首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although sequence stratigraphic concepts have been applied extensively to coarse-grained siliciclastic deposits in nearshore environments, high-resolution sequence stratigraphic analysis has not been widely applied to mudstone-dominated sedimentary successions deposited in more distal hemipelagic to pelagic settings. To examine how sequence stratigraphic frameworks can be derived from the facies variability of mudstone-dominated successions, the Tununk Shale Member of the Mancos Shale Formation in south-central Utah (USA) was examined in detail through a combination of sedimentological, stratigraphic and petrographic methods. The Tununk Shale accumulated on a storm-dominated shelf during the second-order Greenhorn sea-level cycle. During this eustatic event, the depositional environment of the Tununk Shale shifted laterally from distal middle shelf to outer shelf, then from an outer shelf to an inner shelf environment. At least 49 parasequences can be identified within the Tununk Shale. Each parasequence shows a coarsening-upward trend via upward increases in silt and sand content, thickness and lateral continuity of laminae/beds, and abundance of storm-generated sedimentary structures. Variations in bioturbation styles within parasequences are complex, although abrupt changes in bioturbation intensity or diversity commonly occur across parasequence boundaries (i.e. flooding surfaces). Due to changes in depositional environments, dominant sediment supply and bioturbation characteristics, parasequence styles in the Tununk Shale show considerable variability. Based on parasequence stacking patterns, eleven system tracts, four depositional sequences and key sequence stratigraphic surfaces can be identified. The high-resolution sequence stratigraphic framework of the Tununk Shale reveals a hierarchy of stratal cyclicity. Application of sequence stratigraphic concepts to this thick mudstone-dominated succession provides important insights into the underlying causes of heterogeneity in these rocks over multiple thickness scales (millimetre-scale to metre-scale). The detailed sedimentological characterization of parasequences, system tracts and depositional sequences in the Tununk Shale provides conceptual approaches that can aid the development of high-resolution sequence stratigraphic frameworks in other ancient shelf mudstone successions.  相似文献   

2.
The latest Campanian-Middle Palæocene Dakhla Formation has been the subject of few sedimentological studies, despite its great areal distribution. This shale/mudstone unit exhibits marked facies variations in a northwest-southeast direction. The facies distribution patterns, stratal geometries and type, as well as frequency of the associated microfauna, allow a possible subdivision of the Dakhla Formation into ten depositional cycles. These cycles are delineated from each other by a bounding surface, which is defined by an abrupt facies change and/or intensively bioturbated hardground. The sediments of these cycles have been accumulated in a shallow subtidal-upper intertidal-flat environment during Late Cretaceous and in a middle/outer shelf-lower intertidal suite during Palæocene times. Deposition took place in a topographically irregular basin under a constantly high clastic input derived largely from the south and southwest. The cyclic pattern of deposition that characterises the Dakhla Formation, points to repeated relative sea level fluctuations. The submarine palæorelief also plays a significant role on the facies pattern. It is found that the succession was deposited along the marginal part of a palæostructural low. Its deeper area is located around present-day Edmonstone. The study of sedimentary facies characteristics and cyclicity of the Dakhla Formation leads to the recognition of four depositional sequences bounded by five type 2 sequence boundaries. The first and second type 2 depositional sequences correspond to the Late Maastrichtian Mawhoob Shale and lower-middle part of the Beris Mudstone Members, respectively. The third sequence comprises the Beris Mudstone Member ‘upper part’ and the Latest Maastrichtian partition of the Kharga Shale Member. The well-documented Cretaceous-Tertiary boundary marks the type 2 sequence boundary at the top of this sequence. The last depositional sequence coincides with the late Early-Middle Palæocene subdivision of the Kharga Shale Member. These sequences comprise nine systems tracts, mainly of transgressive and highstand systems tract deposits.  相似文献   

3.
王训练  林善园 《沉积学报》1999,17(3):331-338
层序的空间分布是否具有全球性,地史时期海平面变化是否具有全球等时一致性,是层序地层学的根本问题。上扬子地台南缘不同沉积相区上泥盆统和下石炭统沉积层序研究表明,不同级别的层序具有特定的空间分布和对比范围,虽然形成各种级别层序的海平面变化基本上是全球性的。本文把空间分布,特别是在不同沉积相区的分布作为定义和识别各种级别层序的一个标准。正层序( 三级层序) 的分布可能是全球性的,至少可以在同一大陆边缘的不同相区辨认,并能进行远距离对比,有些甚至可以进行全球对比。一般来说,亚层序( 四级层序,时间间隔0.5 M a~ 1.5 M a) 在不同的沉积相区对比比较困难,虽然有些亚层序的空间分布也可以是全球性的。亚层序至少应当在一个沉积相带内可以普遍识别和对比。更高级的层序,包括副层序( 五级层序,即Wang 和 Shi 1996 年使用的亚层序) 和小层序( 六级层序) 的分布是区域性的或地区性的,它们可能分别反映米兰柯维奇旋回的长周期和短周期。正层序和亚层序一般可在不同沉积相区识别,而副层序和小层序一般仅能在浅海相区识别,在斜坡和盆地相区则不易辨认。  相似文献   

4.
INTRODUCTIONPethenreefsarewidelydistributedinSouthetna,espeCiallyinsouthernGulzhouandnorth~ternGUanghProvince,wherenamusreefsoccurandareWellexposed.TheUpperPenmanreefinZiyUnChamy,southernG~uisoneofthehotdevelopedandexposedhairierreefsinthearea(WangandFan,1994).DuetoitSspedaltectonic--geographicpositionandcompletefactesbeltd~iation,thebatherreefshavearousedagreatinterestamonggeologistS.SpstelnaticinvestigationandstudyonthebarrierreefshaveaammadebymanygeologistSsince197ds(LiuandGao,…  相似文献   

5.
The Dakota Formation in southern Utah (Kaiparowits Plateau region) is a succession of fluvial through shallow-marine facies formed during the initial phase of filling of the Cretaceous foreland basin of the Sevier orogen. It records a number of relative sea-level fluctuations of different frequency and magnitude, controlled by both tectonic and eustatic processes during the Early to Late Cenomanian. The Dakota Formation is divided into eight units separated by regionally correlatable surfaces that formed in response to relative sea-level fluctuations. Units 1–6B represent, from bottom to top, valley-filling deposits of braided streams (unit 1), alluvial plain with anastomosed to meandering streams (2), tide-influenced fluvial and tide-dominated estuarine systems (3A and 3B), offshore to wave-dominated shoreface (4, 5 and 6A) and an estuarine incised valley fill (6A and 6B). The onset of flexural subsidence and deposition in the foredeep was preceded by eastward tilting of the basement strata, probably caused by forebulge migration during the Early Cretaceous, which resulted in the incision of a westward-deepening predepositional relief. The basal fluvial deposits of the Dakota Formation, filling the relief, reflect the onset of flexural subsidence and, possibly, a eustatic sea-level rise. Throughout the deposition of the Dakota Formation, flexure controlled the long-term, regional subsidence rate. Locally, reactivation of basement faults caused additional subsidence or minor uplift. Owing to a generally low subsidence rate, differential compaction locally influenced the degree of preservation of the Dakota units. Eustasy is believed to have been the main control on the high-frequency relative sea-level changes recorded in the Dakota. All surfaces that separate individual Dakota units are flooding surfaces, most of which are superimposed on sequence boundaries. Therefore, with the exception of unit 6B and, possibly, 3B, most of the Dakota units are interpreted as depositional sequences. Fluvial strata of units 1 and 2 are interpreted as low-frequency sequences; the coal zones at the base and within unit 2 may represent a response to higher frequency flooding events. Units 3A to 6B are interpreted as having formed in response to high-frequency relative sea-level fluctuations. Shallow-marine units 4, 5 and 6A, interpreted as parasequences by earlier authors, can be divided into facies-based systems tracts and show signs of subaerial exposure at their boundaries, which allows interpretation as high-frequency sequences. In general, the Dakota units are good examples of high-frequency sequences that can be misinterpreted as parasequences, especially in distal facies or in places where signs of subaerial erosion are missing or have been removed by subsequent transgressive erosion. Both low- and high-frequency sequences represented by the Dakota units are stacked in an overall retrogradational pattern, which reflects a long-term relative sea-level rise, punctuated by brief periods of relative sea-level fall. There is a relatively major fall near the end of the M. mosbyense Zone, whereas the base of the Tropic shale is characterized by a major flooding event at the base of the S. gracile Zone. A similar record of Cenomanian relative sea-level change in other regions, e.g. Europe or northern Africa, suggests that both high- and low-frequency relative sea-level changes were governed by eustasy. The high-frequency relative sea-level fluctuations of ≈100 kyr periodicity and ≈10–20 m magnitude, similar to those recorded in other Cenomanian successions in North America and Central Europe, were probably related to Milankovitch-band, climate-driven eustasy. Either minor glacioeustatic fluctuations, superimposed on the overall greenhouse climate of the mid-Cretaceous, or mechanisms, such as the fluctuations in groundwater volume on continents or thermal expansion and contraction of sea water, could have controlled the high-frequency eustatic fluctuations.  相似文献   

6.
In the Late Cambrian, the North China Platform was a typical carbonate ramp platform. The Upper Cambrian of the northern part of the North China Platform is famous for the development of bioherm limestones and storm calcirudites and can be divided from bottom to top into the Gushan, Changshan and Fengshan formations. In this set of strata, the deep-ramp mudstone and marls and the shallow-ramp packstones and grainstones constitute many carbonate meter-scale cycles of subtidal type. More tidal-flat dolomites axe developed in the Upper Cambrian of the southern margin of the North China platform, in which limestone and dolomite beds also constitute many carbonate meter-scale cycles of the peritidal type. These cycles are marked by a variety of litho-facies successions. There are regularly vertical stacking patterns of meter-scale cycles in long-term third-order sequences, which is the key to discerning such sequences. Third-order sequence is marked by a particular sedimentary-facies succession that is the result of the environment-changing process of deepening and shoaling, which is genetically related to third-order sea level changes. Furthermore, four third-order sequences can be grouped in the Upper Cambrian of the North China Platform. The main features of these four third-order sequences in the northern part of the platform can be summarized as follows: firstly, sequence-boundaries are characterized by drowning unconformities; secondly, the sedimentary-facies succession is generally constituted by one from deep-ramp facies to shallow-ramp facies; thirdly, a succession of “CS (?) HST” (i.e., “condensed section and highstand system”) forms these four third-order sequences. The chief features for the third-order sequences in the southern part of the North China Platform comprises: more dolomites are developed in the HSTs of third-order sequences and also developed more carbonate meter-scale cycles of peritidal types; the sedimentary-facies succession of the third-order sequences is marked by “shallow ramp-tidal flat”; the sequence boundaries are characterized by exposure punctuated surfaces. According to the changes for the third-order sequences from the north to the south, a regular sequence-stratigraphic framework can be established. From cycles to sequences, the study of sequence stratigraphy from litho-facies successions to sedimentary-facies successions exposes that as follows: meter-scale cycles that are used as the basic working unit actually are litho-facies successions formed by the mechanism of a punctuated aggradational cycle, and third-order sequences that are constituted by regularly vertical stacking patterns of meter-scale cycles are marked by sedimentary-facies successions. On the basis of the changing curve of water depth at each section, the curve of the relative third-order sea level changes in the late Cambrian of the North China Platform can be integrated qualitatively from changing curve of water depth. The correlation of Late Cambrian long-term sea level changes between North China and North America demonstrates that there are not only similarities but also differences, reflecting control of long-term sea level changes both by global eustacy and by regional factors.  相似文献   

7.
The Eocene Trihueco Formation is one of the best exposed successions of the Arauco Basin in Chile. It represents a period of marine regression and transgression of second-order duration, during which barrier island complexes developed on a muddy shelf. The strata are arranged in classical shoaling-upward parasequences of shoreface and beach facies capped by coal-bearing, back-barrier lagoon deposits. These fourth-order cycles are superimposed upon third-order cycles which caused landward and seaward shifts of the coastal facies belts. The final, punctuated rise in sea level is represented by shelf mudrocks with transgressive incised shoreface sandstones. Relative sea-level oscillations as revealed in the stratigraphy of the Trihueco Formation show a reasonable correlation with published Eocene eustatic curves.  相似文献   

8.
The Balfour Formation represents a fully fluvial succession of late Late Permian–earliest Triassic age which accumulated in the foredeep of the Karoo Basin during the overfilled phase of the foreland system. The lack of a coeval marine environment within the limits of the preserved Karoo Basin provides an opportunity to study the stratigraphic cyclicity developed during a time when accommodation was solely controlled by tectonics. The Balfour stratigraphy is composed of a succession of six third-order fluvial depositional sequences separated by subaerial unconformities. They formed in isolation from eustatic influences, with a timing controlled by orogenic cycles of loading and unloading. Sediment accumulation took place during stages of flexural subsidence, whereas the bounding surfaces are related to stages of isostatic uplift. The vertical profile of all sequences displays an overall fining-upward trend related to the gradual decrease in topographic slope during orogenic loading. At the same time, an upward change in fluvial styles can be observed within each sequence, from initial higher to final lower energy systems. The actual fluvial styles in each location depend on paleoslope gradients and the position of the stratigraphic section relative to the orogenic front. Proximal sequences show transitions from braided to meandering systems, whereas more distal sequences show changes from sand-bed to fine-grained meandering systems. The average duration of the Balfour stratigraphic cycles was 0.66 My, i.e. six cycles during 4 My. No climatic fluctuations are recorded during this time, with the long-term climatic background represented by temperate to humid conditions.  相似文献   

9.
The late Cretaceous–Palaeocene Western Canada foreland system provides a record of high-frequency cycles of reciprocal flexural tectonics superimposed on longer term changing dynamic subsidence. Initial dominance of dynamic subsidence during the deposition of the Bearpaw marine succession resulted in continual subsidence with differential rates across the flexural hinge line. Subsequent dominance of flexural tectonics resulted in opposite base-level changes between the proximal and distal reaches of the foreland system during the deposition of the post-Bearpaw nonmarine succession. In both cases, the contrasting base-level changes generated out-of-phase stratigraphic sequences, which defines the concept of reciprocal stratigraphies. Two styles of reciprocal stratigraphies have been identified in relation to the pattern of base-level changes across the foreland system. The Bearpaw style consists of a conformable succession of correlative transgressive and regressive systems tracts, suggesting continuous basin-wide sedimentation with the rates within the range of variation of the rates of base-level rise. The post-Bearpaw style shows sequences correlative to age-equivalent sequence boundaries related to coeval rising and falling base-level, respectively. The succession of Bearpaw and post-Bearpaw sequences corresponds to a cycle of marine to nonmarine foreland sedimentation controlled by changing ratios between dynamic subsidence and flexural tectonics. The amount of sediment supply derived from the orogen to the foreland system may also reflect the rates of dynamic subsidence, as a decrease in dynamic loading may lead to accelerated denudation of the sediment source areas.  相似文献   

10.
为了更好地理解碳酸盐岩旋回沉积的形成机制,计算机模拟可谓是一种既直观又定量的好方法。我们重点选择了与沉积相有关的五个重要参数:(1)与水深相关的沉积速率;(2)时滞(Lagtime);(3)盆地线性沉降速率;(4)潮差;(5)海平面振荡幅度与周期等。由于碳酸盐岩沉积物对海平面变化非常敏感,因此研究中特别注意了海平面振荡幅度与周期的变化对碳酸盐岩旋回沉积的控制和影响。一个几米厚的潮坪旋回层序通常是由海平面的低幅振荡形成的,振荡幅度也就是几米,时滞亦较短。当海平面振荡幅度较大时,在海平面下降期间,滨线向海迁移的速率会超过潮坪的侧向加积速率,因此在内陆棚上缺乏潮坪沉积物。海平面振荡幅度的增加也能造成海平面下降快于潮坪的沉降,滨线向海迁移速率比潮坪进积的速率要快得多,从而在旋回层序内发育较厚的渗流带以及不整合界面。某些高幅振荡(100m或更大)还可造成碳酸盐岩台地的早期淹没以及沉积旋回内部的深水相与浅水相并置  相似文献   

11.
Marine‐connected basins with evaporites occur beneath most extensional continental margins that originated at low‐latitudes and often are of major economic significance. Cyclicity in the evaporite lithofacies reflects the degree of restriction of the basin, overprinted by sea‐level changes, and caused by structural movements in the barrier region, whether by fault‐block rotation, footwall uplift or hanging wall subsidence, in both extensional and compressional basins. The Upper Triassic evaporites of the Ramon section in southern Israel model cyclic sedimentation in such environments. The Mohilla Formation is a carbonate–evaporate–siliciclastic succession of Carnian age that fills a chain of basins extending along the Levant margin from southern Israel to Jordan and Syria. The basins developed in half‐grabens adjacent to normal faults that formed during a period of regional extension. Evaporites of this formation are well‐exposed in outcrops at Makhtesh Ramon, the southernmost of these basins. The M2 Member of the Mohilla Formation is composed of 42 sub‐metre cycles of alternating dolostone, gypsum and calcareous shales. Field and microfacies analysis showed these cycles to conform mostly to restricted shallow and marginal marine environments, spatially limited by the uplifted shoulders of the half‐graben systems. A total of 10 facies types belonging to six depositional environments have been identified. From stacking patterns and analysis of bed to bed change, cycles can be categorized into three groupings: (i) low frequency exposure to exposure cycles that developed under eustatic or climate control; (ii) high frequency deepening/shallowing‐upward cycles, characterized by gradual transitions due to short‐term sea‐level or runoff‐event oscillations possibly referable to orbital forcing; and (iii) high frequency shallowing‐upward cycles, characterized by abrupt transitions, attributable to sporadic tectonic events affecting accommodation space or barrier effectiveness. The way facies and cycling of the sedimentary environments was deciphered in the Mohilla evaporite basin can be used to unravel the genesis of many other evaporite basins with barriers of tectonic origin.  相似文献   

12.
在生物地层及年代地层研究的基础上,对本区上石炭统至中二叠统进行了层序地层学研究,从船山组至孤峰组下部共划分了5个三级层序、13个四级层序。通过五百多个米级旋回层序的研究,认为本区海盆有台地、台盆相间及盆地3个发展阶段,并得出4—6个米级旋回层序组成一个更高级别旋回的结论。  相似文献   

13.
以野外露头观察和室内详细研究为基础,结合沉积模式和层序地层学基本原理,系统分析了燕山西段雾迷山组的沉积相特征,进行了单剖面的层序地层划分。燕山西段雾迷山组以环潮坪型碳酸盐沉积为主,陆源碎屑贫乏,叠层石非常发育。在延庆千沟剖面可以识别出26个三级层序,并进一步归为6个二级层序(S.1-S.6)。每个三级层序三分性明显,都由海侵体系域(TST)、早期高水位体系域(EHST)和晚期高水位体系域(LHST)组成。通过空间上的大范围追索和对比,建立了燕山西段雾迷山组的层序地层格架,绘制了其中5个主要阶段的栅状图(S.2-S.6),并且根据二级层序所表征的沉积相带空间展布初步恢复了雾迷山组沉积期的古地理环境,编制了相应的古地理图(S.2-S.6)。雾迷山组一、二段沉积期古地理环境表现为缓慢海侵,到三、四段沉积期海域范围达到最大值,随后在五、六段沉积期发生海退作用,沉积相带逐渐向沉降中心收缩,海域范围明显缩小。  相似文献   

14.
大连地区甘井子组是辽宁重要的新元古界层位,发育大量的碳酸盐岩.运用经典层序地层学理论,通过对野外实测剖面的综合分析,对大连地区新元古界震旦系甘井子组进行层序地层学研究,共识别出5个层序界面,划分了4个三级层序,15个准层序组和55个准层序.甘井子组碳酸盐岩沉积可划分为局限台地亚相和开阔台地亚相,进一步划分为潟湖、潮坪、潮下低能和浅滩微相.运用区域大地构造和天文旋回方法对甘井子组环境演化进行探讨,认为其经历了局限台地→开阔台地→局限台地的演化过程.受扬子旋回末期低幅度的构造升降作用影响,大连地区南关岭期末期—甘井子期出现了5次短暂暴露,形成了5个层序界面.同时受周期性天文旋回的影响形成了准层序、层对等高频旋回.通过对大连地区甘井子组进行层序地层和沉积演化研究,为探索辽东南地区的油气资源提供依据.  相似文献   

15.
The Meso to Neoproterozoic succession in the western Chattisgarh basin around Rajnandgaon has been classified into coarse siliciclastic dominated proximal and fine siliciclastic-carbonate dominated distal assemblages. The proximal assemblage, the Chandarpur Group, unconformably overlies the Neoarchean to Paleoproterozoic Dongargarh- Kotri volcanics (c.2.2-2.3 Ga), Bengpal Granite (c.2.5-2.6 Ga) and BIF of the Dalli-Rajhara Group (~2.4 Ga). The Chandarpur Group consists of 15-20 m thick conglomerate and feldspathic sandstone at the basal part of the succession, which is mapped as a lateral equivalent of the Lohardih Formation. The coarse clastics, conglomerate succession gradationally passes up to ~280 m thick succession of supermature sandstone, the Kansapathar Formation. The thick mudstone dominated heterolithic unit, the Gomarda Formation and its lateral equivalent, the Chaporadih Formation is not present in the western part of the Chattisgarh basin. The fine siliciclastic-carbonate assemblage of the Raipur Group conformably overlies the Chandarpur Group. The Raipur Group consists of Charmuria Limestone (~320 m), Gunderdehi Shale (~450 m), Chandi Limestone (~ 550 m) with Deodongar Member (~50 m) and Tarenga Shale. The sediments of Chandarpur Group were deposited in a shallow marine environment with occasional fluvial input in a relatively fluctuating sea level. The palaeoshoreline was NW-SE oriented with an open sea towards north which remained same throughout the deposition of the Chandarpur-Raipur sequence. It has also been inferred that the Lohardih Formation and the Kansapathar Formation represents a rifting phase followed by a stable subsidence stage when the basin evolved into a large epicontinental sea. The sequences further display signatures of passive margin sedimentation with multiple events of carbonate-shale rhythmite deposition.  相似文献   

16.
The isolated outlier of Visean (Mid Mississippian) limestones and sandstones near Corwen, North Wales, UK, provides a critical constraint on regional tectonic and palaeogeographical models. The late Asbian to Brigantian succession comprises a series of shoaling‐upwards cycles (parasequences). These were the product of forced, glacioeustatic regressions and have boundaries that testify to emergence, karstic dissolution and soil formation on a low gradient carbonate platform prior to flooding and the resumption of marine deposition. The recognition of two of the main marker beds within the North Wales Visean succession (Main Shale and Coral Bed) together with a newly applied foraminiferal and algal biozonation allow the outlier succession to be correlated with other Visean outcrops in the region and more widely throughout the British Isles. In revealing regional thickness and facies variations, these comparisons show that the outlier succession was deposited landward of the early Asbian shoreline in a region of enhanced subsidence localized along the Bala Lineament. The Corwen Outlier suggests that, within narrow gulfs associated with the region's major tectonic lineaments, Mississippian carbonate facies extended farther south into the contemporary hinterland of older rocks and that, in response to Brigantian climate change, these topographic features likely also influenced fluvial catchments supplying siliciclastic sediment to the platform's landward margin and, subsequently, Namurian deltas. Contrary to earlier suggestions, Visean outcrop patterns, facies distributions and thicknesses in the vicinity of the Bala Lineament can be explained without the need to invoke extensive post‐depositional lateral displacements. BGS © NERC 2013. Geological Journal © John Wiley & Sons Ltd.  相似文献   

17.
The lower part of the Cretaceous Sego Sandstone Member of the Mancos Shale in east‐central Utah contains three 10‐ to 20‐m thick layers of tide‐deposited sandstone arranged in a forward‐ and then backward‐stepping stacking pattern. Each layer of tidal sandstone formed during an episode of shoreline regression and transgression, and offshore wave‐influenced marine deposits separating these layers formed after subsequent shoreline transgression and marine ravinement. Detailed facies architecture studies of these deposits suggest sandstone layers formed on broad tide‐influenced river deltas during a time of fluctuating relative sea‐level. Shale‐dominated offshore marine deposits gradually shoal and become more sandstone‐rich upward to the base of a tidal sandstone layer. The tidal sandstones have sharp erosional bases that formed as falling relative sea‐level allowed tides to scour offshore marine deposits. The tidal sandstones were deposited as ebb migrating tidal bars aggraded on delta fronts. Most delta top deposits were stripped during transgression. Where the distal edge of a deltaic sandstone is exposed, a sharp‐based stack of tidal bar deposits successively fines upward recording a landward shift in deposition after maximum lowstand. Where more proximal parts of a deltaic‐sandstone are exposed, a sharp‐based upward‐coarsening succession of late highstand tidal bar deposits is locally cut by fluvial valleys, or tide‐eroded estuaries, formed during relative sea‐level lowstand or early stages of a subsequent transgression. Estuary fills are highly variable, reflecting local depositional processes and variable rates of sediment supply along the coastline. Lateral juxtaposition of regressive deltaic deposits and incised transgressive estuarine fills produced marked facies changes in sandstone layers along strike. Estuarine fills cut into the forward‐stepped deltaic sandstone tend to be more deeply incised and richer in sandstone than those cut into the backward‐stepped deltaic sandstone. Tidal currents strongly influenced deposition during both forced regression and subsequent transgression of shorelines. This contrasts with sandstones in similar basinal settings elsewhere, which have been interpreted as tidally influenced only in transgressive parts of depositional successions.  相似文献   

18.
Sequencestratigraphydealswiththecyclicityinsedi-mentaryrocksandregardsatleastsomeofthecyclicityasglobalinextent.Infact,sedime...  相似文献   

19.
Sequence stratigraphic studies of the Triassic through Paleogene carbonate successions of platform, slope and basin in western Sicily (Palermo and Termini Imerese Mountains) have identified a sedimentary cyclicity mostly caused by relative oscillations of sea level. The stratigraphic successions of the Imerese and Panormide palaeogeographic domains of the southern Tethyan continental margin were studied with physical-stratigraphy and facies analysis to reconstruct the sedimentary evolution of this platform-to-basin system. The Imerese Basin is characterized by a carbonate and siliceous-calcareous succession, 1200–1400m thick, Late Triassic to Eocene in age. The strata display a typical example of a carbonate platform margin, characterized by resedimented facies with progradational stacking patterns. The Panormide Carbonate Platform is characterized by a carbonate succession, 1000–1200 m thick, Late Triassic to Late Eocene, mostly consisting of shallow-water facies with periodic subaerial exposure. The cyclic arrangement has been obtained by the study of the stratigraphic signatures (unconformities, facies sequences, erosional surfaces and stratal geometries) found in the slope successions. The recognized pattern has been compared with coeval facies of the shelf. This correlation provided evidence of sedimentary evolution, influenced by progradation and backstepping of the shelf deposits. The stratigraphic architecture of the platform-to-basin system is characterized by four major transgressive/regressive cycles during the late Triassic to late Eocene. These cycles, framed in a chronostratigraphic chart, allows the correlation of the investigated shelf-to-basin system with the geological evolution of the African continental margin during the Mesozoic, showing tectono-eustatic cycles. The first cycle, encompassing the late Triassic to early Jurassic, appears to be related to the late syn-rift stage of the continental margin evolution. The following three cycles, spanning from the Jurassic to Eocene, can be related to the post-rift evolution and to thermal subsidence changes.  相似文献   

20.
LUIS POMAR 《Sedimentology》1991,38(2):243-269
The upper Miocene Reef Complex of Mallorca is a 20-km prograding unit which crops out in sea cliffs along the southern side of the island. These vertical and exceptionally clean outcrops permit: (i) identification of different facies (lagoon, reef front, reef slope and open platform) and their geometries and boundaries at different scales, ranging from metre to kilometre, and (ii) construction of a 6-km-long high-resolution cross-section in the direction of reef progradation. This cross-section shows vertical shifts of the reefal facies and erosion surfaces linked to a general progradational pattern that defines the accretional units. Four hierarchical orders of magnitude (1-M to 4-M) of accretional units are identified by consideration of the vertical facies shifts and by which erosion surfaces are truncated by other erosion surfaces. All these orders show similar patterns: horizontal beds of lagoonal facies in the upper part (landward), reefal and slope facies with sigmoidal bedding in the central part, and open-platform facies with subhorizontal bedding in the lower part (basinwards). The boundaries are erosion surfaces, horizontal over the lagoon facies, dipping basinwards over the reef-front facies and connecting basinwards with their correlative conformities over the reef-slope and open-platform facies. The four orders of accretional units are interpreted in terms of four (1-M to 4-M) hierarchies of sea-level cycles because (i) there is a close relation between the coral growth and the sea surface, (ii) there are vertical shifts in the reefal facies and their relation to the erosion surfaces, and (iii) there was very little tectonic subsidence in the study area during the late Miocene. Additionally, all these units can be described in terms of their position relative to the sea-level cycle: (i) the reefs prograde on the open-platform sediments during low stands of sea-level; (ii) aggradation of the lagoon, reef and open-platform facies dominates during sea-level rises, and the lagoonal beds onlap landwards upon the previous erosion surface; (iii) reefal progradation occurs during high stands of sea-level; and (iv) the 2-M sea-level fall produces an off-lapping reef and there is progradation with downward shifts of the reefal facies and erosion landward on the emerged (older) reefal units (A-erosion surfaces); the 3-M and 4-M sea-level falls produce only erosion (B-and C-erosion surfaces). Although precise age data do not exist at present, some speculations upon the frequency of these Miocene relative sea-level cycles can be made by comparisons with Pleistocene cyclicity. There is a good correlation between the Miocene 2-M cycles and the 100-ka Pleistocene cycles. Consequently, the 1-M cycles can be assigned to a fourth order in relation to previously proposed global cycles and the 2-M to fifth-order cycles. All these accretional units could be defined as ‘sequences’, according to the definition as commonly used in sequence stratigraphy. However, they represent higher than third-order sea-level cycles, but are not parasequences. The term subsequence, therefore, is suggested to define ‘a part of a sequence bounded by erosion surfaces (mostly subaerial) and their correlative conformities basinwards'. A hierarchy of subsequences can be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号