首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Climate is simulated for reference and mitigation emissions scenarios from Integrated Assessment Models using the Bern2.5CC carbon cycle–climate model. Mitigation options encompass all major radiative forcing agents. Temperature change is attributed to forcings using an impulse–response substitute of Bern2.5CC. The contribution of CO2 to global warming increases over the century in all scenarios. Non-CO2 mitigation measures add to the abatement of global warming. The share of mitigation carried by CO2, however, increases when radiative forcing targets are lowered, and increases after 2000 in all mitigation scenarios. Thus, non-CO2 mitigation is limited and net CO2 emissions must eventually subside. Mitigation rapidly reduces the sulfate aerosol loading and associated cooling, partly masking Greenhouse Gas mitigation over the coming decades. A profound effect of mitigation on CO2 concentration, radiative forcing, temperatures and the rate of climate change emerges in the second half of the century.  相似文献   

2.
A combination of linear response models is used to estimate the transient changes in the global means of carbon dioxide (CO2) concentration, surface temperature, and sea level due to aviation. Apart from CO2, the forcing caused by ozone (O3) changes due to nitrogen oxide (NOx) emissions from aircraft is also considered. The model is applied to aviation using several CO2 emissions scenarios, based on reported fuel consumption in the past and scenarios for the future, and corresponding NOx emissions. Aviation CO2 emissions from the past until 1995 enlarged the atmospheric CO2 concentration by 1.4 ppmv (1.7% of the anthropogenic CO2 increase since 1800). By 1995, the global mean surface temperature had increased by about 0.004 K, and the sea level had risen by 0.045 cm. In one scenario (Fa1), which assumes a threefold increase in aviation fuel consumption until 2050 and an annual increase rate of 1% thereafter until 2100, the model predicts a CO2 concentration change of 13 ppmv by 2100, causing temperature increases of 0.01, 0.025, 0.05 K and sea level increases of 0.1, 0.3, and 0.5 cm in the years 2015, 2050, and 2100, respectively. For other recently published scenarios, the results range from 5 to 17 ppmv for CO2 concentration increase in the year 2050, and 0.02 to 0.05 K for temperature increase. Under the assumption that present-day aircraft-induced O3 changes cause an equilibrium surface warming of 0.05 K, the transient responses amount to 0.03 K in surface temperature for scenario Fa1 in 1995. The radiative forcing due to an aircraft-induced O3 increase causes a larger temperature change than aircraft CO2 forcing. Also, climate reacts more promptly to changes in O3 than to changes in CO2 emissions from aviation. Finally, even under the assumption of a rather small equilibrium temperature change from aircraft-induced O3 (0.01 K for the 1992 NOx emissions), a proposed new combustor technology which reduces specific NOx emissions will cause a smaller temperature change during the next century than the standard technology does, despite a slightly enhanced fuel consumption. Regional effects are not considered here, but may be larger than the global mean responses.  相似文献   

3.
In order to estimate the benefit attributable to alleviating global warming for a kind of cost–benefit analysis of global warming mitigation, global warming impacts were quantitatively evaluated for a pathway of unmitigated CO2 emissions and three pathways to stabilize the atmospheric CO2 concentration at different levels, keeping unchanged the assumed conditions on population and GDP growths, although the GDP losses which will be caused due to the warming mitigation for the three stabilization pathways are taken into account. The evaluation results show that global warming will reduce the world total number of deaths caused by thermal stress owing to the large decrease in the cold-related deaths; it will increase the water stress in some regions, while it will decrease the stress in other regions; reductions in CO2 emissions will decrease the probability of THC collapse and terrestrial biodiversity loss; and it will enhance an increase in the wheat production potential.  相似文献   

4.
Recent works with energy balance climate models and oceanic general circulation models have assessed the potential role of the world ocean for climatic changes on a decadal to secular time scale. This scientific challenge is illustrated by estimating the response of the global temperature to changes in trace gas concentration from the pre-industrial epoch to the middle of the next century. A simple energetic formulation is given to estimate the effect on global equilibrium temperature of a fixed instantaneous radiative forcing and of a time-dependent radiative forcing. An atmospheric energy balance model couple to a box-advection-diffusion ocean model is then used to estimate the past and future global climalic transient response to trace-gas concentration changes. The time-dependent radiative perturbation is estimated from a revised approximate radiative parameterization, and the recent reference set of trace gas scenarios proposed by Wuebbles et al. (1984) are adopted as standard scenarios. Similar computations for the past and future have recently been undertaken by Wigley (1985), but using a purely diffusive ocean and slightly different trace gas scenarios. The skill of the socalled standard experiment is finally assessed by examining the model sensitivity of different parameters such as the equilibrium surface air temperature change for a doubled CO2 concentration [T ae (2×CO2)], the heat exchange with the deeper ocean and the trace gas scenarios. For T ae (2×CO2) between 1 K and 5 K, the following main results are obtained: (i) for a pre-industrial CO2, concentration of 270 ppmv, the surface air warming between 1850 and 1980 ranges between 0.4 and 1.4 K (if a pre-industrial CO2 concentration of 290 ppmv is chosen, the range is between 0.3 and 1 K); (ii) by comparison with the instantaneous equilibrium computations, the deeper ocean inertia induces a delay which amounts to between 6 years [for lower T ae (2×CO2)] and 23 years [for higher Tae(2×CO2)] in 1980; (iii) for the standard future CO2 and other trace gas scenarios of Wuebbles et al., the surface air warming between 1980 and 2050 is calculated to range between 0.9 and 3.4 K, with a delay amounting to between 7 years and 32 years in 2050 when compared to equilibrium computations.  相似文献   

5.
We use a coupled climate–carbon cycle model of intermediate complexity to investigate scenarios of stratospheric sulfur injections as a measure to compensate for CO2-induced global warming. The baseline scenario includes the burning of 5,000 GtC of fossil fuels. A full compensation of CO2-induced warming requires a load of about 13 MtS in the stratosphere at the peak of atmospheric CO2 concentration. Keeping global warming below 2°C reduces this load to 9 MtS. Compensation of CO2 forcing by stratospheric aerosols leads to a global reduction in precipitation, warmer winters in the high northern latitudes and cooler summers over northern hemisphere landmasses. The average surface ocean pH decreases by 0.7, reducing the calcifying ability of marine organisms. Because of the millennial persistence of the fossil fuel CO2 in the atmosphere, high levels of stratospheric aerosol loading would have to continue for thousands of years until CO2 was removed from the atmosphere. A termination of stratospheric aerosol loading results in abrupt global warming of up to 5°C within several decades, a vulnerability of the Earth system to technological failure.  相似文献   

6.
Using an intermediate ocean–atmosphere coupled model (ICM) for the tropical Pacific, we investigated the role of the ocean dynamical thermostat (ODT) in regulating the tropical eastern Pacific sea surface temperature (SST) under global warming conditions. The external, uniformly distributed surface heating results in the cooling of the tropical eastern Pacific “cold tongue,” and the amplitude of the cooling increases as more heat is added but not simply linearly. Furthermore, an upper bound for the influence of the equatorially symmetric surface heating on the cold tongue cooling exists. The additional heating beyond the upper bound does not cool the cold tongue in a systematic manner. The heat budget analysis suggests that the zonal advection is the primary factor that contributes to such nonlinear SST response. The radiative heating due to the greenhouse effect (hereafter, RHG) that is obtained from the multi-model ensemble of the Climate Model Intercomparison Project Phase III (CMIP3) was externally given to ICM. The RHG obtained from the twentieth century simulation intensified the cold tongue cooling and the subtropical warming, which were further intensified by the RHG from the doubled CO2 concentration simulation. However, the cold tongue cooling was significantly reduced and the negative SST response region was shrunken toward the equator by the RHG from the quadrupled CO2 concentration simulation, while the subtropical warming increased further. A systematic RHG forced experiment having the same spatial pattern of RHG from doubled CO2 concentration simulation with different amplitude of forcing revealed that the ocean dynamical response to global warming tended to enhance the cooling in the tropical eastern Pacific by virtue of meridional advection and upwelling; however, these cooling effects could not fully compensate a given RHG warming as the external forcing becomes larger. Moreover, the feedback by the zonal thermal advection actually exerted the warming over the equatorial region. Therefore, as the global warming is intensified, the cooling over the eastern tropical Pacific by ODT and the negative SST response area are reduced.  相似文献   

7.
Two coupled general circulation models, i.e., the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) models, were chosen to examine changes in mixed layer depth (MLD) in the equatorial tropical Pacific and its relationship with ENSO under climate change projections. The control experiment used pre-industrial greenhouse gas concentrations whereas the 2 × CO2 experiment used doubled CO2 levels. In the control experiment, the MLD simulated in the MRI model was shallower than that in the GFDL model. This resulted in the tropical Pacific’s mean sea surface temperature (SST) increasing at different rates under global warming in the two models. The deeper the mean MLD simulated in the control simulation, the lesser the warming rate of the mean SST simulated in the 2 × CO2 experiment. This demonstrates that the MLD is a key parameter for regulating the response of tropical mean SST to global warming. In particular, in the MRI model, increased stratification associated with global warming amplified wind-driven advection within the mixed layer, leading to greater ENSO variability. On the other hand, in the GFDL model, wind-driven currents were weak, which resulted in mixed-layer dynamics being less sensitive to global warming. The relationship between MLD and ENSO was also examined. Results indicated that the non-linearity between the MLD and ENSO is enhanced from the control run to the 2 × CO2 run in the MRI model, in contrast, the linear relationship between the MLD index and ENSO is unchanged despite an increase in CO2 concentrations in the GFDL model.  相似文献   

8.
A coupled carbon cycle-climate model is used to compute global atmospheric CO2 and temperature variation that would result from several future CO2 emission scenarios. The model includes temperature and CO2 feedbacks on the terrestrial biosphere, and temperature feedback on the oceanic uptake of CO2. The scenarios used include cases in which fossil fuel CO2 emissions are held constant at the 1986 value or increase by 1% yr–1 until either 2000 or 2020, followed by a gradual transition to a rate of decrease of 1 or 2% yr–1. The climatic effect of increases in non-CO2 trace gases is included, and scenarios are considered in which these gases increase until 2075 or are stabilized once CO2 emission reductions begin. Low and high deforestation scenarios are also considered. In all cases, results are computed for equilibrium climatic sensitivities to CO2 doubling of 2.0 and 4.0 °C.Peak atmospheric CO2 concentrations of 400–500 ppmv and global mean warming after 1980 of 0.6–3.2 °C occur, with maximum rates of global mean warming of 0.2–0.3 °C decade–1. The peak CO2 concentrations in these scenarios are significantly below that commonly regarded as unavoidable; further sensitivity analyses suggest that limiting atmospheric CO2 to as little as 400 ppmv is a credible option.Two factors in the model are important in limiting atmospheric CO2: (1) the airborne fraction falls rapidly once emissions begin to decrease, so that total emissions (fossil fuel + land use-induced) need initially fall to only about half their present value in order to stabilize atmospheric CO2, and (2) changes in rates of deforestation have an immediate and proportional effect on gross emissions from the biosphere, whereas the CO2 sink due to regrowth of forests responds more slowly, so that decreases in the rate of deforestation have a disproportionately large effect on net emission.If fossil fuel emissions were to decrease at 1–2% yr–1 beginning early in the next century, emissions could decrease to the rate of CO2 uptake by the predominantly oceanic sink within 50–100 yrs. Simulation results suggest that if subsequent emission reductions were tied to the rate of CO2 uptake by natural CO2 sinks, these reductions could proceed more slowly than initially while preventing further CO2 increases, since the natural CO2 sink strength decreases on time scales of one to several centuries. The model used here does not account for the possible effect on atmospheric CO2 concentration of possible changes in oceanic circulation. Based on past rates of atmospheric CO2 variation determined from polar ice cores, it appears that the largest plausible perturbation in ocean-air CO2 flux due to changes of oceanic circulation is substantially smaller than the permitted fossil fuel CO2 emissions under the above strategy, so tieing fossil fuel emissions to the total sink strength could provide adequate flexibility for responding to unexpected changes in oceanic CO2 uptake caused by climatic warming-induced changes of oceanic circulation.  相似文献   

9.
A significant change in mean precipitation occurred over much of Australia between 1913–45 and 1946–78. This is described on a seasonal basis and related to possible changes in the atmospheric circulation. It now appears that during this time mean surface temperatures in the mid southern latitude zone increased by up to 1 °C. This temperature change could be at least partly due to an increase in atmospheric CO2 concentrations from about 260 ppmv in the early nineteenth century. In any case the observed temperature increase is similar to the predicted future effects of a 50% increase in atmospheric CO2 concentrations. Thus the climatic change which occurred earlier this century is at least a good analogy for the effects of a CO2-induced global warming which is expected to occur over a similar time interval in the future. This allows the construction of more detailed and quantitative climate scenarios. The most noteworthy conclusion is that marked changes in the seasonally of precipitation should be anticipated, with seasonal changes in some areas being of the order of 50% or more for a doubling of CO2 content. The results are in general consistent with earlier more qualitative scenarios for Australia.  相似文献   

10.
The multi-component “green” McGill Paleoclimate Model (MPM), which includes interactive vegetation, is used to simulate the next glacial inception under orbital and prescribed atmospheric CO2 forcing. This intermediate complexity model is first run for short-term periods with an increasing atmospheric CO2 concentration; the model's response is in general agreement with the results of GCMs for CO2 doubling. The green MPM is then used to derive projections of the climate for the next 100 kyr. Under a constant CO2 level, the model produces three types of evolution for the ice volume: an imminent glacial inception (low CO2 levels), a glacial inception in 50 kyr (CO2 levels of 280 or 290 ppm), or no glacial inception during the next 100 kyr (CO2 levels of 300 ppm and higher). This high sensitivity to the CO2 level is due to the exceptionally weak future variations of the summer insolation at high northern latitudes. The changes in vegetation re-inforce the buildup of ice sheets after glacial inception. Finally, if an initial global warming episode of finite duration is included, after which the atmospheric CO2 level is assumed to stabilize at 280, 290 or 300 ppm, the impact of this warming is seen only in the first 5 kyr of the run; after this time the response is insensitive to the early warming perturbation.  相似文献   

11.
In this paper we study the impact of alternative metrics on short- and long-term multi-gas emission reduction strategies and the associated global and regional economic costs and emissions budgets. We compare global warming potentials with three different time horizons (20, 100, 500 years), global temperature change potential and global cost potentials with and without temperature overshoot. We find that the choice of metric has a relatively small impact on the CO2 budget compatible with the 2° target and therefore on global costs. However it substantially influences mid-term emission levels of CH4, which may either rise or decline in the next decades as compared to today’s levels. Though CO2 budgets are not affected much, we find changes in CO2 prices which substantially affect regional costs. Lower CO2 prices lead to more fossil fuel use and therefore higher resource prices on the global market. This increases profits of fossil-fuel exporters. Due to the different weights of non-CO2 emissions associated with different metrics, there are large differences in nominal CO2 equivalent budgets, which do not necessarily imply large differences in the budgets of the single gases. This may induce large shifts in emission permit trade, especially in regions where agriculture with its high associated CH4 emissions plays an important role. Furthermore it makes it important to determine CO2 equivalence budgets with respect to the chosen metric. Our results suggest that for limiting warming to 2 °C in 2100, the currently used GWP100 performs well in terms of global mitigation costs despite its conceptual simplicity.  相似文献   

12.
We explore allowable leakage for carbon capture and geological storage to be consistent with maximum global warming targets of 2.5 and 3 °C by 2100. Given plausible fossil fuel use and carbon capture and storage scenarios, and based on modeling of time-dependent leakage of CO2, we employ a climate model to calculate the long-term temperature response of CO2 emissions. We assume that half of the stored CO2 is permanently trapped by fast mechanisms. If 40?% of global CO2 emissions are stored in the second half of this century, the temperature effect of escaped CO2 is too small to compromise a 2.5 °C target. If 80?% of CO2 is captured, escaped CO2 must peak 300?years or later for consistency with this climate target. Due to much more CO2 stored for the 3 than the 2.5 °C target, quality of storage becomes more important. Thus for the 3 °C target escaped CO2 must peak 400?years or later in the 40?% scenario, and 3000?years or later in the 80?% scenario. Consequently CO2 escaped from geological storage can compromise the less stringent 3 °C target in the long-run if most of global CO2 emissions have been stored. If less CO2 is stored only a very high escape scenario can compromise the more stringent 2.5 °C target. For the two remaining combinations of storage scenarios and climate targets, leakage must be high to compromise these climate targets.  相似文献   

13.
Terrestrial ecosystems are an important part of Earth systems, and they are undergoing remarkable changes in response to global warming. This study investigates the response of the terrestrial vegetation distribution and carbon fluxes to global warming by using the new dynamic global vegetation model in the second version of the Chinese Academy of Sciences (CAS) Earth System Model (CAS-ESM2). We conducted two sets of simulations, a present-day simulation and a future simulation, which were forced by the present-day climate during 1981–2000 and the future climate during 2081–2100, respectively, as derived from RCP8.5 outputs in CMIP5. CO2 concentration is kept constant in all simulations to isolate CO2-fertilization effects. The results show an overall increase in vegetation coverage in response to global warming, which is the net result of the greening in the mid-high latitudes and the browning in the tropics. The results also show an enhancement in carbon fluxes in response to global warming, including gross primary productivity, net primary productivity, and autotrophic respiration. We found that the changes in vegetation coverage were significantly correlated with changes in surface air temperature, reflecting the dominant role of temperature, while the changes in carbon fluxes were caused by the combined effects of leaf area index, temperature, and precipitation. This study applies the CAS-ESM2 to investigate the response of terrestrial ecosystems to climate warming. Even though the interpretation of the results is limited by isolating CO2-fertilization effects, this application is still beneficial for adding to our understanding of vegetation processes and to further improve upon model parameterizations.  相似文献   

14.
Summary The first GCM climate change projections to include dynamic vegetation and an interactive carbon cycle produced a very significant amplification of global warming over the 21st century. Under the IS92a business as usual emissions scenario CO2 concentrations reached about 980ppmv by 2100, which is about 280ppmv higher than when these feedbacks were ignored. The major contribution to the increased CO2 arose from reductions in soil carbon because global warming is assumed to accelerate respiration. However, there was also a lesser contribution from an alarming loss of the Amazonian rainforest. This paper describes the phenomenon of Amazonian forest dieback under elevated CO2 in the Hadley Centre climate-carbon cycle model.  相似文献   

15.
A dynamic global vegetation model (DGVM) is coupled to an atmospheric general circulation model (AGCM) to investigate the influence of vegetation dynamics on climate change under conditions of global warming. The model results are largely in agreement with observations and the results of previous studies in terms of the present climate, present potential vegetation, present net primary productivity (NPP), and pre-industrial carbon budgets. The equilibrium state of climate properties are compared among pre-industrial, doubled, and quadrupled atmospheric CO2 values using DGVM–AGCM and current AGCM with fixed vegetation to evaluate the influence of dynamic vegetation change. We also separated the contributions of temperature, precipitation and CO2 fertilization on vegetation change. The results reveal an amplification of global warming climate sensitivity by 10% due to the inclusion of dynamic vegetation. The total effects of elevated CO2 and climate change also lead to an increase in NPP and vegetation coverage globally. The reduction of albedo associated with this greening results in enhanced global warming. Our separation analysis indicates that temperature alters vegetation at high latitudes such as Siberia or Alaska, where there is a switch from tundra to forest. On the other hand, CO2 fertilization provides the largest contribution to greening in arid/semi-arid region. Precipitation change did not cause any drastic vegetation shift.  相似文献   

16.
Solar radiation modification (SRM, also termed as geoengineering) has been proposed as a potential option to counteract anthropogenic warming. The underlying idea of SRM is to reduce the amount of sunlight reaching the atmosphere and surface, thus offsetting some amount of global warming. Here, the authors use an Earth system model to investigate the impact of SRM on the global carbon cycle and ocean biogeochemistry. The authors simulate the temporal evolution of global climate and the carbon cycle from the pre-industrial period to the end of this century under three scenarios: the RCP4.5 CO2 emission pathway, the RCP8.5 CO2 emission pathway, and the RCP8.5 CO2 emission pathway with the implementation of SRM to maintain the global mean surface temperature at the level of RCP4.5. The simulations show that SRM, by altering global climate, also affects the global carbon cycle. Compared to the RCP8.5 simulation without SRM, by the year 2100, SRM reduces atmospheric CO2 by 65 ppm mainly as a result of increased CO2 uptake by the terrestrial biosphere. However, SRM-induced change in atmospheric CO2 and climate has a small effect in mitigating ocean acidification. By the year 2100, relative to RCP8.5, SRM causes a decrease in surface ocean hydrogen ion concentration ([H+]) by 6% and attenuates the seasonal amplitude of [H+] by about 10%. The simulations also show that SRM has a small effect on globally integrated ocean net primary productivity relative to the high-CO2 simulation without SRM. This study contributes to a comprehensive assessment of the effects of SRM on both the physical climate and the global carbon cycle.摘要太阳辐射干预地球工程是应对气候变化的备用应急措施. 其基本思路是通过减少到达大气和地表的太阳辐射, 从一定程度上抵消温室效应引起的全球变暖. 本研究使用地球系统模式模拟理想化太阳辐射干预方法对海洋碳循环的影响. 模拟试验中, 通过直接减少太阳辐射将RCP8.5 CO2排放情景下的全球平均温度降低到RCP4.5情景下的温度. 模拟结果表明, 到2100年, 相对于RCP8.5情景, 减少太阳辐射通过增加陆地碳汇, 使大气CO2浓度降低了65 ppm. 减少太阳辐射对海洋酸化影响很小. 到 2100 年, 相对于RCP8.5情景, 减少太阳辐射使海表平均氢离子浓度减少6%, pH上升0.03, 同时使海表平均氢离子浓度的季节变化振幅衰减约10%. 模拟结果还表明, 减少太阳辐射对全球海洋净初级生产力的影响较小. 本研究有助于深化我们对太阳辐射干预地球工程的气候和碳循环效应的认知和综合评估.  相似文献   

17.
Finite computer resources force compromises in the design of transient numerical experiments with coupled atmosphere-ocean general circulation models which, in the case of global warming simulations, normally preclude a full integration from the undisturbed pre-industrial state. The start of the integration at a later time from a climate state which, in contrast to the true climate, is initially in equilibrium then induces a cold start error. Using linear response theory a general expression for the cold start error is derived. The theory is applied to the Hamburg CO2 scenario simulations. An attempt to estimate the global-mean-temperature response function of the coupled model from the response of the model to a CO2 doubling was unsuccessful because of the non-linearity of the system. However, an alternative derivation, based on the transient simulation itself, yielded a cold start error which explained the initial retardation of the Hamburg global warming curve relative to the IPCC results obtained with a simple box-diffusion-upwelling model. In the case of the sea level the behaviour of the model is apparently more linear. The cold start error estimations based on a CO2 doubling experiment and on an experiment with gradually increasing CO2 (scenario A) are very similar and explain about two thirds of the coupled model retardation relative to the IPCC results.  相似文献   

18.
Summary A coupled 1-D time-dependent radiative-convective-photochemical diffusion model which extends from the surface to 60 km is used to investigate the potential impact of greenhouse trace gas emissions on long-term changes in global climate, atmospheric ozone and surface UV-B radiation, taking into accoont the influence of aerosol loading into the atmosphere from major volcanic eruptions, of thermal inertia of the upper mixed layer of the ocean and of other radiativephotochemical feedback mechanisms. Experiments are carried out under global and annual average insolation and cloudiness conditions. The transient calculations are made for three different growth scenarios for increase in trace gas concentrations. Scenario 1, which begins in 1850, uses the best estimate values for future trace gas concentrations of CO2, CH4, N2O, CFC-11, CFC-12 and tropospheric O3, based on current observational trends. Scenarios 2 and 3, which begin in 1990, assume lower and upper ranges, respectively, of observed growth rates to estimate future concentrations.The transient response of the model for Scenario 1 suggests that surface warming of the ocean mixed layer of about 1 K should have taken place between 1850 and 1990 due to a combined increase of atmospheric CO2 and other trace gases. For the three scenarios considered in this study, the cumulative surface warming induced by all major trace gases for the period 1850 to 2080 ranges from 2.7 K to 8.2 K with the best estimate value of 5 K. The results indicate that the direct and the indirect chemistry-climate interactions of non-CO2 trace gases contribute significantly to the cumulative surface warming (up to 65% by the year 2080). The thermal inertia of a mixed layer of the ocean is shown to have the effect of delaying equilibrium surface warming by almost three decades with an e-folding time of about 5 years. The volcanic aerosols which would result from major volcanic eruptions play a significant role by interrupting the long-term greenhouse surface warming trend and replacing it by a temporary cooling on a time scale of a decade or less. Furthermore, depending on the scenario used, a reduction in the net ozone column could result in an increase in the solar UV-B radiation at the surface by as much as 300% towards the end of 21st century.With 14 Figures  相似文献   

19.
This study investigates the impact of global warming on the savannization of the tropical land region and also examines the relative roles of the impact of the increase of greenhouse gas concentration and future changes in land cover on the tropical climate. For this purpose, a mechanistic–statistical–dynamical climate model with a bidirectional interaction between vegetation and climate is used. The results showed that climate change due to deforestation is more than that due to greenhouse gases in the tropical region. The warming due to deforestation corresponds to around 60% of the warming in the tropical region when the increase of CO2 concentration is included together. However, the global warming due to deforestation is negligible. On the other hand, with the increase of CO2 concentration projected for 2100, there is a lower decrease of evapotranspiration, precipitation and net surface radiation in the tropical region compared with the case with only deforestation. Differently from the case with only deforestation, the effect of the changes in the net surface radiation overcomes that due to the evapotranspiration, so that the warming in the tropical land region is increased. The impact of the increase of CO2 concentration on a deforestation scenario is to increase the reduction of the areas covered by tropical forest (and a corresponding increase in the areas covered by savanna) which may reach 7.5% in future compared with the present climate. Compared with the case with only deforestation, drying may increase by 66.7%. This corroborates with the hypothesis that the process of savannization of the tropical forest can be accelerated in future due to global warming.  相似文献   

20.
Anthropogenic influences on regional climate and water resources over East Asia are simulated by using a regional model nested to a global model. The changes of land use/land cover (LULC) and CO2 concentration are considered. The results show that variations of LULC and CO2 concentration during the past 130 years caused a warming trend in many regions of East Asia. The most remarkable temperature increase occurred in Inner Mongolia, Northeast and North China, whereas temperature decreased in Gansu Province and north of Sichuan Province. LULC and CO2 changes over the past 130 years resulted in a decreasing trend of precipitation in the Huaihe River valley, Shandong Byland, and Yunnan-Guizhou Plateau, but precipitation increased along the middle reaches of the Yangtze River, the middle reaches of the Yellow River, and parts of South China. This pattern of precipitation change with changes in surface evapotranspiration may have caused a more severe drought in the lower reaches of the Yellow River and the Huaihe River valley. The drought trend, however, weakened in the mid and upper reaches of the Yellow River valley, and the Yangtze River valley floods were increasing. In addition, changes in LULC and CO2 concentration during the past 130 years led to adjustments in the East Asian monsoon circulation, which further affected water vapor transport and budget, making North China warm and dry, the Sichuan basin cold and wet, and East China warm and wet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号