首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
On the basis of Zeng’s theoretical design, a coupled general circulation model (CGCM) is developed with its characteristics different from other CGCMs such as the unified vertical coordinates and subtraction of the standard stratification for both atmosphere and ocean, available energy consideration, and so on. The oceanic component is a free surface tropical Pacific Ocean GCM between 30oN and 30oS with horizontal grid spacing of 1o in latitude and 2o in longitude, and with 14 vertical layers. The atmospheric component it a global GCM with low-resolution of 4o in latitude and 5o in longitude, and two layers or equal man in the vertical between the surface and 200 hPa. The atmospheric GCM includes comprehensive physical processes. The coupled model is subjected to seasonally-varying cycle. Several coupling experiments, ranging from straight forward coupling without flux correction to one with flux correction, and to so-called predictor-corrector monthly coupling (PCMC), are conducted to show the existence and final controlling of the climate drift in the coupled system. After removing the climate drift with the PCMC scheme, the coupled model is integrated for more than twenty years. The results show reasonable simulations of the annual mean and its seasonal cycle of the atmospheric and oceanic circulation. The model also produces the coherent interannual variations of the climate system, manifesting the observed El Ni?o / Southern Oscillation (ENSO).  相似文献   

2.
We present a validation analysis of a regional climate model coupled to a distributed one dimensional (1D) lake model for the Caspian Sea Basin. Two model grid spacings are tested, 50 and 20 km, the simulation period is 1989–2008 and the lateral boundary conditions are from the ERA-Interim reanalysis of observations. The model is validated against atmospheric as well as lake variables. The model performance in reproducing precipitation and temperature mean seasonal climatology, seasonal cycles and interannual variability is generally good, with the model results being mostly within the observational uncertainty range. The model appears to overestimate cloudiness and underestimate surface radiation, although a large observational uncertainty is found in these variables. The 1D distributed lake model (run at each grid point of the lake area) reproduces the observed lake-average sea surface temperature (SST), although differences compared to observations are found in the spatial structure of the SST, most likely as a result of the absence of 3 dimensional lake water circulations. The evolution of lake ice cover and near surface wind over the lake area is also reproduced by the model reasonably well. Improvements resulting from the increase of resolution from 50 to 20 km are most significant in the lake model. Overall the performance of the coupled regional climate—1D lake model system appears to be of sufficient quality for application to climate change scenario simulations over the Caspian Sea Basin.  相似文献   

3.
A flexible climate model for use in integrated assessments   总被引:2,自引:0,他引:2  
 Because of significant uncertainty in the behavior of the climate system, evaluations of the possible impact of an increase in greenhouse gas concentrations in the atmosphere require a large number of long-term climate simulations. Studies of this kind are impossible to carry out with coupled atmosphere ocean general circulation models (AOGCMs) because of their tremendous computer resource requirements. Here we describe a two dimensional (zonally averaged) atmospheric model coupled with a diffusive ocean model developed for use in the integrated framework of the Massachusetts Institute of Technology (MIT) Joint Program on the Science and Policy of Global Change. The 2-D model has been developed from the Goddard Institute for Space Studies (GISS) GCM and includes parametrizations of all the main physical processes. This allows it to reproduce many of the nonlinear interactions occurring in simulations with GCMs. Comparisons of the results of present-day climate simulations with observations show that the model reasonably reproduces the main features of the zonally averaged atmospheric structure and circulation. The model’s sensitivity can be varied by changing the magnitude of an inserted additional cloud feedback. Equilibrium responses of different versions of the 2-D model to an instantaneous doubling of atmospheric CO2 are compared with results of similar simulations with different AGCMs. It is shown that the additional cloud feedback does not lead to any physically inconsistent results. On the contrary, changes in climate variables such as precipitation and evaporation, and their dependencies on surface warming produced by different versions of the MIT 2-D model are similar to those shown by GCMs. By choosing appropriate values of the deep ocean diffusion coefficients, the transient behavior of different AOGCMs can be matched in simulations with the 2-D model, with a unique choice of diffusion coefficients allowing one to match the performance of a given AOGCM for a variety of transient forcing scenarios. Both surface warming and sea level rise due to thermal expansion of the deep ocean in response to a gradually increasing forcing are reasonably reproduced on time scales of 100–150 y. However a wide range of diffusion coefficients is needed to match the behavior of different AOGCMs. We use results of simulations with the 2-D model to show that the impact on climate change of the implied uncertainty in the rate of heat penetration into the deep ocean is comparable with that of other significant uncertainties. Received: 10 March 1997 / Accepted: 20 October 1997  相似文献   

4.
A regional coupled atmosphere–ocean model was developed to study the role of air–sea interactions in the simulation of the Indian summer monsoon. The coupled model includes the regional climate model (RegCM3) as atmospheric component and the regional ocean modeling system (ROMS) as oceanic component. The two-way coupled model system exchanges sea surface temperature (SST) from the ocean to the atmospheric model and surface wind stress and energy fluxes from the atmosphere to the ocean model. The coupled model is run for four years 1997, 1998, 2002 and 2003 and the results are compared with observations and atmosphere-only model runs employing Reynolds SSTs as lower boundary condition. It is found that the coupled model captures the main features of the Indian monsoon and simulates a substantially more realistic spatial and temporal distribution of monsoon rainfall compared to the uncoupled atmosphere-only model. The intraseasonal oscillations are also better simulated in the coupled model compared to the atmosphere-only model. These improvements are due to a better representation of the feedbacks between the SST and convection and highlight the importance of air–sea coupling in the simulation of the Indian monsoon.  相似文献   

5.
Impact of ocean model resolution on CCSM climate simulations   总被引:1,自引:1,他引:0  
The current literature provides compelling evidence suggesting that an eddy-resolving (as opposed to eddy-permitting or eddy-parameterized) ocean component model will significantly impact the simulation of the large-scale climate, although this has not been fully tested to date in multi-decadal global coupled climate simulations. The purpose of this paper is to examine how resolved ocean fronts and eddies impact the simulation of large-scale climate. The model used for this study is the NCAR Community Climate System Model version 3.5 (CCSM3.5)—the forerunner to CCSM4. Two experiments are reported here. The control experiment is a 155-year present-day climate simulation using a 0.5° atmosphere component (zonal resolution 0.625 meridional resolution 0.5°; land surface component at the same resolution) coupled to ocean and sea-ice components with zonal resolution of 1.2° and meridional resolution varying from 0.27° at the equator to 0.54° in the mid-latitudes. The second simulation uses the same atmospheric and land-surface models coupled to eddy-resolving 0.1° ocean and sea-ice component models. The simulations are compared in terms of how the representation of smaller scale features in the time mean ocean circulation and ocean eddies impact the mean and variable climate. In terms of the global mean surface temperature, the enhanced ocean resolution leads to a ubiquitous surface warming with a global mean surface temperature increase of about 0.2?°C relative to the control. The warming is largest in the Arctic and regions of strong ocean fronts and ocean eddy activity (i.e., Southern Ocean, western boundary currents). The Arctic warming is associated with significant losses of sea-ice in the high-resolution simulation. The sea surface temperature gradients in the North Atlantic, in particular, are better resolved in the high-resolution model leading to significantly sharper temperature gradients and associated large-scale shifts in the rainfall. In the extra-tropics, the interannual temperature variability is increased with the resolved eddies, and a notable increases in the amplitude of the El Ni?o and the Southern Oscillation is also detected. Changes in global temperature anomaly teleconnections and local air-sea feedbacks are also documented and show large changes in ocean–atmosphere coupling. In particular, local air-sea feedbacks are significantly modified by the increased ocean resolution. In the high-resolution simulation in the extra-tropics there is compelling evidence of stronger forcing of the atmosphere by SST variability arising from ocean dynamics. This coupling is very weak or absent in the low-resolution model.  相似文献   

6.
Simulation of South American wintertime climate with a nesting system   总被引:1,自引:1,他引:1  
A numerical nesting system is developed to simulate wintertime climate of the eastern South Pacific-South America-western South Atlantic region, and preliminary results are presented. The nesting system consists of a large-scale global atmospheric general circulation model (GCM) and a regional climate model (RCM). The latter is driven at its boundaries by the GCM. The particularity of this nesting system is that the GCM itself has a variable horizontal resolution (stretched grid). Our main purpose is to assess the plausibility of such a technique to improve climate representation over South America. In order to evaluate how this nesting system represents the main features of the regional circulation, several mean fields have been analyzed. The global model, despite its relatively low resolution, could simulate reasonably well the more significant large-scale circulation patterns. The use of the regional model often results in improvements, but not universally. Many of the systematic errors of the global model are also present in the regional model, although the biases tend to be rectified. Our preliminary results suggest that nesting technique is a computationally low-cost alternative for simulating regional climate features. However, additional simulations, parametrizations tuning and further diagnosis are clearly needed to represent local patterns more precisely. Received: 18 February 1999 / Accepted: 31 May 2000  相似文献   

7.
The study examines simulation of atmospheric circulation, represented by circulation indices (flow direction, strength and vorticity), and links between circulation and daily surface air temperatures in regional climate models (RCMs) over Central Europe. We explore control simulations of five high-resolution RCMs from the ENSEMBLES project driven by re-analysis (ERA-40) and the same global climate model (ECHAM5 GCM) plus of one RCM (RCA) driven by different GCMs. The aims are to (1) identify errors in RCM-simulated distributions of circulation indices in individual seasons, (2) identify errors in simulated temperatures under particular circulation indices, and (3) compare performance of individual RCMs with respect to the driving data. Although most of the RCMs qualitatively reflect observed distributions of the airflow indices, each produces distributions significantly different from the observations. General biases include overestimation of the frequency of strong flow days and of strong cyclonic vorticity. Some circulation biases obviously propagate from the driving data. ECHAM5 and all simulations driven by ECHAM5 underestimate frequency of easterly flow, mainly in summer. Except for HIRHAM, however, all RCMs driven by ECHAM5 improve on the driving GCM in simulating atmospheric circulation. The influence on circulation characteristics in the nested RCM differs between GCMs, as demonstrated in a set of RCA simulations with different driving data. The driving data control on circulation in RCA is particularly weak for the BCM GCM, in which case RCA substantially modifies (but does not improve) the circulation from the driving data in both winter and summer. Those RCMs with the most distorted atmospheric circulation are HIRHAM driven by ECHAM5 and RCA driven by BCM. Relatively strong relationships between circulation indices and surface air temperatures were found in the observed data for Central Europe. The links differ by season and are usually stronger for daily maxima than minima. RCMs qualitatively reproduce these relationships. Effects of the driving model biases were found on RCMs’ performance in reproducing not only atmospheric circulation but also the links to surface temperature. However, the RCM formulation appears to be more important than the driving data in representing the latter. Differences of the circulation-to-temperature links among the RCA simulations are smaller and the links tend to be more realistic compared to the driving GCMs.  相似文献   

8.
To downscale climate change scenarios, long-term regional climatologies employing global model forcing are needed for West Africa. As a first step, this work examines present-day integrations (1981–2000) with a regional climate model (RCM) over West Africa nested in both reanalysis data and output from a coupled atmospheric–ocean general circulation model (AOGCM). Precipitation and temperature from both simulations are compared to the Climate Research Unit observations. Their spatial distributions are shown to be realistic. Annual cycles are considerably correlated. Simulations are also evaluated with respect to the driving large-scale fields. RCM offers some improvements compared to the AOGCM driving field. Evaluation of seasonal precipitation biases reveals that RCM dry biases are highest on June–August around mountains. They are associated to cold biases in temperature which, in turn, are connected to wet biases in precipitation outside orographic zones. Biases brought through AOGCM forcing are relatively low. Despite these errors, the simulations produce encouraging results and show the ability of the AOGCM to drive the RCM for future projections.  相似文献   

9.
It has long been believed that a climate model capable of realistically simulating many features of global climate, variability, and climate change must interactively represent the major components of the dynamically coupled climate system, particularly the atmosphere, ocean, and cryosphere. This effort traditionally has been constrained by computing power, our understanding of the observed system, and climate modeling capability. With the advent of supercomputers, improved understanding of global climate processes, and computationally efficient general circulation climate models, we have witnessed a rapid increase in the simulation of global climate by coupling together various representations of atmosphere, ocean, and sea ice. Beginning in the late 1960s and continuing through the early 1980s, general circulation models (GCMs) of the atmosphere, ocean, and sea ice were coupled and run asynchronously to produce credible simulations of the global climate. Systematic errors in these component models later led some modeling groups to use flux correction or flux adjustment, whereby either one or several of the variables at the air-sea interface are adjusted to bring the simulations in closer agreement with observations. Further advances in computing power and climate modeling techniques in the past few years have allowed global coupled ocean-atmosphere GCMs to be run synchronously (i.e., atmosphere and ocean communicate at least once each model day). Computing constraints, combined with the need for multidecadal climate integrations, still only allow relatively coarse-grid ocean GCMs to be coupled to correspondingly coarse-grid atmospheric models (on the order of 500 km × 500 km). However, results from this current generation of global, coupled GCMs have revealed interesting characteristics associated with ocean dynamics and global climate in experiments with gradual increases of carbon dioxide. Another somewhat surprising aspect of the global-coupled GCM simulations is the appearance of some features associated with the El Niño-Southern Oscillation. Along with concurrent efforts with other types of limited-domain, dynamical coupled models, this has led to the realization that inherent unstable coupled modes exist in the climate system that are the unique product of the interactive coupling of the atmosphere and the ocean. All of these efforts are leading to the next generation of coupled ocean-atmosphere GCMs. These models will run on even faster and larger-memory computers and will have higher-resolution atmosphere and ocean components, more accurate sea-ice formulations, improved cloud-radiation schemes, and increasingly realistic land-surface processes.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. DümenilThe National Center for Atmospheric Research is sponsored by the National Science Foundation  相似文献   

10.
A new method is proposed to estimate future net basin supplies and lake levels for the Laurentian Great Lakes based on GCM projections of global climate change. The method first dynamically downscales the GCM simulation with a regional climate model, and then bias—corrects the simulated net basin supply in order to be used directly in a river—routing/lake level scheme. This technique addresses two weaknesses in the traditional approach, whereby observed sequences of climate variables are perturbed with fixed ratios or differences derived directly from GCMs in order to run evaporation and runoff models. Specifically, (1) land surface—atmosphere feedback processes are represented, and (2) changes in variability can be analyzed with the new approach. The method is demonstrated with a single, high resolution simulation, where small changes in future mean lake levels for all the upper Great Lakes are found, and an increase in seasonal range—especially for Lake Superior—is indicated. Analysis of a small ensemble of eight lower resolution regional climate model simulations supports these findings. In addition, a direct comparison with the traditional approach based on the same GCM projections used as the driving simulations in this ensemble shows that the new method indicates smaller declines in level for all the upper Great Lakes than has been reported previously based on the traditional method, though median differences are only a few centimetres in each case.  相似文献   

11.
 A global, three-dimensional climate model, developed by coupling the CCCma second-generation atmospheric general circulation model (GCM2) to a version of the GFDL modular ocean model (MOM1), forms the basis for extended simulations of past, current and projected future climate. The spin-up and coupling procedures are described, as is the resulting climate based on a 200 year model simulation with constant atmospheric composition and external forcing. The simulated climate is systematically compared to available observations in terms of mean climate quantities and their spatial patterns, temporal variability, and regional behavior. Such comparison demonstrates a generally successful reproduction of the broad features of mean climate quantities, albeit with local discrepancies. Variability is generally well-simulated over land, but somewhat underestimated in the tropical ocean and the extratropical storm-track regions. The modelled climate state shows only small trends, indicating a reasonable level of balance at the surface, which is achieved in part by the use of heat and freshwater flux adjustments. The control simulation provides a basis against which to compare simulated climate change due to historical and projected greenhouse gas and aerosol forcing as described in companion publications. Received: 24 September 1998 / Accepted: 8 October 1999  相似文献   

12.
EC-Earth, a new Earth system model based on the operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF), is presented. The performance of version 2.2 (V2.2) of the model is compared to observations, reanalysis data and other coupled atmosphere–ocean-sea ice models. The large-scale physical characteristics of the atmosphere, ocean and sea ice are well simulated. When compared to other coupled models with similar complexity, the model performs well in simulating tropospheric fields and dynamic variables, and performs less in simulating surface temperature and fluxes. The surface temperatures are too cold, with the exception of the Southern Ocean region and parts of the Northern Hemisphere extratropics. The main patterns of interannual climate variability are well represented. Experiments with enhanced CO2 concentrations show well-known responses of Arctic amplification, land-sea contrasts, tropospheric warming and stratospheric cooling. The global climate sensitivity of the current version of EC-Earth is slightly less than 1?K/(W?m?2). An intensification of the hydrological cycle is found and strong regional changes in precipitation, affecting monsoon characteristics. The results show that a coupled model based on an operational seasonal prediction system can be used for climate studies, supporting emerging seamless prediction strategies.  相似文献   

13.
嵌套域大小对区域气候模式模拟效果的影响   总被引:3,自引:3,他引:3  
This paper presents a numerical study on the 1998 summer rainfall over the Yangtze River valley in central and eastern China, addressing effect of a nested area size on simulations in terms of the technique of nesting a regional climate model (RCM) upon a general circulation model (GCM). Evidence suggests that the size exerts greater impacts upon regional climate of the country, revealing that a larger nested size is su perior to a small one for simulation in mitigating errors of GCM-provided lateral boundary forcing. Also,simulations show that the RCM should incorporate regions of climate systems of great importance into study and a low-resolution GCM yields more pronounced errors as a rule when used in the research of the Tibetan Plateau, and, in contrast, our PσRCM can do a good job in describing the plateau′s role in a more realistic and accurate way. It is for this reason that the tableland should be included in the nested area when the RCM is employed to investigate the regional climate. Our PσRCM nesting upon a GCM reaches morerealistic results compared to a single GCM used.  相似文献   

14.
We report results from the highest-resolution simulations of global warming yet performed with an atmospheric general circulation model. We compare the climatic response to increased greenhouse gases of the National Center for Atmospheric Research (NCAR) climate model, CCM3, at T42 and T170 resolutions (horizontal grid spacing of 300 and 75 km respectively). All simulations use prescribed sea surface temperatures (SST). Simulations of the climate of 2100 ad use SSTs based on those from NCAR coupled model, Climate System Model (CSM). We find that the global climate sensitivity and large-scale patterns of climate change are similar at T42 and T170. However, there are important regional scale differences that arise due to better representation of topography and other factors at high resolution. Caution should be exercised in interpreting specific features in our results both because we have performed climate simulations using a single atmospheric general circulation model and because we used with prescribed sea surface temperatures rather than interactive ocean and sea-ice models.  相似文献   

15.
We describe results from a 57-member ensemble of transient climate change simulations, featuring simultaneous perturbations to 54 parameters in the atmosphere, ocean, sulphur cycle and terrestrial ecosystem components of an earth system model (ESM). These emissions-driven simulations are compared against the CMIP3 multi-model ensemble of physical climate system models, used extensively to inform previous assessments of regional climate change, and also against emissions-driven simulations from ESMs contributed to the CMIP5 archive. Members of our earth system perturbed parameter ensemble (ESPPE) are competitive with CMIP3 and CMIP5 models in their simulations of historical climate. In particular, they perform reasonably well in comparison with HadGEM2-ES, a more sophisticated and expensive earth system model contributed to CMIP5. The ESPPE therefore provides a computationally cost-effective tool to explore interactions between earth system processes. In response to a non-intervention emissions scenario, the ESPPE simulates distributions of future regional temperature change characterised by wide ranges, and warm shifts, compared to those of CMIP3 models. These differences partly reflect the uncertain influence of global carbon cycle feedbacks in the ESPPE. In addition, the regional effects of interactions between different earth system feedbacks, particularly involving physical and ecosystem processes, shift and widen the ESPPE spread in normalised patterns of surface temperature and precipitation change in many regions. Significant differences from CMIP3 also arise from the use of parametric perturbations (rather than a multimodel ensemble) to represent model uncertainties, and this is also the case when ESPPE results are compared against parallel emissions-driven simulations from CMIP5 ESMs. When driven by an aggressive mitigation scenario, the ESPPE and HadGEM2-ES reveal significant but uncertain impacts in limiting temperature increases during the second half of the twenty-first century. Emissions-driven simulations create scope for development of errors in properties that were previously prescribed in coupled ocean–atmosphere models, such as historical CO2 concentrations and vegetation distributions. In this context, historical intra-ensemble variations in the airborne fraction of CO2 emissions, and in summer soil moisture in northern hemisphere continental regions, are shown to be potentially useful constraints, subject to uncertainties in the relevant observations. Our results suggest that future climate-related risks can be assessed more comprehensively by updating projection methodologies to support formal combination of emissions-driven perturbed parameter and multi-model earth system model simulations with suitable observational constraints. This would provide scenarios underpinned by a more complete representation of the chain of uncertainties from anthropogenic emissions to future climate outcomes.  相似文献   

16.
 We compared regional biases and transient doubled CO2 sensitivities of nine coupled atmosphere-ocean general circulation models (GCMs) from six international climate modeling groups. We evaluated biases and responses in winter and summer surface air temperatures and precipitation for seven subcontinental regions, including those in the 1990 Intergovernmental Panel on Climate Change (IPCC) Scientific Assessment. Regional biases were large and exceeded the variance among four climatological datasets, indicating that model biases were not primarily due to uncertainty in observations. Model responses to altered greenhouse forcing were substantial (average temperature change=2.7±0.9 °C, range of precipitation change =−35 to +120% of control). While coupled models include more climate system feedbacks than earlier GCMs implemented with mixed-layer ocean models, inclusion of a dynamic ocean alone did not improve simulation of long-term mean climatology nor increase convergence among model responses to altered greenhouse gas forcing. On the other hand, features of some of the coupled models including flux adjustment (which may have simply masked simulation errors), high horizontal resolution, and estimation of screen height temperature contributed to improved simulation of long-term surface climate. The large range of model responses was partly accounted for by inconsistencies in forcing scenarios and transient-simulation averaging periods. Nonetheless, the models generally had greater agreement in their sensitivities than their controls did with observations. This suggests that consistent, large-scale response features from an ensemble of model sensitivity experiments may not depend on details of their representation of present-day climate. Received: 9 September 1996 / Revised: 31 July 1997  相似文献   

17.
Summary A coupled biosphere-atmosphere statistical-dynamical model (SDM) is used to study the climatic effects of Amazonian deforestation. A soil moisture model based on BATS has been incorporated into the SDM in order to study the biogeophysical feedback of change in surface characteristics to regional climate due to the deforestation. In the control experiment, the mean annual and mean seasonal climate is well simulated by the model when compared with NCEP/NCAR reanalysis data. In the deforestation experiment, the evergreen broadleaf trees in the Amazonian region are substituted by short grass. The effects of Amazonian deforestation on regional climate are analysed taking into account the model simulations for the land portion of the latitude belts comprising the tropical region. Amazonian deforestation results in regional climate changes such as a decrease in evaporation, precipitation, available surface net radiation and soil moisture content, and an increase in temperatures and sensible heat flux. The reduction in transpiration was responsible for the most part of the decrease in total evapotranspiration. The reduction in precipitation was larger than the decrease in evapotranspiration so that runoff was reduced. The simulation of the diurnal cycle of the surface temperature shows an increase in temperature during the day and a decrease at night, which is in agreement with observations, whereas earlier GCM experiments showed an increase both during the day and night. In general, the changes in temperature and energy fluxes are in good agreement with GCM experiments, showing that the SDM is able to simulate the characteristics of the tropical climate that are associated with the substitution of forest by pasture areas.  相似文献   

18.
A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcasts, with a special emphasis on the adequate choice of physical parameterization schemes suitable for the East Asian monsoon climate. This regional climate model is nested with the NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM to make an experimental seasonal prediction for China and East Asia. The four-year (2001 to 2004) prediction results are encouraging. This paper is the first part of a two-part paper, and it mainly describes the sensitivity study of the physical process paraxneterization represented in the model. The systematic errors produced by the different physical parameterization schemes such as the land surface processes, convective precipitation, cloud-radiation transfer process, boundary layer process and large-scale terrain features have been identified based on multi-year and extreme flooding event simulations. A number of comparative experiments has shown that the mass flux scheme (MFS) and Betts-Miller scheme (BM) for convective precipitation, the LPMI (land surface process model I) and LPMII (land surface process model Ⅱ) for the land surface process, the CCM3 radiation transfer scheme for cloud-radiation transfer processes, the TKE (turbulent kinetic energy) scheme for the boundary layer processes and the topography treatment schemes for the Tibetan Plateau are suitable for simulations and prediction of the East Asia monsoon climate in rainy seasons. Based on the above sensitivity study, a modified version of the RegCM2 (RegCM_NCC) has been set up for climate simulations and seasonal predictions.  相似文献   

19.
Modeling the tropical Pacific Ocean using a regional coupled climate model   总被引:3,自引:0,他引:3  
A high-resolution tropical Pacific general circulation model (GCM) coupled to a global atmospheric GCM is described in this paper. The atmosphere component is the 5°×4°global general circulation model of the Institute of Atmospheric Physics (IAP) with 9 levels in the vertical direction. The ocean component with a horizontal resolution of 0.5°, is based on a low-resolution model (2°×1°in longitude-latitude).Simulations of the ocean component are first compared with its previous version. Results show that the enhanced ocean horizontal resolution allows an improved ocean state to be simulated; this involves (1) an apparent decrease in errors in the tropical Pacific cold tongue region, which exists in many ocean models,(2) more realistic large-scale flows, and (3) an improved ability to simulate the interannual variability and a reduced root mean square error (RMSE) in a long time integration. In coupling these component models, a monthly "linear-regression" method is employed to correct the model's exchanged flux between the sea and the atmosphere. A 100-year integration conducted with the coupled GCM (CGCM) shows the effectiveness of such a method in reducing climate drift. Results from years 70 to 100 are described.The model produces a reasonably realistic annual cycle of equatorial SST. The large SSTA is confined to the eastern equatorial Pacific with little propagation. Irregular warm and cold events alternate with a broad spectrum of periods between 24 and 50 months, which is very realistic. But the simulated variability is weaker than the observed and is also asymmetric in the sense of the amplitude of the warm and cold events.  相似文献   

20.
Modelling Indonesian rainfall with a coupled regional model   总被引:2,自引:0,他引:2  
Long-term high-resolution coupled climate model simulations using the Max Planck Institute Regional Climate Model and the Max Planck Institute Ocean Model have been performed with boundary forcings from two reanalyses: firstly from the European Centre for Medium-Range Weather Forecasts, and secondly from the joint reanalysis of the National Centers for Environmental Prediction and the National Center for Atmospheric Research. This study employs a special coupling setup using a regional atmospheric model and a global ocean model. The latter model applies a special conformal grid from a bipolar orthogonal spherical coordinate system, which allows irregular positions of the poles and focuses on the detail over the Maritime Continent. The coupled model was able to simulate stable and realistic rainfall variabilities without flux correction and at two different ocean resolutions. The coupled system is integrated for a period between 1979 and 1993 and the results are then compared to those from uncoupled runs and from observation. The results show improved performance after coupling: a remarkable reduction of overestimated rainfall over the sea for the atmospheric model and of warm SST biases for the ocean model. There is no significant change in rainfall variability at higher ocean model resolution, but the ocean circulation shows less transport variability within the Makassar Strait in comparison to observations. This paper has not been published or considered by any other journal in any language.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号