首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction Identifying rupture directions of earthquakes is one of important aspects in focal mechanism research. For moderate-strong events, at present, directions of their main ruptures are usually extrapolated from focal mechanism solutions by combining information about distributions of aftershocks and surface ruptures, or/and extends of iso-seismal major axes. However,  相似文献   

2.
The method of sliding direction fitting is used to determine stress districts, taking the shear stress directions and ratios of shear stress to stress on fault planes given by focal mechanism solutions as the criteria to select focal mechanism solutions of one region and sorting out the earthquakes controlled by different tectonic stress fields, and then determining the stress districts from epicenter distribution of earthquakes. We call this method as step by step convergence method. By inversion analyzing of 297 focal mechanism solutions, we consider that Southwest China and its adjacent area can be divided into 5 stress districts, and we worked out directions of the three principal stresses and values of shape factor φin 5 stress districts.  相似文献   

3.
Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely Sichuan-Qinghai, Yajiang, Central Sichuan and Central Yunnan blocks. Combining these calculation results with those of the focal mechanism solutions of moderately strong earthquakes, we analyzed the stress field characteristics and dislocation types of seismogenic faults that are distributed in the four sub-blocks. The orientation of principal compressive stress for each block is: EW in Sichuan-Qinghai, ESE or SE in Yajiang, Central Sichuan and Central Yunnan blocks. Based on a great deal of focal mechanism data, we designed a program and calculated the directions of the principal stress tensors, σ1, σ2 and σ3, for the four blocks. Meanwhile, we estimated the difference (also referred to as consistency parameter θ^- ) between the force axis direction of focal mechanism solution and the direction of the mean stress tensor of each block. Then we further analyzed the variation of θ^- versus time and the dislocation types of seismogenic faults. Through determination of focal mechanism solutions for each block, we present information on the variation in θ^- value and dislocation types of seismogenic faults.  相似文献   

4.
The currently used methods for analyzing a number of focal mechanism solutions are often ineffective for large samples.With the aid of the basic concept of hierarchical clustering methods for pattern recognition and in combination with the expression of focal mechanism solutions themselves,the sum of the angle between P-axes and the angle between T-axes of 2 solutions is defined as a distance,and a software for hierarchical clustering analysis by the shortest distance method and longest distance method is compiled.The number of types in the clustering results can be determined in accordance with different requirements.For focal mechanism solutions of the same type,the average position of each stress axis can be calculated by the method of vector composition and thereby the spatial orientation of the average focal mechanism solution can be determined.In order to test the feasibility and reliability of the software,hierarchical clustering analyses are made for the focal mechanism solutions of 24 earthquak  相似文献   

5.
From focal mechanism solutions of the earthquakes in the northern part of North China during the period of 2002~2006,the directions of principal stress axes in 4 stress sub-districts are analyzed using a grid test method.The characteristic of present crustal stress directions is discussed.Based on this result and on the focal mechanism solutions calculated for some events in the period of 1977~1998,in combination with some other study results,the temporal variation of present crustal stress directions in the northern part of North China is investigated.The re-sults confirm that the direction of crustal principal stress in some regions had somewhat rotated after the 1976 Tangshan M7.8 earthquake.The mean P axes of the focal mechanism solutions rotated clockwise not only in Tangshan sub-district,but also in Beijing and Xingtai sub-districts after the Tangshan earthquake.In Beijing and Xingtai sub-districts the orientations of principal stress axes in the period of 2002~2006 are consistent with that before the Tangshan earthquake,implying that the stress orientations has rotated back to the state before the Tang-shan earthquake in these two sub-districts.The directions of the mean P axes are nearly E-W in Tangshan sub-dis-trict since the M7.8 earthquake.The present stress field in the sub-district northwest to Beijing,or in the western part of the Zhangjiakou-Bohai fault zone,is relatively stable during the time period concerned in this study.Because of the limitation of data,this paper only states a possible variation of stress field in the northern part of North China in the recent decades.  相似文献   

6.
Focal Fault of the 1999 Datong Ms5.6 Earthquake in Shanxi Province   总被引:1,自引:0,他引:1  
Several earthquakes with Ms≥5.0 occurred in the Datong seismic region in 1989,1991 and 1999,The precise focus location of the earthquake sequence was made by the records of the remote sensing seismic station network in Datong.Using that data together with macro-intensity distribution and focal mechanism solutions,we analyze the difference among three subsequences.The results show that the focal fault of the 1999 Ms 5.6 earthquake was a NWW-trending left-lateral strike-slip fault.It is 16km long and 12km wide.It developed at the depth of 5km and is nearly vertical in dip.The two previous earthquake subsequences,however,were generated by activity along NNE-trending right-lateral strike-slip fault.It can be found that the rupture directioin of the 1999 earthquake has changed.It is generally found that a rupture zone has more than two directions and has different strength along these two directions.The complicate degree of focal circumstance is related to the type of earthquake sequences.There is the NE-trending Dawangcun fault and the NW-trending Tuanbu fault in the seismic region,but no proof indicates a connection between focal faults and these two tectonic faults.The feature that focal faults of three subsequences are strike-slip is different from that of the two tectonic faults.It is suggested that the 1999 earthquake subsequence was possibly generated by a new rupture.  相似文献   

7.
Introduction Analyzing tectonic stress field based on focal mechanism data is an important way to the study tectonic evolvement of lithosphere and associated dynamic process. Such studies growrapidly in China and abroad (Zoback, 1992; Plenefisch, Bonjer, 1997; XU, 1985; CUI, XIE, 1999). At present most of the studies focus on the inversion of focal mechanism data for the direction and relative magnitude of stress tensor, and few on absolute stress. Using focal mechanism and fault scratch,…  相似文献   

8.
Taking the 2013 Tongliao MS5. 3 earthquake as a research subject, on the basis of statistical analysis of earthquake sequence using the HypoDD location method and focal mechanism solutions,the paper analyzes and discusses the relationship between the ML4. 4 and MS5. 3 earthquakes. The results show that the Tongliao MS5. 3 earthquake occurred under the background of medium-small earthquakes long-term quiescence and short-term enhancement in the epicentral area. The results of accurate seismic location shows that the Tongliao MS5. 3 earthquake sequence is distributed in the NW direction,extending 10 km,and the ML≥3. 0 aftershocks are concentrated south of the mainshock. The distance between the MS5. 3 mainshock and the ML4. 4 foreshock is about 1. 8 km,with a focal depth of 7. 208 km and 7. 089 km,respectively,their focal location is very close,and may have occurred on the same fault plane. The results of focal mechanism shows that the Tongliao MS5. 3 earthquake is of the strike-slip type,the focal mechanism of aftershocks are disordered,and with time lapse,the type is changed from strike-slip to thrust and normal faulting. The bigger foreshocks had similar focal mechanism and were all normal fault types,which exhibits to some extent,an obvious crustal medium anisotropy in the epicentral area before macroscopic rupturing,as represented by alignment fractures,with stress action enhanced,this"consistency"of seismic precursor regime would gestate the mainshock. According to the characteristics of temporal-spatial distribution of earthquake sequence and similarity of focal mechanism,we judge that the Tongliao MS5. 3 earthquake sequence is a foreshock-mainshock-aftershock type.  相似文献   

9.
An earthquake with MS4.6 occurred at 17:08 p.m., May 22, 2016 in Chaoyang County, Liaoning Province. We used the P-wave first motion method, TDMT method, and CAP method to determine the focal mechanisms and the PTD method and sPn-Pn method to determine the focal depth. The focal mechanism results of the three methods are consistent. The depth results of the CAP method, PTD method and sPn-Pn method are close. We used the double difference location method to relocate earthquakes in 2009-2016, and obtained the strikes and dip angles of the small earthquake distributions with the help of simulated annealing algorithm and gauss Newton algorithm fitting. According to the focal mechanism results, the depth results, the characteristics of small earthquake distributions and the structural characteristics of the source area, the seismogenic fault strike is NEE and the main pressure force direction is NNW. The earthquake focal mechanism is for a normal fault type with a little left-lateral strike slip motion.  相似文献   

10.
The focal mechanism parameters of small earthquakes are determined by the maximum velocity and displacement amplitude ratio of the direct ^-P- and ^-S-waves recorded by digital stations. The displacement is obtained from the velocity by emulation, and the two results are compared and analyzed. Results of theoretical analysis and practical measurement indicate that the two results of velocity and displacement are consistent, and it is feasible that the maximum displacement amplitude ratio be replaced by the maximum velocity amplitude ratio of the direct ^-P-and ^-S- waves recorded by regional seismic networks when determining focal mechanism solutions of small earthquakes.  相似文献   

11.
Earthquake focal mechanism solutions provide the basic information about the present-day regional tectonics stress distribution, which controls the activities of crustal faults. Therefore, continued efforts for updating the da-tabase of earthquake focal mechanism solutions are quite valuable and important. The international lithosphere program initiated the ″world stress map project″ (Zoback, 1992) since 1980′s. During this project, worldwide studies and measurements of present-day regional…  相似文献   

12.
Introduction With the model of double couple point source, both orientations of the T, B, and P axes of a single focal mechanism solution and parameters of the two nodal planes may be determined. The focal mechanism solution under ″the model of the best double couple″ can also be given by seis- mic moment tensor, such as those provided by Harvard CMT solutions. The orientations of the T, B, and P axes from one earthquake are associated with the released stress, but they cannot be re- gar…  相似文献   

13.
On the basis of digital records from Tayuan well,we study coseismic effects of water temperature caused by re-mote earthquakes.The records show that the water temperature changes are consistently following the process ofdrop-rise-recovery regardless of focal mechanism or epicentral directions.The step amplitude of water temperatureincreases with the increase of earthquake magnitude,and decreases with the decrease of epicentral distances.Theyhave rather well correlation.Water temperature rising after earthquake is influenced by water level variations.Fi-nally,the mechanisms of coseismic effects of water temperature have been discussed.Preliminary study shows thataccelerated convection and mixing of different temperature water in virtue of seismic wave are the main causes ofwater temperature drops.Seismic wave accelerates water convection,which causes warm water to move up fromdeeper part of the well and cold water to go down from the upper part.Temperature probe will detect water tem-perature drops at early stage.After the occurrence of earthquake,as the fluctuation of water level gradually quietsdown,water temperature near the probe begins to rise.  相似文献   

14.
Based on relocating the Jiujiang-Ruichang earthquake sequence which occurred on November 26, 2005 in Jiangxi Province with the double-difference (DD) algorithm and master event technique, the paper discusses the focal mechanism of the main shock (MsS.7) and the probable seismo-tectonics. The precise relocation results indicate that the average horizontal error is 0.31kin in a EW direction and 0.40kin in a NS direction, and the average depth error is 0.48kin. The focal depths vary from 8kin to 14kin, with the predominant distribution at 10kin - 12kin. The epicenter of the main shock is relocated to be 29.69^oN, 115.74^oE and the focal depth is about 10.Skin. Combining the predominant distribution of the earthquake sequence, the focal mechanism of the main shock and the tectonic conditions of N-E- and NW-strike faults growth in the seismic region, we infer that the main shock of the earthquake sequence was caused by a NW striking buried fault in the Rnichang basin. The nature of seismic faults needs to be further explored.  相似文献   

15.
In this work,the vertical deformation,horizontal displacement,and stress fields of arcuate tectonics are theoretically derived from the horizontal tectonic stress; then the characteristics of tectonic movement,seismicity,and focal mechanism of arcuate tectonics of the entire world are explained.It is pointed out that the island arc and other arcuate tectonics are gradually developed under the displacement and stress fields of the arcuate tectonics and that the under-thrusting action of the ocean plate is secondary.The distance formulas between the volcanic arc and the trench are suggested and also that theoretical results are consistent with actual data.  相似文献   

16.
Earthquakes are caused by the failure of faults,driven by tectonic stress build-up in the Earth’s crust.To study the earthquake preparation process and assess regional earthquake potentials,it is vitally important to understand the crustal stress evolution process and identify its change in pattern associated with the seismogenic process.In this study we investigate the focal mechanism orientations of earthquakes in southern California from 1982 to 1999,basing on a focal mechanism catalog from Hauksson.We f...  相似文献   

17.
The Yajiang earthquake sequence in 2001, with the major events of Ms5.1 on Feb. 14 and of Ms6.0 on Feb.23, are significant events in the Sichuan region during the last 13 years. Eighty-eight earthquakes in the sequence with at least 5 distinct onset parameters for each recorded by the Sichuan Seismic Network in the period of Jan. 1 through June 30,2001 were chosen for this study. The events are relocated and the focal mechanism is derived from P-wave onsets for 13 events with relatively larger magnitudes. The focal depth of all earthquakes fall between a range of 2km to 16km, with dominant distribution between 9km to 11km. Theforeshocks, the Ms5.1 earthquake and the Ms6.0 earthquake and their aftershocks are all located close to the Zihe fault and the dominant epicentral distribution is in NW direction, identical to that of the fault. The fracture surface of the focal mechanism is determined in accordance to the mass transfer orientation in the recent earth deformation field in the Yajiang region. The P axes of the principal compressive stress in focal mechanism solutions of the 13 events show bigger vertical components, and the horizontal projection trending SE. The earthquakes are of left-lateral, strike-slip normal, and normal strike-slip types. The rupture surface of most earthquakes strike NW-SE, dipping SW. Based on the above information, we conclude that the Zihe fault that crosses the earthquake area, striking NW and dipping SW, is the seismogenic fault for the Yajiang earthquake sequence.  相似文献   

18.
The seismogenic fault and the dynamic mechanism of the Ning’er, Yunnan Province MS6.4 earthquake of June 3, 2007 are studied on the basis of the observation data of the surface fissures, sand blow and water eruption, land-slide and collapse associated with the earthquake, incorporating with the data of geologic structures, focal mecha-nism solutions and aftershock distribution for the earthquake area. The observation of the surface fissures reveals that the Banhai segment of the NW-trending Ning’er fault...  相似文献   

19.
Jiashi and its surrounding areas are composed of many structural zones. Using the focal mechanism solutions of 59 moderately strong earthquakes in Jiashi and its surrounding areas, and combining these with the calculation results of system cluster and stress field inversion, we analyzed the evolvement characteristics of the stress field for different times and different regions. The results were as follows: The earthquakes in Jiashi are mainly strike-slip. However, those of the Kalpin block are mainly reverse events, showing an obvious thrusting. The regional characteristics are different from other areas. The direction of the regional principal stress field is near NS. However, under different tectonic backgrounds, the directions of the stress fields are different. The direction of the principal compress stress is near NS in the Kashi-Wuqia area. But before and after the 3 earthquakes with M7.0, dynamic evolution from NW to NS and then to NE with time process was observed. The Kalpin block has been dominated by a consistent stress field in the NW direction for a long time. However, the direction of the stress field of the Jiashi region is NE. Since 1996, the direction of the regional stress field has changed obviously. The direction of the P axis was deflected towards the NE, and the plunge angle increased. The result shows clearly the regional characteristics and variation of the distribution pattern of the stress field in different tectonic environments.  相似文献   

20.
Introduction The ground motion is generally estimated by attenuation relation in seismic hazard assesment.The attenuation relation is usually the function of earthquake magnitude and distance.Actually the focal mechanism and other source parameters may also have significant impacts on the ground motion,especially in the near-source region.Recent post-earthquake investigations show that the damages have close relation with the closest fault-plane distance.On August16,2003,a MS=5.9earthquake o…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号