首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wen-Hao Lai 《Ocean Engineering》2007,34(5-6):653-664
This investigation applies the time domain FEM/DAA coupling procedure to predict the transient dynamic response of submerged sphere shell with an opening subjected to underwater explosions. The elastic–plastic material behavior of the transient fluid–structure interaction relate to structural response equation also presented herein. This analysis also examines the transient responses of structures to different charge distances. The effects of standoff distance on pressure time history of the shell to underwater explosion (3001b TNT) are presented. Additionally, the transient dynamic responses to underwater explosion shockwaves in the sea and the air are compared.  相似文献   

2.
In combat operations, a warship can be subjected to air blast and underwater shock loading, which if detonated close to the ship can damage the vessel form a dished for hull plating or more serious holing of the hull. This investigation develops a procedure which couples the nonlinear finite element method with doubly asymptotic approximation method, and which considers the effects of transient dynamic, geometrical nonlinear, elastoplastic material behavior and fluid–structure interaction. This work addresses the problem of transient responses of a 2000-ton patrol-boat subjected to an underwater explosion. The KSF=0.8 is adopted to describe the shock severity. Additionally, the shock loading history along keel, the acceleration, velocity and displacement time histories are presented. Furthermore, the study elucidates the plastic zone spread phenomena and deformed diagram of the ship. Information on transient responses of the ship to underwater shock is useful in designing ship hulls so as to enhance their resistance to underwater shock damage.  相似文献   

3.
Whipping response will happen when a ship is subjected to underwater explosion bubble load. In that condition, the hull would be broken, and even the survivability will be completely lost. A calculation method on the dynamic bending moment of bubble has been put forward in this paper to evaluate the impact of underwater explosion bubble load on the longitudinal strength of surface ships. Meanwhile the prediction equation of bubble dynamic bending moment has been concluded with the results of numerical simulation. With wave effect taken into consideration, the evaluation method of the total damage of a ship has been established. The precision of this evaluation method has been proved through the comparison with calculation results. In order to verify the validity of the calculation results, experimental data of real ship explosion is applied. Prediction equation and evaluation method proposed in this paper are to be used in ship structure design, especially in the preliminary prediction of the ultimate withstanding capability of underwater explosion damage for the integrated ship in preliminary design phase.  相似文献   

4.
Submarine channel levee systems form important hydrocarbon reservoirs in many deep marine settings and are often deposited within a structurally active setting. This study focuses on recent submarine channels that developed within a deepwater fold and thrust belt setting from the Levant Basin, eastern Mediterranean Sea. Compressional deformation within the study area is driven by the up-dip collapse of the Nile cone above the ductile Messinian Evaporites. Structures such as folds and strike slip faults exert a strong control on channel location and development over time. From this study four end-member submarine channel–structure interactions can be defined: Confinement, diversion, deflection and blocking. Each of these channel–structure interactions results in a distinct submarine channel morphology and pattern of development compared to unconfined channel levee systems. Each interaction can also be used to assess timing relationships between submarine channel development and deformation.  相似文献   

5.
A video-based technique for mapping intertidal beach bathymetry   总被引:2,自引:0,他引:2  
Measuring the location of the shoreline and monitoring foreshore changes through time are core tasks carried out by coastal engineers for a wide range of research, monitoring and design applications. With the advent of digital imaging technology, shore-based video systems provide continuous and automated data collection, encompassing a much greater range of time and spatial scales than were previously possible using field survey methods.A new video-based technique is presented that utilises full-colour image information, which overcomes problems associated with previous grey-scale methods, which work well at steep (reflective) sites, but are less successful at flatter (dissipative) sites. Identification of the shoreline feature is achieved by the automated clustering of sub-aqueous and sub-aerial pixels in ‘Hue–Saturation–Value’ (HSV) colour space, and applying an objective discriminator function to define their boundary (i.e., ‘shoreline’) within a time-series of consecutive geo-referenced images. The elevation corresponding to the detected shoreline features is calculated on the basis of concurrent tide and wave information, which is incorporated in a model that combines the effects of wave set-up and swash, at both incident and infragravity frequencies.Validation of the technique is achieved by comparison with DGPS survey results, to assess the accuracy of the detection and elevation methods both separately and together. The uncertainties associated with the two sub-components of the model tend to compensate for each other. The mean difference between image-based and surveyed shoreline elevations was less than 15 cm along 85% of the 2-km study region, which corresponded to an horizontal offset of 6 m. The application of the intertidal bathymetry mapping technique in support of CZM objectives is briefly illustrated at two sites in The Netherlands and Australia.  相似文献   

6.
In this paper, the methodology of bifurcation analysis is applied to the explicit time-stepping ocean model MOM4 using a Jacobian–Free Newton–Krylov (JFNK) approach. We in detail present the implementation of the JFNK method in MOM4 but restrict the preconditioning technique to the case for which the density distribution is prescribed. For a prescribed density field case, we present bifurcation diagrams, for the first time in MOM4, for the wind-driven ocean circulation. In addition, we show that the JFNK method can reduce the spin-up time to a steady equilibrium in MOM4 considerably if an accurate solution is required.  相似文献   

7.
A three-dimensional modeling of multidirectional random-wave diffraction by a group of rectangular submarine pits is presented in this paper. The fluid domain is divided into N interior regions representing the pit area and an overall exterior region separated by the imaginary pit boundaries. In the interior region, the analytical expressions of the Fourier series expansion for velocity potentials in the pit regions have been derived with the unknown coefficients determined from a series of Green's function based boundary integral equations. The boundary integral approach has also been applied to obtain the velocity potential and free-surface elevation in the exterior region. The Pierson–Moskowitz (P–M) frequency spectrum was selected for the random wave simulation using the superposition of solutions of a finite number of decomposed wave components. Numerical results for the cases of regular waves and random waves are presented to examine the influences of the pit geometry and incident wave condition on the overall wave field. The general diffraction pattern of alternate bands of increase and decrease of relative wave height in front of the pit system can be observed. It is found that, in the shadow region, the relative wave height is reduced. As the number of pit increases, the effectiveness of reducing the relative wave height behind the multiple-pit system increases. However, the relative wave height within the pit area and in front of the leading pit shows increasing trend. It is noticed that under the random-wave condition, the level of increase and decrease of the relative wave height due to the existence of submarine pits is less pronounced than that observed from results in regular-wave condition.  相似文献   

8.
 It has been known that the axisymmetric Cauchy–Poisson problem for dispersive water waves is well posed in the sense of stability. Thereby time evolution solutions of wave propagation depend continuously on initial conditions. However, in this paper, it is demonstrated that the axisymmetric Cauchy–Poisson problem is ill posed in the sense of stability for a certain class of initial conditions, so that the propagating solutions do not depend continuously on the initial conditions. In order to overcome the difficulty of the discontinuity, Landweber–Fridman's regularization, famous and well known in applied mathematics, are introduced and investigated to learn whether it is applicable to the present axisymmetric wave propagation problem. From the numerical experiments, it is shown that stable and accurate solutions are realized by the regularization, so that it can be applicable to the determination of the ill-posed Cauchy–Poisson problem.  相似文献   

9.
A virtual wave gauge (VWG) technique based on stereo imaging is developed to remotely measure water wave height, period, and direction. VWG minimizes computational costs by directly tracking the elevation of the water surface at selected points of interest using a Eulerian based dynamic searching algorithm. Results show that the VWG technique developed in this paper dramatically improves efficiency by two orders of magnitude compared to the traditional Lagrangian–Eulerian based point cloud method of stereo image processing. VWG is tested against traditional wave wire gauges to within 98% accuracy for significant wave height. Furthermore, the flexibility of the VWG is demonstrated in two field applications. First in an offshore breaking wave case, an array of VWGs is used to efficiently measure wave directionality. Second to investigate the reflection coefficient of a rock-mounted structure interacting with nearshore waves, linear and spatial VWG arrays are designed and implemented based on a priori information of the wave field from a preliminary VWG measurement. Overall, we demonstrate that the flexible and computational efficient VWG technique has the potential to make real-time remote stereo imaging wave measurements a reality.  相似文献   

10.
In this paper, a numerical model is established for simulating the wave forces on a submarine pipeline. A set of two-dimensional Navier–Stokes equations is discretized numerically with a finite volume method in a moving mesh system. After each time step, the mesh is modified according to the changed wave surface boundary. The deffered correction second-order upwind scheme (SUDC) is adopted here to discretize the convective fluxes. The effects of the clearance between the pipeline and the seabed, water depth and wave height on wave forces are studied, respectively. The results by the numerical simulation agree well with the experimental data and theory value.  相似文献   

11.
An efficient solution for the multivariable submarine control design at low-depth conditions under the influence of wave disturbances is presented. The analysis and control design process is carried out under the framework of individual channel analysis and design (ICAD), which is based on the multivariable structure function (MSF). Classical frequency-domain control techniques based on Bode and Nyquist plots are used. Robustness is stated in terms of gain and phase margins. The closed-loop system includes low-order diagonal controllers facilitating its implementation, assessment, and tuning. ICAD discloses new physical insights of the submarine dynamical behaviour. Previous designs based on diagonal controllers consider the input–output channels defined by pairing the bow hydroplane angle with the depth and the stern hydroplane angle with the pitch angle. The alternative input–output pairing leads to unstable closed-loop systems. This phenomenon is associated with hydroplane reverse control. Here it is shown that MSF-based diagonal controllers can be applied effectively for both sets of channel configurations. Emphasis is placed on satisfying design specifications aiming at maintaining the depth low. The solution presented is more feasible and clearer to apply in practice than those so far reported in the literature.  相似文献   

12.
In this communication, a method is described for estimating the order of magnitude of energy yield and detonation depth for underwater explosions, based on the acoustical signals radiated. The method determines the ratio of the periods of the first two oscillations made by the gas bubble formed by an explosion, with bubble-oscillation periods being extracted from the cepstra of signals recorded on hydrophones. The results of laboratory studies, taken from the literature [H. G. Snay and R. V Tipson, “Charts for the parameters of migrating explosion bubbles,” Tech. Rep., NOLTR 62–184 (1963)], are used to convert this ratio into a measure of the maximum bubble radius achieved during the first oscillation, expressed as a fraction of the detonation depth. This fraction, combined with the period of the first oscillation, allows detonation depth and explosion energy yield to be estimated on an order-of-magnitude basis. The method is applied to signals gathered in the Pacific Ocean, at ranges of thousands of kilometers from a series of chemical explosions. Reported values of detonation depths and explosion yields are shown to agree with the order-of-magnitude estimates derived using the method. The method is shown to have a bias towards underestimating explosion energy yield. It is hypothesized that this bias results from the different scales of the at-sea explosions and the laboratory measurements on which the estimation method is based. The uncertainty associated with the method's estimation of charge yield is comparable with those of seismic methods for the estimation of energy yields of underground nuclear tests.   相似文献   

13.
This paper presents the review and studies at various levels of problems concerning the authors’ previous research on the dynamics of vehicle–deck interactions. The various levels of study include the dynamic structural behavior of vehicle–deck systems, vehicle vibrations, damping effects of vehicles on structural systems, dynamic interactions between tire and deck surface, and vehicle securing on decks during ship motions, etc. The study includes analytical, numerical and experimental analysis. Practical problems encountered by Ro–Ro ship designers are addressed by discussing those analysis. It is shown that influences from the dynamics of vehicle–deck interactions are relevant to a number of aspects of issues, such as the excitation frequency range, how detailed information of the structural system response is required, the structure characteristics, and positions and orientations of vehicles on decks, etc. The study contributes to the knowledge for the naval architect and vehicle engineer on how significant the dynamics of vehicle–deck interactions are when dealing with relevant problems.  相似文献   

14.
The slightly compressible flow formulation is applied to the free-surface, three-dimensional turbulent flow around a Wigley hull. Two turbulence models (large eddy simulation and Baldwin–Lomax) are used and compared. The simulation conditions are the ones for which experimental and numerical results exist. The computational grid is built using an algebraic grid generator with the model fixed in space. The codes use the interface-capturing technique for computing the free-surface displacements and the Beam and Warming scheme for marching in time the numerical model. The results compare well with the experimental data available.  相似文献   

15.
16.
This study focuses on body size–abundance distributions of nano- and micro-phytoplankton guilds in coastal marine areas of the Southern Adriatic–Ionian region. The aim of the study was to evaluate the occurrence of common patterns of body size–abundance distributions in relation to physical, chemical and biological environmental forcing factors and to taxonomic composition of phytoplankton guilds. This paper is based on data collected during four oceanographic cruises carried out seasonally along the Southern Apulian coast (Adriatic and Ionian Seas, SE Italy) as a part of the INTERREG II Italy–Greece Program. The study was performed at 21 stations located on 7 transects perpendicular to the coastline, with 3 stations per transect at a distance of 3, 9 and 15 NM from the coastline. At each station, profiles of the major physical features of the water were determined and water samples were collected for phytoplankton and nutrient analysis. Overall, 320 nano- and micro-phytoplankton taxa were identified, 76% of which at species level, with phytoplankton cells ranging in size from 0.008 to 4697.54 ng. Body size–abundance distributions showed some common features: they were relatively invariant (average similarity 65%) with respect to taxonomic composition (average similarity 32%), right skewed (90%), leptokurtic (77%) and log normal (76%). Moreover, abiotic, biotic and spatial ecosystem components accounted for up to 75% of body size–abundance distribution variation. The results of this study suggest that body size–abundance distributions are an intrinsic property of marine phytoplankton communities, emphasising functional dependence on ecological constraints related to trophic factors and intra-guild coexistence relationships.  相似文献   

17.
Y. -S. Cho   《Ocean Engineering》2003,30(15):1915-1922
A new and simple calculating technique for the Jacobian elliptic parameter is presented in this study. The technique is very useful in generating a train of cnoidal waves in both laboratory and numerical wave tanks. Upon specification of water depth, the wave height and either the wave period or the wavelength, the proposed technique uses the Newton–Raphson method to estimate the Jacobian elliptic parameter directly, without trial and error procedures or look-up in tables. It is shown that the technique provides equally accurate results as the ad hoc methods previously used.  相似文献   

18.
A technique is developed to separate the incident and reflected waves propagating on a known current in a laboratory wave–current flume by analyzing wave records measured at two or more locations using a least squares method. It can be applied to both regular and irregular waves. To examine its performance, numerical tests are made for waves propagating on quiescent or flowing water. In some cases, to represent the signal noise and measurement error, white noise is superimposed on the numerically generated wave signal. For all the cases, good agreement is observed between target and estimation.  相似文献   

19.
Explosion for the treatment of underwater soft foundation is a technique newly developed in China. This paper describes the application of the method of explosion to underwater soft foundation treatment of the Great-West Dyke, Lianyungang Port, including the technical characteristics and the effect, selection of explosion parameters, workmanship of construction, requirements of quality and inspection, and the like.  相似文献   

20.
This study employed direct numerical simulation to simulate the fully nonlinear interaction between the water waves, the submerged breakwater, and the seabed under differing wave conditions. In the numerical simulation, the laminar flow condition in the seabed was applied to evaluate the more exact fluid resistance acting on the porous media. Varying incident wave conditions were applied to the flow field resulting from the wave–structure–seabed interaction, and the variation in the pore water pressure beneath the submerged breakwater was investigated along the cross-section of the submerged breakwater. Structural safety and scouring were also considered on the basis of the numerical results for the flow field around the structure and the variation of the pore water pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号