动台模型试验数据,通过各种试验工况下土层表面与基础表面加速度反应的比较,深入探讨了土与结构动力相互作用效应对高层建筑结构基底地震动的影响。从输入地震动频谱特性、输入地震动强度水平和上部结构动力特性3个方面详细分析了与SSI效应对高层建筑基底震动影响程度有关的一些因素。结果表明:SSI效应对高层建筑基底地震动的影响与输入地震波的动力特性有很大关系。在地震动的频谱成分方面,SSI效应对高层建筑基底地震动的影响主要体现为土层表面和基础表面在与输入地震动卓越频率相近处的频谱成分有较大差异;SSI效应对高层建筑基底地震动的影响程度随着输入加速度峰值水平的增加而减小;在某一特定地震波作用下,当上部结构的振动频率与地震地面运动的卓越频率相近时,SSI效应对高层建筑基底地震动的影响较为强烈。  相似文献   

13.
This paper investigates the seismic response of tall cantilever wall buildings subjected to pulse type ground motion, with special focus on the relation between the characteristics of ground motion and the higher‐modes of response. Buildings 10, 20, and 40 stories high were designed such that inelastic deformation was concentrated at a single flexural plastic hinge at their base. Using nonlinear response history analysis, the buildings were subjected to near‐fault seismic ground motions and simple closed‐form pulses, which represented distinct pulses within the ground motions. Euler–Bernoulli beam models with lumped mass and lumped plasticity were used to model the buildings. The response of the buildings to the closed‐form pulses fairly matched that of the near‐fault records. Subsequently, a parametric study was conducted for the buildings subjected to three types of closed‐form pulses with a broad range of periods and amplitudes. The results of the parametric study demonstrate the importance of the ratio of the fundamental period of the structure to the period of the pulse to the excitation of higher modes. The study shows that if the modal response spectrum analysis approach is used — considering the first four modes with a uniform yield reduction factor for all modes, and with the square root of sum of squares modal combination rule — it significantly underestimates bending moment and shear force responses. A response spectrum analysis method that uses different yield reduction factors for the first and the higher modes is presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The conditional spectrum (CS, with mean and variability) is a target response spectrum that links nonlinear dynamic analysis back to probabilistic seismic hazard analysis for ground motion selection. The CS is computed on the basis of a specified conditioning period, whereas structures under consideration may be sensitive to response spectral amplitudes at multiple periods of excitation. Questions remain regarding the appropriate choice of conditioning period when utilizing the CS as the target spectrum. This paper focuses on risk‐based assessments, which estimate the annual rate of exceeding a specified structural response amplitude. Seismic hazard analysis, ground motion selection, and nonlinear dynamic analysis are performed, using the conditional spectra with varying conditioning periods, to assess the performance of a 20‐story reinforced concrete frame structure. It is shown here that risk‐based assessments are relatively insensitive to the choice of conditioning period when the ground motions are carefully selected to ensure hazard consistency. This observed insensitivity to the conditioning period comes from the fact that, when CS‐based ground motion selection is used, the distributions of response spectra of the selected ground motions are consistent with the site ground motion hazard curves at all relevant periods; this consistency with the site hazard curves is independent of the conditioning period. The importance of an exact CS (which incorporates multiple causal earthquakes and ground motion prediction models) to achieve the appropriate spectral variability at periods away from the conditioning period is also highlighted. The findings of this paper are expected theoretically but have not been empirically demonstrated previously. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A parameterized stochastic model of near‐fault ground motion in two orthogonal horizontal directions is developed. The major characteristics of recorded near‐fault ground motions are represented. These include near‐fault effects of directivity and fling step; temporal and spectral non‐stationarity; intensity, duration, and frequency content characteristics; directionality of components; and the natural variability of ground motions. Not all near‐fault ground motions contain a forward directivity pulse, even when the conditions for such a pulse are favorable. The proposed model accounts for both pulse‐like and non‐pulse‐like cases. The model is fitted to recorded near‐fault ground motions by matching important characteristics, thus generating an ‘observed’ set of model parameters for different earthquake source and site characteristics. A method to generate and post‐process synthetic motions for specified model parameters is also presented. Synthetic ground motion time series are generated using fitted parameter values. They are compared with corresponding recorded motions to validate the proposed model and simulation procedure. The use of synthetic motions in addition to or in place of recorded motions is desirable in performance‐based earthquake engineering applications, particularly when recorded motions are scarce or when they are unavailable for a specified design scenario. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Selecting ground motions based on the generalized intensity measure distribution (GIMD) approach has many appealing features, but it has not been fully verified in engineering practice. In this paper, several suites of ground motions, which have almost identical distributions of spectral acceleration (SA) ordinates but different distributions of non‐SA intensity measures, are selected using the GIMD‐based approach for a given earthquake scenario. The selected ground motion suites are used to compute the sliding displacements of various slopes. Comparisons of the resulting displacements demonstrate that selecting ground motions with biased distribution of some intensity measures (ie, Arias intensity) may yield systematic biases (up to 60% for some slope types). Therefore, compared to the ground motions selected based only on the distribution of SA ordinates, the ground motion suite selected by the GIMD‐based approach can better represent the various characteristics of earthquake loadings, resulting in generally unbiased estimation in specific engineering applications.  相似文献   

17.
Due to the inherent difficulty in directly recording the rotational ground motions, torsional ground motions have to be estimated from the recorded spatially varying translational motions. In this paper, an empirical coherency function, which is based on the recorded motions at the SMART-1 array, is suggested to model the spatial variation of translational motions. Then, the torsional ground motion power spectral density function is derived. It depends on the translational motion power spectral density function and the coherency function. Both the empirical coherency function and the torsional motion power spectral density function are verified by the recorded motions at the SMART-1 array. The response spectra of the torsional motions are also estimated. Discussion on the relations between the torsional motion response spectrum and the corresponding translational motion response spectrum is made. Numerical results presented can be used to estimate the torsional ground motion power spectral density function and response spectrum.  相似文献   

18.
The purpose of this study is to propose an accurate and efficient method for selecting and scaling ground motions matching target response spectrum mean and variance, which does not require excessive computation and simulation. In the proposed method, a desired number of ground motions are sequentially scaled and selected from a ground motion library without iterations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
长周期地震动的频谱特性是影响长周期结构动力响应的重要因素,目前关于其频谱特征周期参数的研究尚有欠缺.根据长周期地震动的界定方法,选取65条远场长周期地震动和50条近场脉冲型地震动,计算各条地震动的10个频谱特征周期参数,通过分析各周期参数与长周期地震动低频特性指标的相关性和离散性,探讨合适的长周期地震动频谱特征周期表征...  相似文献   

20.
With the recent emergence of wavelet‐based procedures for stochastic analyses of linear and non‐linear structural systems subjected to earthquake ground motions, it has become necessary that seismic ground motion processes are characterized through statistical functionals of wavelet coefficients. While direct characterization in terms of earthquake and site parameters may have to wait for a few more years due to the complexity of the problem, this study attempts such characterization through commonly available Fourier and response spectra for design earthquake motions. Two approaches have been proposed for obtaining the spectrum‐compatible wavelet functionals, one for input Fourier spectrum and another for input response spectrum, such that the total number of input data points are 30–35% of those required for a time‐history analysis. The proposed methods provide for simulating ‘desired non‐stationary characteristics’ consistent with those in a recorded accelerogram. Numerical studies have been performed to illustrate the proposed approaches. Further, the wavelet functionals compatible with a USNRC spectrum in the case of 35 recorded motions of similar strong motion durations have been used to obtain the strength reduction factor spectra for elasto‐plastic oscillators and to show that about ±20% variation may be assumed from mean to 5 and 95% confidence levels due to uncertainty in the non‐stationary characteristics of the ground motion process. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号