首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A GIS-based palaeogeographic reconstruction of the development of the Baltic Ice Lake (BIL) in the eastern Baltic during the deglaciation of the Scandinavian Ice Sheet is presented. A Late Glacial shoreline database containing more than 1000 sites from Finland, NW Russia, Estonia, Latvia and modern digital terrain models were used for palaeoreconstructions. The BIL occupied five different levels, represented by 492 shoreline features. The study shows that at about 13.3 cal. ka BP the BIL extended to the ice-free areas of Latvia, Estonia and NW Russia, represented by the highest shoreline in this region. Reconstructions demonstrate that BIL initially had the same water level as the Glacial Lakes Peipsi and Võrtsjärv, because these water bodies were connected via strait systems in central Estonia. These strait systems were closed at about 12.8–11.7 cal. ka BP prior to the final drainage of the BIL due to isostatic uplift. Glacial Lake Võrtsjärv was isolated from the BIL at about 12.4–12.0 cal. ka BP. Exact timing of Glacial Lake Peipsi isolation is not clear, but according to the altitude of the threshold in northeast Estonia and shore displacement data it was completed at about 12.4–11.7 cal. ka BP.  相似文献   

2.
We reconstruct palaeoclimate and palaeoceanography of the Ísafjarðardjúp fjord system from two cores – one from the inner fjord and one near the fjord mouth – while separating the potential overprinting of relative sea‐level (RSL) and local fjord hydrographic changes on these records. The inner fjord core (B997‐339) reflects local fjord hydrography; the outer fjord core (MD99‐2266) reflects the regional oceanic signal. Glacial marine conditions ended at ca. 10 200 cal. a BP, indicated by both ice‐rafted debris records. The other proxy records show spatial and temporal variability within the fjord system. At the inner fjord site (B997‐339) foraminiferal assemblages and the δ18O record indicate lowered RSL between ca. 10 600 and 8900 cal. a BP and document the onset of fjord water overturning at ca. 8900 cal. a BP, which obscured the climate record. At the fjord mouth (MD99‐2266) mass accumulation rates suggest lowered RSL between ca. 10 200 and 5500 cal. a BP and local freshwater and/or reduced salinities of the Irminger Current water masses affected the δ18O signal between ca. 10 200 and 7900 cal. a BP. At MD99‐2266, foraminiferal fauna record the Holocene Thermal Maximum between ca. 8000 and 5700 cal. a BP and the onset of modern oceanic circulation at ca. 7000 cal. a BP. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
High-resolution pollen analysis of Alborán Sea core MD95-2043 provides a 48-ka continuous vegetation record that can be directly correlated with sea surface and deep-water changes. The reliability of this record is supported by comparison with that of Padul (Sierra Nevada, Spain). Marine Isotope Stage (MIS) 3 was characterised by fluctuations in Quercus forest cover in response to Dansgaard-Oeschger climate variability. MIS 2 was characterised by the dominance of semi-desert vegetation. Despite overall dry and cold conditions during MIS 2, Heinrich events (HEs) 2 and 1 were distinguished from the last glacial maximum by more intensely arid conditions. Taxon-specific vegetation responses to a tripartite climatic structure within the HEs are observed. In MIS 1, the Bölling-Allerød was marked by rapid afforestation, while a re-expansion of semi-desert environments occurred during the Younger Dryas. The maximum development of mixed Quercus forest occurred between 11.7 and 5.4 cal ka BP, with forest decline since 5.4 cal ka BP. On orbital timescales, a long-term expansion of semi-desert vegetation from MIS 3 into MIS 2 reflects global ice-volume trends, while Holocene arboreal decline reflects summer insolation decrease. The influence of precession on the amplitude of forest development and vegetation composition is also detected.  相似文献   

4.
Palynological and sedimentological analyses were performed on the sediment core HH16-1205-GC retrieved from the central Isfjorden, West Spitsbergen. The sequence, which spans the last 7000 years, revealed an overall cooling trend with an important climate shift between 4.4 and 3.8 cal. ka BP, in addition to millennial-scale oscillations. Sea-surface reconstruction from dinocyst assemblages indicates a decrease in summer sea-surface temperature, from 2.5 to 1.5 °C, and primary productivity, from 750 to 650 gC m−2 a−1 over the last 7000 years. From around 6.8 to 5.8 cal. ka BP, the sedimentological and palynological data suggest a predominant sediment supply from the inner part of the fjord, ice rafting, dense sea ice cover, strongly stratified water masses and high primary productivity. The interval from 4.4 to 3.8 cal. ka BP is marked by a layer of coarser material and a significant decrease in the grain-size mode. Our geochemical data show large-amplitude fluctuations after 2.0 cal. ka BP, while an increase in the dinocysts Impagidinium pallidum and Spiniferites elongatus from 2.0 to 1.2 cal. ka BP suggests enhanced Atlantic Water inflow. The dinocyst-based reconstructions also reveal large-amplitude millennial fluctuations in sea ice cover, summer sea-surface temperature and salinity. Wavelet analysis and cross-wavelet analysis on K/Ti ratio coupled with sea-ice estimates confirm a strong signal with a periodicity of 1200–1500 years.  相似文献   

5.
AMS 14C ages of post-glacial core sediments from the subaqueous Yangtze delta, along with sedimentary structures and distributions of grain size, pollen spores, and dinoflagellate cysts, show an estuarine depositional system from 13 to 8.4 cal ka BP and a deltaic system from 5.9 cal ka BP to the present. The estuarine system consists of intertidal to subtidal flat, estuarine, and estuarine-front facies, characterized by sand–mud couplets and a high sedimentation rate. The deltaic system includes nearshore shelf and prodelta mud featured by lower sedimentation rate, markedly fewer coastal wetland herbaceous pollens, and more dinoflagellate cysts. We explain the extremely high sedimentation rate during 9.2–8.4 cal ka BP at the study site as a result of rapid sea-level rise, high sediment load due to the unstable monsoonal climate, and subaqueous decrease of elevation from inner to outer estuary. A depositional hiatus occurred during 8.2–5.9 cal ka BP, the transition from estuarine to deltaic system, caused possibly by a shortage of sediment supply resulting from delta initiation in paleo-incised Yangtze valley and strong tidal or storm-related reworking in offshore areas. The subsequent development of deltaic system at the study site indicates accelerated progradation of Yangtze delta post-5.9 cal ka BP.  相似文献   

6.
The glacial history of the Tagliamento morainic amphitheater (southeastern Alpine foreland, Italy) during the last glacial maximum (LGM) has been reconstructed by means of a geological survey and drillings, radiocarbon dating and pollen analysis in the amphitheater and in the sandur. Two phases of glacial culmination, separated by a distinct recession, are responsible for glacial landforms and related sediments in the outer part of the amphitheater. The age of the younger advance fits the chronology of the culmination of the last glaciation in the Alps, well established between 24 and 21 cal ka BP (20 to 17.5 14C ka BP), whereas the first pulse between 26.5 and 23 cal ka BP (22 to 21 14C ka BP), previously undated, was usually related to older (pre-LGM) glaciations by previous authors. Here, the first pulse is the most extensive LGM culmination, but is often buried by the subsequent pulse. The onset and final recession of the late Würm Alpine glaciation in the Tagliamento amphitheater are synchronous with the established global glacial maximum between 30 and 19 cal ka BP. The two-fold LGM glacial oscillation is interpreted as a millennial-scale modulation within the late Würm glaciation, caused by oscillations in inputs of southerly atmospheric airflows related to Dansgaard-Oeschger cycles. Phases of enhanced southerly circulation promoted increased rainfall and ice accumulation in the southern Alps.  相似文献   

7.
A database consisting of radiocarbon (14C), optically stimulated luminescence (OSL), thermoluminescence (TL) and beryllium (10Be) dates was used for timing the advance of the Late Weichselian Scandinavian Ice Sheet (SIS), determining the age of the Last Glacial Maximum (LGM) and the rate of deglaciation. The study area encompasses the southeastern sector of the last SIS between the Baltic Sea and the LGM position in the western part of the East European Plain, covering the Karelian Ice‐Stream Complex (ISC) area in the east and the Baltic ISC area in the west. The linear advance and recession rates of the last SIS were estimated to be between 110 and 330 m a?1 and between 50 and 170 m a?1, respectively. The onset of the last SIS in the Karelian ISC area reached the western shores of Latvia not before 26 OSL ka, and in the Baltic ISC area, on the southern shores of the Gulf of Finland, not before 21 OSL ka. The last SIS reached close to the LGM position earliest in NW Belarus, not earlier than 22.6 cal. 14C ka BP, and latest in the NE of Belarus, not earlier than 19.1 cal. 14C ka BP. The Baltic ISC area between the LGM position and the western shores of Latvia was deglaciated in about 8 ka, and in the Karelian ISC area, between the LGM position and the southern shores of the Gulf of Finland, in about 2.6 ka. The whole area between the LGM position and the Baltic Sea was deglaciated between 14.2 10Be ka and 13.3 cal. 14C ka BP.  相似文献   

8.
Widespread molluscan samples were collected from raised marine sediments to date the last retreat of the NW Laurentide Ice Sheet from the western Canadian Arctic Archipelago. At the head of Mercy Bay, northern Banks Island, deglacial mud at the modern coast contains Hiatella arctica and Portlandia arctica bivalves, as well as Cyrtodaria kurriana, previously unreported for this area. Multiple H. arctica and C. kurriana valves from this site yield a mean age of 11.5 14C ka BP (with 740 yr marine reservoir correction). The occurrence of C. kurriana, a low Arctic taxon, raises questions concerning its origin, because evidence is currently lacking for a molluscan refugium in the Arctic Ocean during the last glacial maximum. Elsewhere, the oldest late glacial age available on C. kurriana comes from the Laptev Sea where it is < 10.3 14C ka BP and attributed to a North Atlantic source. This is 2000 cal yr younger than the Mercy Bay samples reported here, making the Laptev Sea, ~ 3000 km to the west, an unlikely source. An alternate route from the North Atlantic into the Canadian Arctic Archipelago was precluded by coalescent Laurentide, Innuitian and Greenland ice east of Banks Island until ~ 10 14C ka BP. We conclude that the presence of C. kurriana on northern Banks Island records migration from the North Pacific. This requires the resubmergence of Bering Strait by 11.5 14C ka BP, extending previous age determinations on the reconnection of the Pacific and Arctic oceans by up to 1000 yr. This renewed ingress of Pacific water likely played an important role in re-establishing Arctic Ocean surface currents, including the evacuation of thick multi-year sea ice into the North Atlantic prior to the Younger Dryas geochron.  相似文献   

9.
This paper presents the results of an investigation into Holocene relative sea-level (RSL) change, isostatic rebound and ice sheet dynamics in Disko Bugt, West Greenland. Data collected from nine isolation basins on Arveprinsen Ejland, east Disko Bugt, show that mean sea level fell continuously from ca. 70 m at 9.9 ka cal. yr BP (8.9 ka 14C yr BP) to reach a minimum of ca. −5 m at 2.8 ka cal. yr BP (2.5 ka 14C yr BP), before rising to the present day. A west–east gradient in isostatic uplift across Disko Bugt is confirmed, with reduced rebound observed in east Disko Bugt. However, RSL differences (up to 20 m at 7.8 ka to 6.8 ka cal. yr BP (7 ka to 6 ka 14C yr BP)) also exist within east Disko Bugt, suggesting a significant north–south component to the area’s isostatic history. The observed magnitude and timing of late Holocene RSL rise is not compatible with regional forebulge collapse. Instead, RSL rise began first in the eastern part of the bay, as might be expected under a scenario of crustal subsidence caused by neoglacial ice sheet readvance. The results of this study demonstrate the potential of isolation basin data for local and regional RSL studies in Greenland, and the importance of avoiding data compilations from areas where the isobase orientation is uncertain. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Evidence of a dynamic Holocene glacial history is preserved in the terrestrial and marine archives of St. Jonsfjorden, a small fjord‐system on the west coast of Spitsbergen, Svalbard. High‐resolution, remotely sensed imagery from marine and terrestrial environments was used to construct geomorphological maps that highlight an intricate glacial history of the entire fjord‐system. The geomorphology and stratigraphy indicate an early Holocene local glacier advance constrained to the Lateglacial–early Holocene transition. Identification and 14C dating of the thermophilous bivalve mollusc Modiolus modiolus to 10.0±0.12 cal. ka BP suggest a rapid northward migration of the species shortly after deglaciation. Further evidence enhances the understanding of the onset and subsequent climax of the Neoglacial‐Little Ice Age in inner St. Jonsfjorden. The present‐day terminus of Osbornebreen, the dominating glacier system in St. Jonsfjorden, is located over 8.5 km up‐fjord from its Neoglacial maximum extent. Cross‐cutting relationships suggest subsequent advances of all the smaller glaciers in the area following the break‐up of Osbornebreen. Glacial deposits, landforms and their cross‐cutting relationships observed in both terrestrial and marine settings imply a complex and highly dynamic environment through the later part of the Holocene.  相似文献   

11.
In this study, we present new information on the glacial history of the Greenland Ice Sheet (GrIS) and a local ice cap in Qaanaaq, northwest Greenland. We use geomorphological mapping, 10Be exposure dating of boulders, analysis of lake cores, and 14C dating of reworked marine molluscs and subfossil plants to constrain the glacial history. Our 14C ages of reworked marine molluscs reveal that the ice extent in the area was at or behind its present‐day position from 42.2 ± 0.4 to 30.6 ± 0.3k cal a BP after which the GrIS expanded to its maximum position during the Last Glacial Maximum. We find evidence of early ice retreat in the deep fjord (Inglefield Bredning) at 11.9 ± 0.6 ka whereas the Taserssuit Valley was deglaciated ~4 ka later at 7.8 ± 0.1k cal a BP. A proglacial lake record suggests that the local ice cap survived the Holocene Thermal Maximum but moss kill‐dates reveal that it was smaller than present for a period of time before 3.3 ± 0.1k until 0.9 ± 0.1k cal a BP, following which the ice in the area expanded towards its Little Ice Age extent. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

12.
Climatically driven Late Pleistocene and Holocene vegetation changes were reconstructed based on pollen records from the sediments of Lake Kotokel and Cheremushka Bog, located on the eastern shore of Lake Baikal. The described paleoenvironmental record has higher resolution than records collected from Lake Baikal and unites individual events identified in prior studies of bottom and onshore cores. Remarkable shifts in landscapes and expansions of index plants are as follows. Forest tundra and/or forest steppe landscape with birch, spruce, Artemisia, and Poaceae prevailed at ca. 50–25 14C kyr BP. Tundra and/or steppe vegetation dominated by Artemisia and Poaceae was typical for the Last Glacial Maximum. The expansion of shrub birch and willow occurred at ca. 15.5 14C kyr BP. Two peaks of spruce expansion at ca. 47.5–42.4 14C kyr BP (Karginian time) and at ca. 14.5–13 ka (Bølling-Allerød warm intervals) suggest that the condition were more humid than today. A slight increase in Artemisia at ca. 11–10.5 14C kyr BP (13–12 ka) was indicative of the Younger Dryas event. An expansion of birch forests with fir at ca. 12–6.4 ka suggests higher humidity. The currently dominant Scots and Siberian pine forests with birch expanded since 6.4 ka.  相似文献   

13.
The Lower Cambrian Saint Petersburg blue clays are composed of predominant illite and chlorite, sometimes accompanied by kaolinite. The <0.1 μm fraction has a high content of illite–smectite mixed layers. Particle-size distribution is more than 50% of clay particles and about 30% of silts. These blue clays correspond to plastic (and soft) clays; they may be compared to the Callovian clays of Bure (France), where storage of natural waste is envisaged. To cite this article: M. Arnould et al., C. R. Geoscience 334 (2002) 1135–1140.

Résumé

Les « argiles bleues » du Cambrien Inférieur de Saint-Pétersbourg sont constituées d'illite dominante et de chlorite, avec parfois présence de kaolinite. Des interstratifiés illite/montmorillonite sont très abondants dans la phase <0,1 μm. Du point de vue granulométrique, outre plus de 50% de particules argileuses, il existe une phase silteuse de l'ordre de 30%. Du point de vue pétrophysique, ce sont des argiles plastiques, de consistance molle. Elles sont subhorizontales et ont jusqu'à 116 m d'épaisseur. Outre l'absence de métamorphisme, malgré leur âge, leur caractère le plus remarquable est leur réseau de fracturation, bien observable en carrière. Les joints sont nets, sans remplissage ni cimentation. Les plans verticaux sont particulièrement développés. Le volume unitaire des blocs de matrice ne dépasse guère 1 m3. Des traces d'oxydation témoignent de circulations d'eau. Ces argiles silteuses anciennes peuvent aider à mieux connaı̂tre et comprendre les argilites silteuses épigénétiques calloviennes du site de Bure (Haute-Marne, France), où un stockage souterrain de déchets nucléaires est envisagé. Pour citer cet article : M. Arnould et al., C. R. Geoscience 334 (2002) 1135–1140.  相似文献   

14.
Nioghalvfjerdsfjorden in North-East Greenland is at present covered by a floating glacier. Raised marine deposits in the surrounding area contain shells of marine molluscs, bones of marine mammals and pieces of driftwood. A fairly systematic sampling of such material has been conducted, followed by extensive radiocarbon dating. We suggest that the Greenland ice sheet extended onto the shelf offshore North-East Greenland during isotope stage 2, perhaps even reaching the shelf break. During the subsequent recession of the ice sheet, the entrance of Nioghalvfjerdsfjorden had become ice-free by 9.7 cal. ka BP. The recession culminated between 7.7 and 4.5 cal. ka BP, during which time the fjord was glacier-free along its entire 80 km length. No dates younger than 4.5 cal. ka BP are available on marine material from the fjord, and it seems probable that the fjord has been continuously covered by the floating glacier since this time. The maximum glaciation was attained around AD 1900, after which thinning and recession took place. The marine limit increases from c. 40 m above sea level near the present margin of the Inland Ice to c. 65 m above sea level at the outer coast. These figures fit into the regional pattern of the marine limit for areas both to the south and north. The marine fauna comprise two bivalves, Macoma calcarea and Serripes groenlandicus, that may represent a southern element present during the Holocene temperature optimum. Remains of three taxa of southern extralimital terrestrial and limnic plants were dated to 5.1 cal. ka BP, and remains of another extralimital plant were dated to 8.8 and 8.5 cal. ka BP. The known Holocene time ranges of the willow Salix arctica and the lemming Dicrostonyx torquatus have been extended back to 8.8 and 6.4 cal. ka BP, respectively, providing minimum dates for their immigration to Greenland.  相似文献   

15.
The last ca. 20,000 yr of palaeoenvironmental conditions in Podocarpus National Park in the southeastern Ecuadorian Andes have been reconstructed from two pollen records from Cerro Toledo (04°22'28.6"S, 79°06'41.5"W) at 3150 m and 3110 m elevation. Páramo vegetation with high proportions of Plantago rigida characterised the last glacial maximum (LGM), reflecting cold and wet conditions. The upper forest line was at markedly lower elevations than present. After ca. 16,200 cal yr BP, páramo vegetation decreased slightly while mountain rainforest developed, suggesting rising temperatures. The trend of increasing temperatures and mountain rainforest expansion continued until ca. 8500 cal yr BP, while highest temperatures probably occurred from 9300 to 8500 cal yr BP. From ca. 8500 cal yr BP, páramo vegetation re-expanded with dominance of Poaceae, suggesting a change to cooler conditions. During the late Holocene after ca. 1800 cal yr BP, a decrease in páramo indicates a change to warmer conditions. Anthropogenic impact near the study site is indicated for times after 2300 cal yr BP. The regional environmental history indicates that through time the eastern Andean Cordillera in South Ecuador was influenced by eastern Amazonian climates rather than western Pacific climates.  相似文献   

16.
Critical loads of acidity represent the maximum acceptable atmospheric deposition for an ecosystem type. Two hundred and forty-one ecosystem types have been defined in France using pedologic, geologic and vegetation data. Weathering rate plays the most important part in soil buffering capacity, but for poor weatherable soils, non-marine atmospheric deposition represents up to 80% of base-cation inputs. Base-cation vegetation uptake decreases significantly the buffering capacity in case of high-productivity forests. Ecosystems combining low weathering rate and low non-marine base-cation deposition with high biomass productivity are the most sensitive to acidification. To cite this article: D. Moncoulon et al., C. R. Geoscience 336 (2004).

Résumé

Les charges critiques d'acidité représentent le dépôt atmosphérique maximal admissible pour un écosystème. Deux cent quarante et un types d'écosystèmes ont été définis en France à partir de données pédologiques, géologiques et de végétation. L'altération joue un rôle prépondérant contre l'acidification, mais pour les sols faiblement altérables, les dépôts atmosphériques non marins peuvent représenter jusqu'à 80 % des apports de cations basiques. Le prélèvement de cations par la végétation contribue significativement à diminuer le pouvoir tampon des sols pour les forêts à forte productivité. Les écosystèmes combinant faible altération et faibles dépôts de cations non marins ainsi qu'une forte productivité sont les plus sensibles à l'acidification. Pour citer cet article : D. Moncoulon et al., C. R. Geoscience 336 (2004).  相似文献   

17.
A long dust history established using geological archives from dust provenance areas is necessary to understand the role of atmospheric dust in the global climate system better. Core sediments from a closed-basin groundwater-recharged lake in arid Central Asia were investigated using a multi-proxy approach (e.g. 14C AMS dating, pollen, and grain size) to trace the dust history since ~ 15 cal ka BP. Pollen analysis showed that before 7.9 cal ka BP, the vegetation was of desert type. After 7.9 cal ka BP, vegetation density increased, probably due to slightly increased moisture. The Chenopodiaceae-dominated desert expanded rapidly at 4.2–3.8 cal ka BP. Grain-size analysis was conducted for samples of lake deposits, modern aeolian dust, and dust trapped in snow, and the data showed that there was strong aeolian dust deposition at 11.8–11.1, 10.6–8, 6.1–4.9, and after 3.3 cal ka BP. This timing corresponds well with periods of increased terrestrial dust fluxes recorded by Greenland ice cores. Our study may document changes in the location and intensity of the Siberia High. These changes may play a more important role in the history of dust emission in arid Central Asia than previously thought.  相似文献   

18.
We present elemental concentrations and magnetic susceptibility data from a new 270‐cm‐long sediment core collected from the western part of palaeolake Babicora and infer millennial‐scale hydrological variations over the last 27 cal. ka in the western Chihuahua Desert. Variations in the available water content at the sediment–air interface of the watershed, lake salinity and lake productivity are inferred from values of the chemical index of alteration (CIA), CaCO 3 and Corg, respectively. An abrupt increase in runoff at c. 24 cal. ka BP appears correlative with the Heinrich 2 (H2) event. Except for this event, diminished runoff between c. 27 and 19 cal. ka BP indicates lower annual precipitation (weak summer rainfall) during the Last Glacial Maximum. The deposition of chemically altered sediments between c. 25 and 22 cal. ka BP results from the higher sediment–water interaction in the watershed owing to lower evaporation, cooler conditions and higher precipitation during the H2 event. Since 19 cal. ka BP the runoff has been characterized by high‐amplitude fluctuations with intervals of reduced precipitation identified at c. 19, 18, 17.5, 13–14, 11.5, 10, 7.5 and 3 cal. ka BP.  相似文献   

19.
Late Quaternary (MIS 3 to Recent) oceanographic evolution of the Basque shelf has been analysed for the first time based on the sedimentological analysis of three cores obtained from the middle and outer shelves. The cores are located in two interfluves separated by the San Sebastian canyon. The variability of the percentage of the planktonic foraminifera species Neogloboquadrina pachyderma sin. and of δ18Obull allowed us to identify the influence of colder and warmer waters in the Basque shelf during the late Quaternary. From 56 cal. ka BP to the end of the Last Glacial Maximum (19 cal. ka BP) the sedimentary record shows a decreasing trend in the mean grain size that correlates with the eustatic sea‐level fall. The last Deglaciation (19–11.5 cal. ka BP) is characterized by a sea‐level rise that produced an important hiatus in the western outer shelf. During the Holocene, the middle and outer shelves present different behaviours. From 11.5 to 6.7 cal. ka BP, in the outer shelf the sea‐level rise that started during the Deglaciation produced a hiatus, whereas in the middle shelf the sedimentary succession records the presence of warm to temperate waters. Between 6.7–4.9 cal. ka BP, the entrance of cold surface water‐masses that only affected the middle shelf has been identified, and temperate to warm waters occurred in the outer shelf. The cold surface water‐masses retreated during 4.9–4.3 cal. ka BP in the middle shelf. Finally, from 4.3 cal. ka BP to Recent, the middle shelf registers a hiatus due to sea‐level stabilization after a generalized transgression, synchronous to a decrease in the energy of the water‐masses in the outer shelf. In conclusion, the environmental changes detected in the Basque shelf are attributed to both regional and eustatic sea‐level changes.  相似文献   

20.
通过对渤海湾西南部平原DC01孔的岩石地层学、生物地层学及年代地层学和地球化学研究,重建了该地区自晚更新世以来的地质环境演化过程。全新世之前,研究区经历了由河流-盐沼-潮间带上部/低盐沼-河口湾-泻湖-淡化泻湖的环境转化过程;进入全新世之后,该区经历了由湖沼到河流的环境转化过程。埋深22.4~12.7m发育近10m厚的弱海相沉积,AMS~(14)C年龄表明,该层沉积形成时间早于4.35ka cal BP,可能属于MIS 3早期(6.0~5.5ka cal BP)或更早的MIS 5期(12~8ka cal BP)。恢复了该时期的相对古海面,最高可达-13.31m。DC01孔缺失MIS 4~2或MIS 2时期的沉积。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号