首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 338 毫秒
1.
胡永亮  王伟  周传明 《沉积学报》2020,38(1):138-149
地质历史时期新元古代大气氧含量普遍较低。在硫酸盐还原细菌作用下,作为海洋重要的氧化性离子,陆源硫酸根离子有效促进了深层海水的氧化进程。在此过程中,硫元素在硫酸根和黄铁矿之间发生显著同位素分馏,其分馏程度可反推当时古海洋的氧化还原状态。沉积地层中的黄铁矿普遍具有多种形态,不同形态黄铁矿的形成环境多有不同。如草莓状黄铁矿多形成于底层缺氧水体或沉积物的浅表面,而大颗粒单晶黄铁矿或脉状黄铁矿则多沉积于成岩早期的沉积物孔隙或形成于成岩后期的热液改造。与草莓状黄铁矿不同,大颗粒单晶或脉状黄铁矿的硫同位素组成并不能反映沉积时期的古海洋氧化还原条件。判定沉积地层中不同形态的黄铁矿及形成过程,是获得有效反映海洋沉积环境硫同位素组成特征的基本前提。简要总结了地质历史时期沉积地层中的黄铁矿类型及矿物形成过程,并以华南埃迪卡拉纪蓝田组岩芯样品为例,识别出各个样品中的黄铁矿形态组成特征,对比分析了全岩黄铁矿与样品中大颗粒黄铁矿硫同位素组成差异。研究结果表明:不同岩性样品中黄铁矿的形态种类及含量均存在差异。页岩样品保存有更好形态的自形晶以及草莓状黄铁矿;碳酸盐岩样品中具有较多自形晶以及他形晶黄铁矿,并且其中的少量草莓状黄铁矿遭受后期成岩作用而发生不同程度的晶体蚀变。样品中大颗粒黄铁矿的硫同位素值(δ34SL-pyr)通常显著高于全岩黄铁矿的硫同位素值(δ34ST-pyr),最大差值可达48.5‰。在利用黄铁矿的硫同位素组成来反推当时古海洋环境时,需要区分不同形态黄铁矿,仔细剔除大颗粒黄铁矿,降低成岩期黄铁矿对样品中硫同位素组成的影响。更细致的微区黄铁矿硫同位素分析工作将依赖于SIMS分析测试手段进行。  相似文献   

2.
当前土壤中硫元素的测定方法主要是X射线荧光光谱法和燃烧法,上述两种方法分析速度慢,对高、低含量样品的分析精度较差,难以满足大批量样品快速、准确分析的要求。为提高分析速度和结果的准确度,本文建立了用盐酸-硝酸-氢氟酸-高氯酸(四酸)溶解土壤样品,电感耦合离子体发射光谱法测定硫的方法。通过考察王水消解、王水水浴消解和四酸消解的溶样效果,测定结果表明采用四酸能更好地溶解土壤样品中的硫。方法检出限为10μg/g,测量范围为33.3~50000μg/g,相对标准偏差为0.47%~4.05%。本方法简单快速,准确度高,已经过数千件实际样品验证,在不增加分析成本的情况下,一份溶液还可以同时测定钾钠钙镁铁锰铍锂镧铈钪钒钴镍钛等元素,适合在地质行业推广应用。  相似文献   

3.
化学连续提取法对太湖沉积物中磷的各种形态测定   总被引:2,自引:0,他引:2  
杨柳  唐振  郝原芳 《世界地质》2013,32(3):634-639
为确定太湖沉积物中磷的各种形态含量,本文应用SMT 连续提取法对太湖梅梁湾表层沉积物样品和淡水沉积物标准物质BCR --684 中磷的各种形态进行测定。结果表明SMT 法具有一定的适用性和准确性。太湖沉积物中磷形态测定结果表明无机磷是太湖沉积物中磷的主要赋存形态,占总有效磷的 59. 22%,无机磷含量中非磷灰石态磷含量为139 μg /g,大于磷灰石态磷含量113 μg /g。  相似文献   

4.
太湖北部沉积物中铁硫的地球化学特征研究   总被引:6,自引:1,他引:5  
选择太湖北部柱状沉积物为研究对象,对沉积物及间隙水中铁硫的地球化学特征进行了研究。结果显示.间隙水中Fe^2+的平均浓度是S^2-平均浓度的82倍,其值为9.6~270.5μmol/L。这说明沉积物中是以Fe^3+的还原为主,而非SO4^2-。沉积物中还原性无机硫以黄铁矿为主,其次为AVS,最后为单质硫。沉积物中的Fe^2+的浓度均高于其他形态的铁,约占总铁含量的30%~40%。活性铁的浓度为109.86~208.16μmol/g,仅占总铁的20%左右。沉积物各层中与硫结合的铁仅占总铁的0.12%~2.35%,占活性铁的0.39%~8.36%,通过分析铁硫之间的关系并结合蓝藻爆发的时间推断,铁硫化合物的生成不是PO4^3-释放的原因。太湖北部沉积物中Fe—S及P-S之间相互关系较弱。  相似文献   

5.
滨海红树林泥炭沉积物中硫的赋存特点及其控制因素   总被引:4,自引:0,他引:4  
海南和厦门两地滨海红树林沉积物和埋藏泥炭中硫的成分分析表明,滨海红树林沉积物和泥炭中的硫以硫化铁硫为主,有机硫次之,硫酸盐硫含量最低。泥炭沉积物中硫的赋存形式和特点与沉积环境密切相关。海南福田地区红树林泥炭沉积物主要形成于红树林潮上坪和泥炭坪,硫含量较高,平均为2.60%,且有机硫含量与有机碳含量呈正相关,而硫化铁硫含量与有机碳含量没有明显的相关性;厦门海沧镇红树林泥炭沉积物形成于红树林潮间坪以及潮道环境,硫含量较低,平均值仅为0.43%,形态硫和有机质的相关性与海南红树林泥炭地沉积物相反。红树林泥炭沉积物中铁的硫化物主要以黄铁矿形式产出,且以莓球状形态为主。研究表明,黄铁矿与次生有机硫的生成与微生物活动密切相关,造成红树林泥炭中硫含量差异最主要的原因不是硫源,而是有机质的供给与沉积微环境的影响。现代滨海红树林泥炭沼泽中硫的赋存特征将对煤中硫成因的研究提供重要的科学依据。  相似文献   

6.
在浙江椒江口潮间带采集了3个未扰动沉积物柱状样,并采用分级提取方法获得了沉积物各痕量金属的活性态和黄铁矿态分量,同时采用冷扩散法测试了酸可挥发性硫化物(AVS)。结果表明:研究区痕量金属黄铁矿矿化程度(DOP)较低,痕量金属存在较大的活性,容易参与水生系统的生物地球化学循环;但各元素的痕量金属黄铁矿矿化度(DTMP)存在较大差别,即元素As和Hg的DTMP值最大,Cu、Zn、Cd、Cr和Ni中等,Pb和Mn最小。控制黄铁矿矿化程度的因素包括沉积物是否存在大量的有机碳(OrgC)、AVS以及是否存在隔氧的还原系统。  相似文献   

7.
Carius管直接蒸馏快速分离锇方法的改进   总被引:9,自引:6,他引:3  
蒸馏法是Re-Os同位素测量体系从基质中分离Os的一种快捷方法,但装置繁琐,清洗工作量大,已成为限制其应用的瓶颈。文章对Carius管传统蒸馏装置进行了改进,利用橡胶滴头代替硅胶管和玻璃堵头自制Carius管直接蒸馏接口装置,简化了气体进出口管路,使用电蒸笼代替电热套,对蒸馏时间、样品溶液稀释倍数和吸收液体积等蒸馏条件进行了优化。改进后的装置升温速度、稳定性和简便性得到提高,简化了实验器皿,有利于降低空白,实现在较小操作空间内大批量样品的同时处理。Carius管直接蒸馏实验结果表明,Os的回收率可达86.7%~95.2%。在长时间(2 h)蒸馏条件下,Os回收率比传统蒸馏瓶法高约41%。针对不同样品类型和测试仪器,可选择相应的蒸馏条件,有效压缩了样品处理时间,提高了测量计数。对Re-Os定年标准物质GBW 04436(JDC)测定5次的模式年龄为(139.5±1.9)Ma~(142.0±2.1)Ma,标准物质GBW 04435(HLP)测定2次的模式年龄为(220±3.3)Ma~(223.0±3.2)Ma,分别与标准值(139.6±3.8)Ma和(221.4±5.6)Ma在不确定度范围内一致。改进后的Carius管直接蒸馏装置已应用于日常样品处理。  相似文献   

8.
高频红外碳硫仪测定重晶石和黄铁矿中的硫   总被引:2,自引:2,他引:0  
硫酸盐矿石和硫化物矿石大部分是低电磁性的物质,利用高频红外碳硫仪测定这类矿石中的硫时,在燃烧过程中难以产生较大的电磁感应涡流,导致矿石中的硫释放不完全,造成硫的测定结果偏低。本文采用二氧化硅将重晶石精矿和黄铁矿精矿稀释成不同硫含量的重晶石和黄铁矿样品,通过优化称样量及助熔剂等测试条件,建立了使用高频红外碳硫仪测定重晶石和黄铁矿中硫含量的分析方法。结果表明:当样品中的硫含量高于2%时确定称样量为0.07 g,当硫含量低于2%时确定称样量为0.1 g,加入助熔剂0.4 g锡粒+0.4 g铁粒+1.5 g钨粒,可使重晶石和黄铁矿中的硫完全释放进入仪器红外吸收区域,硫的回收率提高至95.8%~104.2%(重晶石)和95.3%~105.1%(黄铁矿),分别高于常规红外碳硫仪的回收率(83.39%~91.1%和91.5~97.5%)。本方法精密度高(RSD5%),实现了硫含量的准确测定。  相似文献   

9.
建立了碳酸盐岩样品中单质硫的分析方法,此法以正己烷为萃取剂,在180.7 nm和182.0 nm波长下用电感耦合等离子体光谱法(ICP-AES)测定国家标准物质GBW(E)07108和碳酸盐岩样品。正己烷萃取碳酸盐岩中单质硫的回收率在90%~110%之间;每个样品测定7次,相对标准偏差(RSD)<5.0%。结果表明,此法满足实验要求,可用于大批量碳酸盐岩样品中单质硫的测定。   相似文献   

10.
对综合大洋钻探计划(IODP)311航次652个岩心沉积物样品进行了自生黄铁矿颗粒筛选、显微形貌特征及其硫稳定同位素组成等初步研究。扫描电镜(SEM)照片显示黄铁矿以微球粒状和立方体状形貌产出,其成因与微生物作用和无机作用有关。黄铁矿的δ34SCDT值变化范围较大,从-35.4‰到+53.6‰,其成因与甲烷厌氧氧化作用(AOM)的关系密切。海水源为主的硫酸盐参与了沉积物上部的AOM过程,黄铁矿硫稳定同位素正偏的原因可能与较强的AOM作用和较多的残余硫酸盐参与有关。冷泉背景站位中黄铁矿的δ34SCDT值随着深度增加而增加,从浅表层的-35.83‰增加到深处的32.49‰,反映深处沉积物内黄铁矿形成过程中曾有过较多的残余硫酸盐参与还原,暗示其背景曾经是更高的甲烷通量和更强的AOM作用。研究结果提供了现代海洋天然气水合物背景下沉积物中自生黄铁矿及其硫稳定同位素特征记录,对于寻找我国海域天然气水合物资源,探索地史时期古海洋沉积物中甲烷事件记录具有重要的意义。  相似文献   

11.
电感耦合等离子体光谱法测定黄铁矿和黄铜矿中的铁铜硫   总被引:2,自引:1,他引:1  
样品用王水水浴和HCl-HNO3-HF-HClO4敞开酸溶两种溶矿方式分解,电感耦合等离子体发射光谱法(ICP-AES)测定黄铜矿和黄铁矿中铁、铜、硫。应用称重法配制标准溶液,明显地降低了在标准溶液在逐级稀释过程中由于体积读数等原因产生的误差。样品用王水水浴分解,消解时间短,试剂加入量少,分析步骤简单;由于硫化矿石中Fe的一部分可能与Si结合,王水无法将其全部溶解,对于Fe的测定采用混合酸敞开酸溶。王水水浴溶矿方式选择浓王水作为溶剂,在混合酸敞开溶矿方式的溶解盐类阶段选择浓HCl作为溶剂。确定了ICP-AES法测定高含量(x%~xx%)的铁、铜、硫适用的光谱谱线,稀释倍数为1000。两种样品处理方法操作简便,准确度好,精密度高。经国家一级标准物质GBW 07267(黄铁矿)、GBW 07268(黄铜矿)验证,经混合酸敞开酸溶处理后硫的测定结果偏低,准确度分别为-9.48%和-18%,铁和铜的精密度(RSD,n=5)均小于2%。GBW 07268(黄铁矿)、GBW 07267(黄铜矿)用王水水浴法处理,连续测定10次的短期稳定性,精密度(RSD)小于2%。  相似文献   

12.
建立了微波消解-电感耦合等离子体质谱法测定土壤和沉积物中15种痕量稀土元素的分析方法。研究了溶样试剂、微波消解程序、标准溶液配制、质谱干扰与内标元素对稀土元素测定的影响。加入氢氟酸能有效打开样品,以HNO3-HF-H2O2混合酸溶解样品,稀土元素的溶出率较高。采用模拟土壤、沉积物中稀土元素天然组成比值的校正溶液,对稀土元素间的干扰具有明显的抑制作用。通过测定单个La、Ce、Pr、Nd和Ba的氧化物及氢氧化物产率,计算出等效干扰浓度,进而校正多原子离子干扰。利用103Rh内标校正系统,有效地抑制了分析信号的动态漂移。方法检出限为1.2~7.1 ng/g,精密度(RSD)≤5.3%(n=6),加标回收率为86.1%~110.1%。使用土壤、沉积物标准物质进行验证,测定结果与标准值相符。建立的方法样品处理程序简单快速、线性范围宽、分析重现性好、结果准确,适用于大批量地质样品的分析。  相似文献   

13.
中高含硫量煤中硫的形态分析   总被引:5,自引:0,他引:5  
饶竹  梁汉东等 《岩矿测试》2001,20(3):183-186
利用超声提取、高速离心分离和加入助分散剂等手段,实现了中,高含硫量煤中单质硫,硫酸盐硫,硫化物硫,有机硫等主要形态硫的分步提取和顺序测定。所建分析方法测定了国家一级标样,统样样品和部分有分析结果的样品,其主要形态硫的加和与标准样品参考值,统检样品定值,原样品的总硫分析结果相符,RSD(n=3)为0.80%-4.23%,方法可用于煤中各主要形态硫的测定。  相似文献   

14.
建立了沉积物样品中17种有机氯农药和8种多氯联苯持久性有机污染物的气相色谱分析方法。针对沉积物样品基质复杂、含有大量硫干扰的特点,重点研究了前处理技术。采用加速溶剂提取(ASE)技术提取样品中的有机污染物,比较了加入铜粉后ASE在线除硫和超声波提取除硫的效果。结果表明,加入铜粉ASE提取不能完全去除硫的干扰,需进一步采用超声波提取10 min除硫才能大大减少杂质对目标化合物的干扰。沉积物样品中的色素类及小分子干扰物质采用凝胶渗透色谱结合固相萃取技术进行净化,满足了气相色谱-电子捕获检测器分析的要求。25种化合物的平均添加回收率为68%~131%,方法精密度(RSD,n=6)小于22.3%,检出限为0.10~0.51μg/kg。建立的样品前处理技术净化彻底,适合用于不同地区、不同类型的沉积物样品气相色谱分析。  相似文献   

15.
有机硫是海洋沉积物重要的硫形态,与有机质保存及多种元素的地球化学循环密切相关。利用硫的K边XANES谱从分子水平研究了东海内陆架沉积物中腐殖酸硫(HA-S)、富里酸硫(FA-S)以及铬不可还原有机硫(non-CROS)的形态及相对含量。结果表明,HA-S和FA-S总体上均以氧化态有机硫为主,其相对平均含量分别为56%和69%,而non-CROS则以还原态有机硫为主(86%)。HA-S和FA-S的强还原态硫为还原态有机硫的主要组成,磺酸盐和硫酸酯为HA-S中氧化态有机硫的主要组分,硫酸酯为FA-S中氧化态有机硫的主要组分。FA-S的强还原态有机硫为硫化成因,HA-S的强还原态硫可能与硫化和生物成因有关,而non-CROS的强还原态有机硫则主要为生物成因。如non-CROS能近似代表海洋沉积物中的有机硫总量,则表明该沉积物中总有机硫以还原态硫为主;而腐殖质硫(HA-S+FA-S)较高比例的氧化态硫则表明腐殖质硫不能全面反映沉积物中有机硫的组成和来源。  相似文献   

16.
当前多金属伴生矿中钨钼铋元素的测定方法主要是传统的硫氰酸钾比色法和EDTA容量法,均为单元素分析,操作过程繁琐,分析效率低,检测周期长,难以满足大批量样品简便、快速的分析要求。本文改进了传统的单元素分析法,对比了盐酸-磷酸-高氯酸-硝酸四酸和盐酸-硝酸-高氯酸三酸两种消解体系,并结合电感耦合等离子体发射光谱法(ICP-OES),建立了一种同时测定多金属伴生矿中钨、钼、铋的快速分析法。结果表明:合理引入磷酸的四酸消解法对样品的消解更为彻底,钨、钼、铋的测定结果准确度更高,各元素测定值和标准值的相对误差介于-5.36%~-1.39%,精密度较高(RSD ≤ 4.18%),方法检出限介于0.0027%~0.0037%。本方法应用于分析湖南郴州某地区多金属伴生矿实际样品,各元素加标回收率介于95.0%~103.0%,各项技术指标均优于三酸消解法。本方法提高了分析效率,结果准确可靠,适用于多金属伴生矿样品中钨钼铋及其他主次量元素的批量检测。  相似文献   

17.
液相色谱法测定湖泊沉积物中单质硫   总被引:2,自引:0,他引:2  
研究了液相色谱法测定湖泊沉积物中单质硫的可行性。以甲醇作为溶剂,将沉积物中单质硫转入甲醇相中,利用液相色谱C18柱分离,254 nm紫外检测,得到了很好的结果:单质硫标准曲线的线性相关系数r=0.9999,样品的回收率为94.8%~104.1%,单质硫溶液的检出限0.07 mg/L,测定下限0.3 mg/L,平行样品相对标准偏差6.5‰。该方法的优点是样品的前处理简单,检测方便、快捷,干扰少,重复性好。  相似文献   

18.
本文利用取自浙江椒江河口3个未扰动柱状沉积物样,进行了孔隙水化学测试、固相沉积物的活性分量与黄铁矿分量的分级提取和测试,结果表明:Hg主要以黄铁矿态形式存在于沉积物中。As在有机碳较高的河口区潮上带和沉积速率较慢的潮下带主要以黄铁矿形态存在[DTMP(degree of trace metal pyritization,痕量元素黄铁矿矿化程度)〉50%)],而在中潮带As的黄铁矿矿化程度略低(DTMP均值为40.99%),研究区DOP(Fe的黄铁矿矿化程度)值普遍较低(〈35%),Mn-DTMP低于3.32%。从而揭示了浙江椒江河口沉积物在数厘米以下,毒性痕量元素Hg和As被高度黄铁矿矿化的规律性,并指出在遇有海事活动或风暴潮事件对海底沉积物进行扰动时,河口沉积物与充氧的海水反应,高度黄铁矿矿化的痕量元素会转变成活性态,从而导致近海生态系统的毒性事件。  相似文献   

19.
刘桂香  施璐 《矿物学报》2019,39(1):126-130
利用电镜能谱分析技术对董家沟组片麻岩和辽河群板岩、大理岩样品中10个黄铁矿主量元素进行分析,检测结果表明,以辽河群板岩样品为主的6个黄铁矿w(Fe)=56.30%~65.42%、w(S)=34.58%~43.70%,属于硫亏损性黄铁矿,形成于富铁贫硫环境;董家沟组片麻岩和辽河群大理岩的4个黄铁矿样品w(Fe)=40.61%~45.11%、w(S)=54.74%~59.39%,属于硫饱和性黄铁矿,形成于贫铁富硫环境。  相似文献   

20.
氮循环是生物地球化学研究领域中最重要的课题之一,全氮含量的测定是农业、生物和环境等多领域研究中的常规测试项目。凯氏蒸馏法和元素分析仪法作为常规方法通用于上述领域的全氮含量测定,但两种方法在实际应用中的差异却常被忽视。通过对中国北方某盐湖沉积物序列近百个样品的全氮含量分析,对两种方法测定结果的异同进行了对比研究。凯氏蒸馏法的分析精密度高于元素分析仪法(前者标准偏差为0.007,后者为0.024),但在样品硝态和亚硝态氮的含量较高时,凯氏蒸馏法所测结果显著低于元素分析仪法的测定结果,此时选择元素分析仪法进行全氮含量的测定更为可靠和准确;对硝态和亚硝态氮含量极低的样品,两种方法的测定结果无显著差异。研究表明,选择全氮含量的测定方法,必须对所测样品的无机氮含量有初步的了解。对于中国北方的多数盐湖和地表环境样品,由于其无机氮的含量较高,选择凯氏蒸馏法进行全氮含量的测定是不适当的。尽管如此,对所研究的湖泊沉积物剖面而言,两种方法的对比却可以提供有价值的气候和环境演变信息。随着沉积物剖面的由深到浅,两种方法的测定结果由一致变化到存在显著差异,表明了湖泊水体从早期的淡水向今天的盐湖演化的过程。因此,凯氏蒸馏法和元素分析仪法测定结果的差异可以作为一种独立的地球化学气候代用指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号