首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to clarify the structure of the strong tidal current at the Naruto Strait in the Seto Inland Sea of Japan, the sea-level values were observed in the strait and the current measurements were made with an Acoustic Doppler Current Profiler (ADCP).The tidal volume transports for M2 and S2 tides were about 74×103 and 26×103 m3 sec–1, respectively. The horizontal profile of the velocity at the phase of the strong tidal current compares favorably with a theoretical profile of the two-dimensional steady turbulent jet except for the side parts of the profile. Moreover, the entrainment rate of the surrounding water into the strong tidal jet was estimated from the difference of mass flux between two cross-sections at the strait, the entrainment rate and entrainment constant for both the northward and southward flows being about 1.3–2.5×10–4m–1 and about 0.03–0.05, respectively.  相似文献   

2.
Characteristics of the tidal residual flow, the steady current induced in the tidal current system, are studied by a numerical method. The model basin has the same topography as that studied byYanagi (1976) and byOonishi (1977) where only the horizontal motion of the residual flow is concerned. In this study, the effect of the vertical motion is investigated as it is associated with the tidal residual flow. To this end, the bottom friction omitted in the previous study (Oonishi, 1977) is included and a two-leveled model is adopted.The first two experiments exclude the earth's rotation and the buoyancy effect on the flow. The results are as follows. The horizontal flow pattern is essentially the same as that obtained in the previous Oonishi study. The bottom friction results in the reduction of the velocity of the residual flow especially in the bottom level. An important result is that vertical velocity is as strong as the horizontal velocity multiplied by the scale ratio and that it remains even in the time-average. Upwelling appears at the center of the residual circulation. This upwelling explains Yanagi's observation in the hydraulic model that the sediment is swept by the flow and accumulates horizontally in the area at the bottom below the center of the residual circulation. The distribution of a tracer, which is simultaneously calculated in these cases, indicates the important role of vertical motion in the material dispersion in the model.The last experiment includes the earth's rotation and the buoyancy effect presuming a more actual sea. It shows another effect of the vertical motion. The Coriolis term, which operates only under the condition that a horizontal divergence of the flow is present, skews the horizontal residual flow pattern.  相似文献   

3.
Some observations were carried out to understand the structure of the vertical residual flow in Kasado Bay. The results of current measurements at three points in the lower layer indicated that a horizontal counterclockwise tidal residual circulation converges in the lower layer. The velocity of upward residual flow was estimated to be about 4.5×10–3 cm s–1. The distributions of water temperature, salinity and grain size in the sediment support the existence of this upward motion.  相似文献   

4.
Constant flows, as well as oscillatory tidal flow, play an important role in the long-term dispersion of water in the Seto Inland Sea. Two kinds of numerical model (1-line and 2-line models) of the Seto Inland Sea have been developed to determine the role of density-induced currents, one type of the constant flow, in water dispersion in the Inland Sea. The seasonal variations of temperature, salinity and density fields are simulated and the density-induced current field is predicted at the same time. It is found that the most appropriate value of the longitudinal eddy diffusion coefficient,K x, is 5×106–7×106 cm2sec–1. The value of the overall mean dispersion coefficient is of the order of 107cm2sec–1 (Hayami and Unoki, 1970). Consequently, it is suggested that 50–70% of the total dispersion in the Seto Inland Sea can be attributed to currents other than density-induced currents,i.e., tidal currents, tide-induced currents and wind-driven currents.In winter, both density and velocity fields, calculated using the 1-line model, satisfy the conditions for the existence of a coastal front in Kii Channel and in the eastern Iyo-nada.  相似文献   

5.
渤、黄、东海三维潮波运动数值模拟   总被引:50,自引:4,他引:46  
采用POM三维海流数值模式模拟渤、黄、东海潮波运动。所得潮汐调和常数与77个测站的观测值的平均绝对误差:m1振幅1.92cm,迟角4.39°;M2振幅4.70cm,迟角5.08°。模拟结果显示M2分潮流共存在8个圆流点,m1岁潮流共存在9个圆流点。其中,M2分潮流在舟山群岛附近与m1分潮流在黄海北部和台湾海峡谷存在一个圆流点,这三个圆流点是本文数值模拟所首次显示的,需进一步的观测验证它们实际存在与否。模式还得出湍流涡动系数分布。  相似文献   

6.
An analytical method for describing horizontal matter dispersion in shear currents is presented using a tensor expression from the point of view that matter dispersion due to the shear effect should be one of the principal mixing dilution processes. Although the behavior of horizontal dispersion is considerably more complicated than common longitudinal dispersion, the present study elucidates the vertical structure of dispersion and the dispersing process from the initial to the stationary stage, besides the usual depth-averaged dispersion coefficient at the stationary stage. As one of the typical applications of horizontal dispersion, dispersion due to the pure drift current with an Ekman layer is examined theoretically using the present method. This examination reveals that the displacement of the centroid and the major axis of dispersion are twisted in the vertical direction more than the direction of the current vector forming the Ekman spiral; that the variance increases in proportion to the third power of the elapsed time; and that the dispersion coefficient at the stationary stage remains constant, independent of the depth normalized by an Ekman layer thickness. Such dependence of the dispersion coefficient in the steady current is shown to be different from that in the oscillatory current, which is inversely proportional to the depth normalized by a Stokes layer thickness. This is considered to be induced by the difference of the vertical profiles of the first order moment in both currents, that is, the shear region of the first order moment is restricted around the floor by the alternation of the current shear in the oscillatory current while it is diffused in the whole depth in the steady current.  相似文献   

7.
The wind-stress field in the North Pacific Ocean during 1961–75 is computed from nearly five million ship reports. With a drag coefficient having a linear relation to wind speed, annual mean and monthly mean wind-stress fields are obtained, and their features are described.Compared with the stress fields obtained byHellerman (1967) andWyrtki andMeyers (1976), the eastward component of the stress in the present study is larger in magnitude and the northward one smaller in magnitude, especially in the trade wind region. Differences in the drag coefficient do not have a pronounced effect on the estimated stress field. Long-period inter-annual variations in the wind field are the most likely cause of the discrepancies between the present study and those of the above authors.The maximum of the wind-stress curl, estimated from the annual mean wind-stress fields, is as large as 1.0×10–8dyn cm–3 around 30°N, and is larger than that estimated byEvenson andVeronis (1975). The discrepancy is considered to be mainly due to differences in the computed stress field itself rather than due to differences in the grid size used in the stress computations.The Sverdrup transports integrated from the eastern boundary on the basis of the present stress field have a maximum greater than 40×10–12cm3 s–1 (Sv.) near the western boundary around 30°N. This value is closer to the observed transport of the Kuroshio than that based on Hellerman's stress field.  相似文献   

8.
The longitudinal dispersion effect due to the boundary layer formed by a tidal oscillatory current is examined theoretically. This analysis reveals the process whereby the dispersion coefficient becomes steady after the release of the diffusing substance. Though the dispersion due to an oscillatory current has so far been investigated mostly in the case of a linear velocity profile, the following result was found by taking account of the boundary layer in the oscillatory current. The depth-averaged dispersion coefficient for the case of a current having a boundary layer can be a few times larger than in the case of a linear velocity profile when the characteristic mixing time is long; the phase lead in the boundary layer induces nearly 20 percent of the longitudinal dispersion effect.  相似文献   

9.
Time series of the vertical distribution of resuspended matter and bottom current were collected concurrently during summer at a few anchored stations in the Seto Inland Sea. The vertical distribution of resuspended matter was measured every hour for about one tidal cycle and the three components of current fluctuation were obtained at each sampling station. Current data at each sampling station show that the bottom is hydraulically smooth.Assuming that the averaged vertical distribution of resuspended matter for one tidal cycle shows a steady state distribution, the settling velocityWs of resuspended matter is estimated to be in the range of 1.2×10–2 to 5.7×10–2 cm sec–1 from analysis of the averaged distributions.The relation between the erosion rate and the bottom shear stress for this study area is investigated and is compared with that for other areas. The results show that the erosion of sediment in the Seto Inland Sea during summer occurs even due to the low bottom shear stress which is considered as almost smooth hydraulically.  相似文献   

10.
An analysis of two-dimensional horizontal plane shear dispersion in steady, periodic, almost-periodic and randomly forced skewed free surface flow is presented. A two-time scale perturbation analysis of the advection-diffusion equation is used to derive the two-dimensional advection-dispersion equation and the horizontal dispersion coefficient tensor. For combinations of steady, periodic and almost-periodic flow, the time dependent dispersion coefficient tensor contains steady terms and periodic terms at frequencies associated with the forcing frequencies and their sums and differences. For combinations of steady, periodic, almost-periodic and stationary random forcings, the expected value dispersion coefficient tensor contains terms associated with the steady forcings and terms associated with the unsteady forcings represented by the spectral density functions of the unsteady forcings. Estimates of the magnitude of the expected value dispersion coefficient tensor are presented for representative estuarine and continental shelf conditions.  相似文献   

11.
Estimates of vertical turbulent diffusion coefficient (K t ) in the Black Sea pycnohalocline have been obtained from data of simultaneous observations of seawater temperature, salinity, density, and horizontal current velocity, obtained in the northeastern part of the Black Sea during 2013–2014 with a moored Aqualog profiler. A Munk and Andersson (1948) type parameterization, adapted for the Black Sea environment, is proposed for calculating K t . Strong short-period (several days) variability of turbulent exchange is revealed, induced by vertical shear variations of the current velocity.  相似文献   

12.
Two numerical studies (Endoh, 1977;Harashima et al., 1978) have been proposed on a front formed by a coupling effect of cooling of the sea surface and inflow of the fresh water in a vertical two-dimensional plane without the rotation of the earth. It is, however, not easy to interpret their numerical results. A simple interpretation will be proposed by an analytical study in this paper.It is found that local convection due to the density inversion, which is expressed by the convective adjustment of the vertical diffusion coefficient in the actual numerical calculations, plays an important role on the front formation.The characteristics of the front is also clarified in the case of steady state. Namely, simple functional dependences are obtained of the position and the width of the front, the horizontal and the vertical velocities and the distribution of the buoyancy and the salinity in the neighborhood of the front on the horizontal coordinate, the cooling rate, the eddy coefficients of diffusion and viscosity, the water depth and the vertically averaged horizontal fluxes of buoyancy and salinity.  相似文献   

13.
Simulations of the time and depth-dependent salinity and current fields of the Columbia River Estuary have been performed using a multi-channel, laterally averaged estuary model. The study simulated two periods. The first, in October 1980, with low riverflow of about 4,000m3s−1, which showed marked changes in the salinity intrusion processes between neap and spring tides; and second, in spring 1981, with high riverflow varying between 7,000 and 15,000m3s−1, which showed the rapid response of the salinity intrusion to changes in riverflow and that vertical mixing did not change character with increasing tidal energy because of the maintenance of stratification by freshwater flow. An extreme low flow simulation (riverflow of 2,000m3s−1) showed a more partially mixed character of the estuary channels with tidal dispersion of salt across the Taylor Sands from the North Channel to the upper reaches of the Navigation Channel. Asymmetries in the non-linear tidal mean flows, in the flood and ebb circulations, and salinity intrusion characteristics between the two major channels were observed at all riverflows. The model confirms Jay and Smith's (1990) analysis of the circulation processes in that tidal advection of salt by the vertically sheared tidal currents is the dominant mechanism by which the salinity intrusion is maintained against large freshwater flows. An accurate finite-difference method, which minimized numerical dispersion, was used for the advection terms and was an important component in reasonably simulating the October neap-spring differences in the salinity intrusion. The simulations compare favorably with elevation, current and salinity time series observations taken during October 1980 and spring 1981.  相似文献   

14.
A three-dimensional tidal current model is developed and applied to the East China Sea (ECS), the Yellow Sea and the Bohai Sea. The model well reproduces the major four tides, namely M2, S2, K1 and O1 tides, and their currents. The horizontal distributions of the major four tidal currents are the same as those calculated by the horizontal two-dimensional models. With its high resolutions in the horizontal (12.5 km) and the vertical (20 layers), the model is used to investigate the vertical distributions of tidal current. Four vertical eddy viscosity models are used in the numerical experiments. As the tidal current becomes strong, its vertical shear becomes large and its vertical profile becomes sensitive to the vertical eddy viscosity. As a conclusion, the HU (a) model (Davieset al., 1997), which relates the vertical eddy viscosity to the water depth and depth mean velocity, gives the closest results to the observed data. The reproduction of the amphidromic point of M2 tide in Liaodong Bay is discussed and it is concluded that it depends on the bottom friction stress. The model reproduces a unique vertical profile of tidal current in the Yellow Sea, which is also found in the observed data. The reason for the reproduction of such a unique profile in the model is investigated.  相似文献   

15.
Hourly fluctuations of vertical velocity in relation to components of flow and wind and temperature oscillations at a morring site in the shelf waters off the west coast of India are discussed. The vertical velocities were computed from a time series of vertical temperature profiles assuming that horizontal advection of temperature is negligible. The computed values at a depth of 40 m during the 72-h period of observation were of the order of 10−1 to 10−2cm s−1, with a mean value of −2·77 × 10−2 cm s−1 indicating a net upward movement of water. The computed vertical velocity showed fluctuations of about 2–3 h, in addition to weaker signals of about 12 h. Based on the spectral estimates, we speculate that these fluctuations of 2–3 h in the vertical velocity may be caused by the fluctuations in the along-shore wind. The oscillations of isotherms found in the temperaturedepth time series and the spectral estimates of temperature and cross-shore flow component showed a periodicity of about 12 h, which indicated the presence of semi-diurnal internal waves. The fact that these internal wave troughs were associated with the measured onshore flow suggested that the waves were propagating offshore. The computed stability parameters showed little evidence of instability or mixing. It was found that the isotherm troughs in the temperaturedepth time series at about 12-h period coincided with high vertical shear in the cross-shore direction and low values of Brunt Vaisälä frequency.  相似文献   

16.
Longitudinal dispersion in wave-current-vegetation flow   总被引:1,自引:0,他引:1  
The flow, turbulence, and longitudinal dispersion in wave-current flow through submerged vegetation are experimentally examined. Laboratory experiments are carried out by superimposing progressive waves on a steady flow through simulated submerged vegetation. The resultant wave-current-vegetation interaction shows strong interface shear with increase in the velocity due to the wave-induced drift. The increase in turbulence in the region of vegetation is found to be about twice higher than in the no-wave case due to the additional mixing by wave motions. Solute experiments are conducted to quantify the wave-current-vegetation longitudinal dispersion coefficient (WCVLDC) by the routing method and by defining length and velocity scales for the wave-current-vegetation flow. An empirical expression for the WCVLDC is proposed. Although the increase in vertical diffusivity is observed as compared with bare-bed channels, the shear effect is stronger, which increases the value of the WCVLDC. The study can be a guideline to understand the combined hydrodynamics of waves, current, and vegetation and quantify the longitudinal dispersion therein. Published in Morskoi Gidrofizicheskii Zhurnal, No. 1, pp. 50–67, January–February, 2009.  相似文献   

17.
Near surface vertical distributions of Japanese anchovy eggs (isolated and pelagic) were studied at western Wakasa Bay, Japan. Samples were collected in horizontal tows with four plankton nets simultaneously operated at different four depths of 0, 0.5, 1.0, and 2.0 m. The egg concentration was found to decrease exponentially with depth. The egg concentration profile can be explained by considering the balance of the eggs' ascent and vertical diffusion. Taking further into account vertical difference in rising/sinking rates of the eggs, a clear accumulation of the eggs on a pycnocline, observed elsewhere, also can be explained. Vertical eddy diffusivity in the surface layer in a calm sea was 1–10 cm2 s–1, as estimated from the egg concentration profile and the velocities of the eggs in the vertical direction.  相似文献   

18.
Based on the momentum equations, the turbulence stresses and eddy viscosities along five sections in Hangzhou Bay are estimated by using the observed data of tidal currents and tides. The coefficient of bottom stresses obtained from the calculation is 0.67 × 10-3 on the average and the vertical profiles of the amplitudes of turbulence stresses are almost linear and slight concave downwards, and the phases are deferred continuously from sea-bed. The coefficient of vertical eddy viscosity reaches its maximum at the layer below the mid-depth with a value of about 60 cm2S-I on the average.  相似文献   

19.
The treatment of diffusion due to the tidal current in the near-shore ocean, and the similitude in the hydraulic model experiment are studied.In broad and shallow tidal bays and in the coastal seawaters near irregular boundaries, horizontal eddy-currents induced geometrically and turbulence caused by their cascading have predominant effect on dispersion of river and waste waters. These turbulent diffusion processes are similarly reproduced in the Froude models of turbulent resume, by adding the similitude for the self-similar structure of the spectral density of turbulence, or the eddy diffusivity. The similitude means to take the scale ratios of the time and the vertical length as the two-thirds power of the scale ratio of the horizontal length.Similitudes are also derived for the system of the gravitational circulation, the stratification and the salt-mass transport in partially and well-mixed estuaries. Generally, the vertical eddy diffusivity must be exaggerated by a half power of the model distortion externally by some methods of agitation. When the tidal bay is broad and very shallow, the Rayleigh number and the Hansen number are small, and the effect of density current and stratification on the flushing is small. Instead the effect of local eddies, geometrically induced tidal residual circulations become predominant. In this special case, there is no need to satisfy the similitude for density difference and vertical shear effects on dispersion.  相似文献   

20.
《Ocean Modelling》2004,6(3-4):245-263
Astronomical data reveals that approximately 3.5 terawatts (TW) of tidal energy is dissipated in the ocean. Tidal models and satellite altimetry suggest that 1 TW of this energy is converted from the barotropic to internal tides in the deep ocean, predominantly around regions of rough topography such as mid-ocean ridges. A global tidal model is used to compute turbulent energy levels associated with the dissipation of internal tides, and the diapycnal mixing supported by this energy flux is computed using a simple parameterization.The mixing parameterization has been incorporated into a coarse resolution numerical model of the global ocean. This parameterization offers an energetically consistent and practical means of improving the representation of ocean mixing processes in climate models. Novel features of this implementation are that the model explicitly accounts for the tidal energy source for mixing, and that the mixing evolves both spatially and temporally with the model state. At equilibrium, the globally averaged diffusivity profile ranges from 0.3 cm2 s−1 at thermocline depths to 7.7 cm2 s−1 in the abyss with a depth average of 0.9 cm2 s−1, in close agreement with inferences from global balances. Water properties are strongly influenced by the combination of weak mixing in the main thermocline and enhanced mixing in the deep ocean. Climatological comparisons show that the parameterized mixing scheme results in a substantial reduction of temperature/salinity bias relative to model solutions with either a uniform vertical diffusivity of 0.9 cm2 s−1 or a horizontally uniform bottom-intensified arctangent mixing profile. This suggests that spatially varying bottom intensified mixing is an essential component of the balances required for the maintenance of the ocean’s abyssal stratification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号