首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tal Ezer  Lie-Yauw Oey 《Ocean Dynamics》2013,63(2-3):243-263
A high-resolution numerical ocean circulation model of the Bering Sea (BS) is used to study the natural variability of the BS straits. Three distinct categories of strait dynamics have been identified: (1) Shallow passages such as the Bering Strait and the Unimak Passage have northward, near barotropic flow with periodic pulses of larger transports; (2) wide passages such as Near Straits, Amukta Pass, and Buldir Pass have complex flow patterns driven by the passage of mesoscale eddies across the strait; and (3) deep passages such as Amchitka Pass and Kamchatka Strait have persistent deep return flows opposite in direction to major surface currents; the deep flows persist independent of the local wind. Empirical orthogonal function analyses reveal the spatial structure and the temporal variability of strait flows and demonstrate how mesoscale variations in the Aleutian passages influence the Bering Strait flow toward the Arctic Ocean. The study suggests a general relation between the barotropic and baroclinic Rossby radii of deformations in each strait, and the level of flow variability through the strait, independent of geographical location. The mesoscale variability in the BS seems to originate from two different sources: a remote origin from variability in the Alaskan Stream that enters the BS through the Aleutian passages and a local origin from the interaction of currents with the Bowers Ridge in the Aleutian Basin. Comparisons between the flow in the Aleutian passages and flow in other straits, such as the Yucatan Channel and the Faroe Bank Channel, suggest some universal topographically induced dynamics in strait flows.  相似文献   

2.
The ecohydrodynamics of the Gibraltar Strait and the Western Alboran Sea is investigated using a 3-D, two-way nested, coupled hydrodynamic/plankton ecosystem model, exploiting the MEDATLAS climatological database. A high-resolution model (~1 km) of the Gibraltar/Western Alboran region embedded within a coarse-resolution model of the West Mediterranean (~5 km) is implemented. The model seasonal climatology of the 3-D circulation and the flow characteristics at the Gibraltar Strait and the Alboran Sea are discussed, and their impact on the plankton ecosystem evolution is explored. An important ecohydrodynamic feature produced by the model is a permanent upwelling zone in the northwestern part of the Alboran Sea in agreement with observations. Model results show that both horizontal and vertical current intensity of the Atlantic Jet increases progressively at the strait to obtain maximum values in the northeastern Mediterranean entrance, inducing an upward displacement of the nitracline. The nutrient-rich water transport through the strait along with the generation of cyclonic vorticity in the northwestern Alboran Sea result in the accumulation of nutrients there and thus induce a permanent fertilisation of this area.  相似文献   

3.
We describe the solutions of a numerical two-layer primitive equation model of an idealized Strait of Gibraltar and an adjacent eastward basin. The quasi-steady circulation pattern in the basin features an anticyclonic gyre southward of the strait exit and an eastward boundary current attached to the southern boundary of the basin. A variation of the initial upper-layer depth and the target interface height at the eastern boundary causes minor changes of the upper-layer circulation in a basin with rectangular coastline and larger changes when a cape is added to the coastline of the southern boundary.  相似文献   

4.
The response of the electric and magnetic field variations over the San Juan Bay region of Vancouver Island is studied using a scaled laboratory analogue model. The laboratory frequencies simulate periods of 10 and 100 s in the geophysical problem. The model results indicate that, for both E- and H-polarization of the source field, induced current in the ocean is deflected around Cape Flattery and channelled into the Juan de Fuca Strait. With increasing period, the proportion of current channelled into the Strait decreases sharply. Induced current in the strait is also funnelled into San Juan Bay, a finger-shaped bay ca. 4 km wide and 7.5 km long, for both polarizations of the source field. The effect of the Bay on the field response is confined to the local region, within approximately 6 km of the centre of the Bay. Good agreement between field station and analogue model Hz results was obtained for the San Juan Bay. The behaviour of the Parkinson arrow for these two stations is examined with the aid of the analogue model results.  相似文献   

5.
Study on the transverse structures across Taiwan Strait   总被引:3,自引:0,他引:3  
The mountain ranges are almost NE- or NNE-trending in mainland and Taiwan island across the strait. But a number of correspondent transverse structures across Taiwan Strait have been identified on the basis of morphology, surface structure, deep seismic survey and gravity field etc. Moreover, it is inferred from the square or/and rectangular shape of the isoseist maps of 8 M≥ 6 earthquakes occurring in the western foothill plain of Taiwan that there is an apparent segmentation of the Taiwan Island along the N-S orientation. This has been verified from the GPS’s results of the ground motions measured during the Chi-Chi earthquake in 1999. As a matter of fact, the transverse structures within the Taiwan Island could be correlated with more salient NW- and EW-trending structures in the mainland of Fujian than in Taiwan. The investigation of the transverse structures across Taiwan Strait is conducive to realizing the geology within the strait. Hence, the tectonic sketch map of the strait as well as mainland and island drawn in this context shows NW- and EW-trending structures for the study area.  相似文献   

6.
Statistical modeling and GIS “Sakhalin Shelf” are used to restore the annual variations of water temperature and salinity at standard oceanographic stations in Tatar Strait, where observation series are about 45 years long. Numerical modeling techniques with the help of Bergen University model are used to restore the spatial fields of water temperature and salinity. Analysis of calculation results made it possible to identify new features of the hydrological regime in the strait, in particular, during winter, for which no generalizations have been made before.  相似文献   

7.
The behaviour of the magnetic field variations over the North China-Korea coastal region is studied with the aid of a scaled laboratory analogue model. The model source frequencies simulate naturally occurring geomagnetic variations of 3–60 min periods. In-phase and quadrature magnetic Bx, By and Bz field measurements for the modelled region are presented for E- and B-polarizations. Large anomalous in-phase and quadrature model magnetic fields are observed over the Korea-Japan strait for E-polarization and over the Bohai strait for B-polarization due to current channelling through the straits. Large responses of the peninsulas in the shallow coastal areas occur at short periods but decrease abruptly with increasing period. In general, the effects of peninsulas, straits, bays and irregularities in the coastlines play an important role in the magnetic field responses both on-shore and off-shore for this complex North China-Korea coastal region. Model and field site induction arrows are compared for three sites west of Bohai Bay.  相似文献   

8.
Ocean circulation influences nearly all aspects of the marine ecosystem. This study describes the water circulation patterns on time scales from hours to years across Torres Strait and adjacent gulfs and seas, including the north of the Great Barrier Reef. The tridimensional circulation model incorporated realistic atmospheric and oceanographic forcing, including winds, waves, tides, and large-scale regional circulation taken from global model outputs. Simulations covered a hindcast period of 8 years (i.e. 01/03/1997–31/12/2004), allowing the tidal, seasonal, and interannual flow characteristics to be investigated. Results indicated that the most energetic current patterns in Torres Strait were strongly dominated by the barotropic tide and its spring-neap cycle. However, longer-term flow through the strait was mainly controlled by prevailing winds. A dominant westward drift developed in summer over the southeasterly trade winds season, which then weakened and reversed in winter over the northwesterly monsoon winds season. The seasonal flow through Torres Strait was strongly connected to the circulation in the north of the Great Barrier Reef, but showed little connectivity with the coastal circulation in the Gulf of Papua. Interannual variability in Torres Strait was highest during the monsoon period, reflecting variability in wind forcing including the timing of the monsoon. The characteristics of the circulation were also discussed in relation to fine sediment transport. Turbidity level in Torres Strait is expected to peak at the end of the monsoon, while it is likely to be at a low at the end of the trade season, eventually leading to a critically low bottom light level which constitutes a severe risk of seagrass dieback.  相似文献   

9.
As an important channel connecting the East and South China Seas, circulations in the Taiwan Strait are strongly influenced by the East Asian monsoon and the topography of the strait, especially the Taiwan Bank (TWB), which is a remarkable topographic feature located at the southern entrance to the strait. Based on a series of pressure gauges deployed roughly 40 km offshore along the western Strait, subtidal sea-level variability under the combined impact of winter monsoon and topography was studied. The analyses show significant along-strait coherences of subtidal sea levels and their coherences with the large-scale monsoon wind for periods from 2 to 14 days. It is suggested that these fluctuations are mainly forced waves driven by the large-scale winds. In addition to the normal cross-shore wind setup, a sea-level setup in the along-strait direction is confirmed, which is induced by the combined forcing of the fluctuating winter monsoon and the blocking of the TWB. A southward current surge driven by a northerly wind event will cause a rising sea level over the TWB inducing a southward along-shore slope anomaly to the north of the TWB and a reversed slope anomaly to the south. The subtidal current through the channel to the west of the TWB is found to be influenced by the reversed slope anomalies generated via the along-shore setup.  相似文献   

10.
渤海海峡是连接中国东部山东半岛和辽东半岛的重要途径,其跨海通道的地壳稳定性研究受到高度关注.本文利用地震层析成像方法重建三维P波速度模型,揭示了渤海海峡及周边区域地壳和上地幔的构造特征.结果表明,渤海海峡的速度结构存在明显的非均匀性,海峡北部地壳速度较高,结构较为完整,断层活动不明显,与现今较弱的地震活动相吻合,但是地壳底部存在低速薄层,它有可能成为地壳和上地幔之间的滑脱带,需要开展进一步的研究加以确认.相比之下,海峡南部地壳速度偏低,附近区域地震活动频繁,与张家口—蓬莱断裂带通过于此有着密切的联系,该断裂持续不断的地震活动对海峡南部的地壳结构产生了较大的影响.在渤海南部,郯庐断裂带东、西两侧的地壳结构明显不同,西侧速度偏高,东侧至渤海海峡速度偏低,这一特征可能与此地区广泛发育的断层和地震活动有关.另外,受华北克拉通破坏及地幔上涌的影响,渤海地区地壳深部和上地幔速度偏低,郯庐断裂带及渤海海峡附近显示出深部热流的活动迹象,反映了岩石圈减薄和软流圈的局部抬升.  相似文献   

11.
Numerical modeling with the help of an oceanic model developed in the Bergen University and with mean annual data was used to carry out monthly calculations of water circulation fields in Tatar Strait, to calculate the vertical velocities and horizontal transfer rates between three areas identified within the strait and on its external boundaries. Analysis of calculation results revealed new features in water circulation in the strait (in particular, in winter) and made it possible, for the first time, to jointly evaluate water exchange components on the external boundaries and within the strait.  相似文献   

12.
The Tsugaru Strait, which connects the Sea of Japan with the Pacific Ocean, is characterized by the eastward Tsugaru Warm Current (TWC) and oscillating tidal currents of similar magnitude. A 15-day current observation was conducted in one of the two narrow channels in the strait, at the northwest tip of the Shimokita Peninsula. The observation revealed that the spectral energy of the semidiurnal current exceeds that of the diurnal current, contrary to the conventional view. The Tsugaru Strait regional model was developed to study the mechanism of this spectral energy reversal (140–141.5° E, 40.4–42.6° N, 500?m grid resolution). At the eastern and western open boundaries, the model was driven by the constant Tsugaru warm current and tidal elevation, which was adjusted by comparing the model with tidal gauge observations within the channel. The relative magnitude of the spectral energies differed from that of the observation when the model was driven by tide only. However, the spectral energy levels were reversed when the model was driven by both tide and current. The nonlinear interaction of periodic tidal currents and the steady TWC was explained by the vorticity equation, which describes the production and advection of residual currents from tidal currents. According to the model results, flow separation and advection of vorticity by the TWC was the most prominent factor in this phenomenon. Because of the strong nonlinearities, flow separation around the headland occurred during the tidal period with dominant current magnitude and furnished the main difference between the diurnal and semidiurnal interactions. These phenomena were enhanced by the complex topography, and demonstrate the importance of scale interaction, especially when developing high-resolution regional models.  相似文献   

13.
Measurements of geomagnetic induction responses for a laboratory analogue model, that includes a simulation of the subducting Juan de Fuca Plate, are compared with those obtained at three sites on Vancouver Island. Good agreement between model and field responses at the central Vancouver Island site is observed over the period range 3–60 min, while at the east and west coastal sites, good agreement is achieved only for periods greater than 20 min. At shorter periods, departures of the observed responses from those of the model are possibly the result of upper crust inhomogeneities not replicated in the simulation, and the complex strait with its numerous small islands and its irregular coastlines inadequately simulated in the course model. Nevertheless, the analogue model results are consistent with the premise of a Juan de Fuca plate, underlain by the conductive asthenosphere, subducting at a shallow depth beneath Vancouver Island.  相似文献   

14.
This study has no analogues in terms of methodology, as it uses three electronic instruments for studying the oceanographic regime of Tatar Strait. GIS “Sakhalin Shelf” was used to reconstruct annual variations in hydrological and hydrochemical characteristics of the marine environment at standard horizons of oceanographic stations in fixed geographic coordinates. An adapted version of the Oceanic Model created in Bergen University was used to reconstruct the spatial and temporal distribution of seawater temperature and salinity, to calculate the density and the circulation rate of water masses and water exchange parameters between the strait and nearby water areas and between regions within the strait. The hydroecological CNPSi-model was next used to assess the annual dynamics of concentrations of biogenic element compounds; the biomasses, biohydrochemical activity, and bioproductivity of microorganisms (heterotrophic bacteria, three phytoplankton and two zooplankton groups), involved in transformation of biogenic substances, as well as the internal fluxes of biogenic substances, governed by microorganism activity and the external load onto the marine ecosystem. Analysis of calculation results made it possible to reveal new features in water circulation in the strait (including those for winter) and, for the first time, to analyze the transport regime of biogenic substances through the external boundaries of Tatar Strait and through the boundaries of three regions identified within the strait.  相似文献   

15.
A new circulation model of the western North Pacific Ocean based on the parallelized version of the Princeton Ocean Model and incorporating the Local Ensemble Transform Kalman Filter (LETKF) data assimilation scheme has been developed. The new model assimilates satellite data and is tested for the period January 1 to April 3, 2012 initialized from a 24-year simulation to estimate the ocean state focusing in the South China Sea (SCS). Model results are compared against estimates based on the optimum interpolation (OI) assimilation scheme and are validated against independent Argo float and transport data to assess model skills. LETKF provides improved estimates of the western North Pacific Ocean state including transports through various straits in the SCS. In the Luzon Strait, the model confirms, for the first time, the three-layer transport structure previously deduced in the literature from sparse observations: westward in the upper and lower layers and eastward in the middle layer. This structure is shown to be robust, and the related dynamics are analyzed using the results of a long-term (18 years) unassimilated North Pacific Ocean model. Potential vorticity and mass conservations suggest a basin-wide cyclonic circulation in the upper layer of the SCS (z?>??570 m), an anticyclonic circulation in the middle layer (?570 m?≥?z?>??2,000 m), and, in the abyssal basin (<?2,000 m), the circulation is cyclonic in the north and anticyclonic in the south. The cyclone–anticyclone abyssal circulation is confirmed and explained using a deep-layer reduced-gravity model as being caused by overflow over the deep sill of the Luzon Strait, coupled with intense, localized upwelling west of the strait.  相似文献   

16.
本文分析了电离层风发电机理论中影响电流分布的几种主要因素,认为电离层电导率模型是最主要的影响因素。在计算太阴日变化(L)电流体系时,本文放弃了过去习惯采用的无限薄球壳的电导率模型,使用了分层电导率模型。考虑电导率随高度的变化以及电导率极大值的高度随纬度的变化,得到了与观测结果较为符合的理论L电流体系。本文的结果还指出,在处理某些全球性发电机理论问题时,不能简单地假定电离层为距地面等高度的无限薄球壳,而必须同时考虑大气潮汐振荡的特性及电导率随高度的变化。由此得出结论:发展三维电导率模型对于电离层风发电机理论是必要的。  相似文献   

17.
The behavior of electric and magnetic field variations over the eastern coastal region of North America is studied using a scaled laboratory electromagnetic analogue model. The model source frequency used simulates a period of 1 h in the geophysical scale. The results indicate that deflection and conductive channelling of induced electric current is important for both the E-polarization (northeast-southwest direction of the electric field of the source) and the H-polarization (northwest-southeast) of the source field. In the model, conductive channelling occurs through the Strait of Belle Isle, Cabot Strait, and in the St. Lawrence River. Current deflection is particularly prevalent around the southeast coast of Newfoundland for both E- and H-polarization, and around the northeast coastline of Nova Scotia for E-polarization. The model results also show current deflection by cape and bay coastal features, as well as by ocean depth contours.A comparison of model measurements for the cases of a uniform source field and a line current source indicate that the nature of the source field has a measurable but surprisingly small effect on the vertical to horizontal magnetic field ratio for both E- and H-polarizations, and negligible effect on the magnetotelluric ratio for coastal regions.The model fields in coastal regions were found to be strongly influenced by induced currents, deflected and channelled by the coastline and ocean bathymetry, and were dependent on the nature and particularly the polarization of the source field. Thus, along the complex coastline of eastern North America, a wide range of electric and magnetic field values should be expected. In some regions the coast effect, measured by the vertical to horizontal magnetic field ratio at the coast, could be expected to be extremely small or absent, while in other regions the ratio could approach a value as large as unity for variations of 1 h period.  相似文献   

18.
The fundamental hydrodynamic behavior of the Bosphorus Strait is investigated through a numerical modeling study using alternative configurations of idealized or realistic geometry. Strait geometry and basin stratification conditions allow for hydraulic controls and are ideally suited to support the maximal-exchange regime, which determines the rate of exchange of waters originating from the adjacent Black and Mediterranean Seas for a given net transport. Steady-state hydraulic controls are demonstrated by densimetric Froude number calculations under layered flow approximations when corrections are applied to account for high velocity shears typically observed in the Bosphorus. Analyses of the model results reveal many observed features of the strait, including critical transitions at hydraulic controls and dissipation by turbulence and hydraulic jumps. It is found that the solution depends on initialization, especially with respect to the basin initial conditions. Significant differences between the controlled maximal-exchange and drowned solutions suggest that a detailed modeling implementation involving coupling with adjacent basins needs to take full account of the Bosphorus Strait in terms of the physical processes to be resolved.  相似文献   

19.
A one month field campaign featuring two spring–neap tide cycles and three strong storms has been performed in a mobile dune area located in the central part of the Dover Strait. These dunes are known to move in a complex manner as their migration direction varies in space and time (Le Bot et al., 2000, Le Bot, 2001, Le Bot and Trentesaux, 2004). In order to gain some insights into the dune motion processes we present an analysis of the spatio-temporal variability of currents in the area emphasizing the relative influence of tides and storms. A total of eight different hydro-meteorological regimes have been distinguished during the experiment duration. The analysis of the currents measurements at five locations in the area shows that the eight hydro-meteorological regimes induce very different current responses at the bottom. The residual tidal currents exhibit a significant spatial variability both in direction and in intensity. A numerical model of tidal currents over the Dover Strait confirms the strong spatio-temporal variability of the residual tidal currents featuring three singular points. Amongst them, a saddle point is located just south of the I-dune at the convergence of opposite direction residual tidal currents. The wind-induced currents are almost uniform in space, their intensity and direction however strongly depends on the wind regime and thus on time. The mean total current feature a spatial pattern which can be tidal of wind-induced currents dominated, or either in balance, depending on the regime considered. At the PERMOD campaign time scale, the total current is dominated by the residual tidal current. These results proved to give valuable insights to explain the complex dynamics of dune motion observed in this area by Le Bot et al., 2000, Le Bot, 2001, Le Bot and Trentesaux, 2004 at short and long time scales.  相似文献   

20.
There are four extensive sandbanks in the vicinity of the Isle of Portland, a headland in the English Channel. The formation and maintenance of the two most prominent of these sandbanks (one on either side of the headland) can largely be explained by net bedload convergence, driven by instantaneous headland eddies generated by tidal flow past the headland. However, there are also two less prominent sandbanks (again, one on either side of the headland), which are not located in zones of bedload convergence. It is suggested here that these latter two sandbanks were formed when the Isle of Portland was isolated from the mainland by a tidal strait. Relative sea-level data and radiocarbon dates indicate that this would have occurred ca. 9–7 ka BP, prior to the closure of the strait by sedimentation. Tidal flow through this strait generated eddy systems in addition to the headland eddies, leading to the formation of associated headland/island sandbanks. At 7 ka BP, sedimentation resulted in closure of the strait, leading to the present-day headland configuration, and subsequent reworking of these now moribund sandbanks formed by the strait. A series of idealised morphological model experiments, parameterised using bedrock depths and glacial isostatic adjustment model output of relative sea level, are here used to simulate this hypothesised sequence of sandbank evolution over the Holocene. The results of the model experiments are corroborated by in situ observations of bedforms and sediment characteristics, and by acoustic Doppler current profiler (ADCP) data applied to predictions of bedload transport over the sandbanks. In addition to demonstrating the mechanism which leads to the formation of sandbanks by tidal flow through a strait, the model results show that upon subsequent closure of such a strait, these sandbanks will no longer be actively maintained, in contrast to sandbanks which are continuously maintained by headland eddies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号