首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
基于Prophet算法的海南近海波浪长时段时序分析与预测   总被引:1,自引:0,他引:1  
黄心裕  唐军  王晓宇 《海洋学报》2022,44(4):114-121
近年来,以大数据为基础的人工智能算法逐步兴起并被用于海洋波浪短期预测.本文采用2015-2019年海南近海逐时波浪实测时序数据,基于Prophet算法建立了海南近海波浪长时段时序预测模型,分析了2015-2019年海南近海波浪日、月、年变化特性,并对海南近海2020年波浪变化过程进行了预测.结果显示,Prophet算法...  相似文献   

2.
This paper generalises the application of univariate models of the long-term time series of significant wave height to the case of the bivariate series of significant wave height and mean period. A brief review of the basic features of multivariate autoregressive models is presented, and then applications are made to the wave time series of Figueira da Foz, in Portugal. It is demonstrated that the simulated series from these models exhibit the correlation between the two parameters a feature that univariate series cannot reproduce. An application to two series of significant wave height from two neighbouring stations shows the applicability of this type of models to other type of correlated data sets.  相似文献   

3.
A non-traditional fuzzy quantification method is presented in the modeling of an extreme significant wave height. First, a set of parametric models are selected to fit time series data for the significant wave height and the extrapolation for extremes are obtained based on high quantile estimations. The quality of these results is compared and discussed. Then, the proposed fuzzy model, which combines Poisson process and generalized Pareto distribution(GPD) model, is applied to characterizing the wave extremes in the time series data. The estimations for a long-term return value are considered as time-varying as a threshold is regarded as non-stationary. The estimated intervals coupled with the fuzzy theory are then introduced to construct the probability bounds for the return values. This nontraditional model is analyzed in comparison with the traditional model in the degree of conservatism for the long-term estimate. The impact on the fuzzy bounds of extreme estimations from the non stationary effect in the proposed model is also investigated.  相似文献   

4.
在对分形理论进行概述的基础上,对海况延续性和长期波高序列的统计分形特性进行了分析。分析得出海况的平均延时与波高阈之间具有分形关系。长期波高序列的R/S分析表明长期波高序列不是相互独立的,而是具有“记忆性”和持久性,其Hurst指数明显大于通常的时间序列。最后探讨了波浪分形特性的波侯意义,并对其应用前景进行了展望。  相似文献   

5.
Input reduction is imperative to long-term (> years) morphodynamic simulations to avoid excessive computation times. Here, we introduce an input-reduction framework for wave-dominated coastal settings. Our framework comprises 4 steps, viz. (1) the selection of the duration of the original (full) time series of wave forcing, (2) the selection of the representative wave conditions, (3) the sequencing of these conditions, and (4) the time span after which the sequence is repeated. In step (2), the chronology of the original series is retained, while that is no longer the case in steps (3) and (4). We apply the framework to two different sites (Noordwijk, Netherlands and Hasaki, Japan) with multiple nearshore sandbars but contrasting long-term offshore-directed behavior: at Noordwijk the offshore migration is gradual and not coupled to individual storms, while at Hasaki the offshore migration is more episodic, and wave chronology appears to control long-term evolution. The performance of the model with reduced wave climates is referenced to a simulation with the actual (full) wave-forcing series. We demonstrate that input reduction can dramatically affect long-term predictions, even to such an extent that the main characteristics of the offshore bar cycle are no longer reproduced. This was particularly the case at Hasaki, where all synthetic series that no longer capture the initial chronology (steps 3 and 4) lead to rather unrealistic long-term simulations. At Noordwijk, synthetic series can result in realistic behavior, provided that the time span after which the sequence is repeated is not too large; the reduction of this time span has the same positive effect on the simulation as increasing the number of selected conditions in step 2. We further demonstrate that, although storms result in the largest morphological change, conditions with low to intermediate wave energy must be retained to obtain realistic long-term sandbar behavior. Our input-reduction framework must be applied in an iterative fashion as to obtain a reduced wave climate that simulates long-term sandbar sufficiently accurately within an acceptable computation time. Given its potentially huge impact on the actual simulation, we believe it is imperative to consider input reduction as an intrinsic part of model set-up, calibration and validation.  相似文献   

6.
A numerical model based on using a tank Green function, has been developed to compute the side wall effects on first- and second-order loadings upon bodies of arbitrary geometry in wave tanks. This tank Green function (TGF) is composed of a finite series of open-sea Green functions and an asymptotic part represented by two single integrals whose kernels decrease exponentially with the integral variable. This consistent expression of the TGF permits one to highlight the side wall effects and to give some criteria for the choice of tank width and the measurement duration to limit the reflection of diffraction and radiation waves.

The efficiency of the developed model is shown in the application to hemispheres and a box-shaped barge placed in the center of the wave tanks. The numerical results explain well the irregularities in the experimental measurements and show that the side walls have important effects on the first-order quantities. These effects are much more pronounced on the second-order drift loads.  相似文献   


7.
In this paper, we present and evaluate three long-term wave models for application in simulation-based design of ships and marine structures. Designers and researchers often rely on historical weather data as a source for ocean area characteristics based on hindcast datasets or in-situ measurements. The limited access and size of historical datasets reduces repeatability of simulations and analyses, making it difficult to assess the sampling variability of performance and loads on marine vessels and structures. Markov, VAR and VARMA wave models, producing independent long-term time series of significant wave height (Hs) and spectral peak period (Tp), is presented as possible solutions to this problem. The models are tested and compared by addressing how the models affect interpretation of design concepts and the ability to replicate statistical and physical characteristics of the wave process. Our results show that the VAR and VARMA models perform sufficiently in describing design performance, but does not capture the physical process fully. The Markov model is found to perform worst of the tested models in the applied tests, especially for measures covering several consecutive sea states.  相似文献   

8.
Unlike in the open sea, the use of wind information for forecasting waves may encounter more ambiguous uncertainties in the coastal or harbor area due to the influence of complicated geometric configurations. Thus this paper attempts to forecast the waves based on learning the characteristics of observed waves, rather than the use of the wind information. This is reported in this paper by the application of the artificial neural network (ANN), in which the back-propagation algorithm is employed in the learning process for obtaining the desired results. This model evaluated the interconnection weights among multi-stations based on the previous short-term data, from which a time series of waves at a station can be generated for forecasting or data supplement based on using the neighbor stations data. Field data are used for testing the applicability of the ANN model. The results show that the ANN model performs well for both wave forecasting and data supplement when using a short-term observed wave data.  相似文献   

9.
An autoregressive wave force model is developed which is capable of accounting for localized flow history effects. It was developed in conjunction with the analysis of a series of experiments performed to study the wave-induced forces acting on a free-to-surge vertical cylinder in random waves. The wave force model incorporates a relative motion form of the Morison equation. The formulation presented in this study is quite general, but the filter coefficients in the model must be uniquely determined for each data set. The optimal length of the filter and its sensitivity are illustrated using data from small-scale wave tank tests. A high frequency wave force component observed in the experimental data is reproduced using this model. Lastly, the autoregressive wave force model is used to predict the response of a tension-leg platform to a wave train. A comparison of the results obtained both with and without the filter model are presented.  相似文献   

10.
The realistic assessment of an ocean wave energy resource that can be converted to an electrical power at various offshore sites depends upon many factors, and these include estimating the resource recognizing the random nature of the site-specific wave field, and optimizing the power conversion from particular wave energy conversion devices. In order to better account for the uncertainty in wave power resource estimates, conditional probability distribution functions of wave power in a given sea-state are derived. Theoretical expressions for the deep and shallow water limits are derived and the role of spectral width is studied. The theoretical model estimates were compared with the statistics obtained from the wave-by-wave analysis of JONSWAP based ocean wave time-series. It was shown that the narrow-band approximation is appropriate when the variability due to wave period is negligible. The application of the short-term models in evaluating the long-term wave power resource at a site was illustrated using wave data measured off the California coast. The final example illustrates the procedure for incorporating the local wave data and the sea-state model together with a wave energy device to obtain an estimate of the potential wave energy that could be converted into a usable energy resource.  相似文献   

11.
In the present study,a generalized active contour model of gradient vector flow is combined with the video techniques of Argus system to delineate and track sequential nearshore wave crest profdes in the shoaling process,up to their breaking on the shorehne.Previous applications of active contour models to water wave problems are limited to controllable wave tank experiments.By contrast,our application in this study is in a nearshore field environment where oblique images obtained under natural and varying condition of ambient light are employed.Existing Argus techniques produce plane image data or time series data from a selected small subset of discrete pixels.By contrast,the active contour model produces line image data along continuous visible curves such as wave crest profdes.The combination of these two existing techniques,the active contour model and Argus methodologies,facilitates the estimates of the direction wave field and phase speeds within the whole area covered by camera.These estimates are useful for the purpose of inverse calculation of the water depth.Applications of the present techniques to Hsi-tzu bay where a beach restoration program is currently undertaken are illustrated.This extension of Argus video techniques provides new application of optical remote sensing to study the hydrodynamics and morphology of a nearshore environment.  相似文献   

12.
针对海洋中的海浪高度数据存在非线性和非平稳性的特点,海浪高度的预测就变得相对复杂。基于变分模态分解(VMD),在引入注意力机制(AM)的基础上,对传统长短期记忆(LSTM)神经网络算法进行了改进,提出了一种基于混合模型的海浪高度预测算法。算法通过预处理、预测和重构3个主要步骤,对海浪高度的时间序列进行预测。为了比较和说明,以太平洋东北海盆海域和马尾藻海域的4个站点浮标数据进行实验。实验结果表明,本文提出的混合模型(VALM)将海浪高度数据分解为更平稳和更规则的子序列;可以更好的区分数据之间的重要程度,并能够携带更多信息的数据;与支持向量回归(SVR)、人工神经网络(ANN)和LSTM等模型进行比较,VALM模型的预测效果最好且具备一定的鲁棒性。  相似文献   

13.
A theoretical analysis shows that the geometric characteristics of a storm-beach profile is governed by a modified Iribarren number which includes the effects among the factors of beach slope, breaking wave angle and wave steepness. A series of experiments have been conducted in a three-dimensional movable bed model on the conditions of two different beach slopes and two incident wave angles as well as several erosive wave steepnesses. Based on the experimental data, the relative importance of each factor involved in the parameter is discussed. The empirical relationships between the geometric characteristics of a storm-beach profile and the modified Iribarren number are proposed through regression analysis.  相似文献   

14.
A coastal structure is usually designed with the final objective to guarantee its functionality and stability throughout its life cycle. Regarding stability, the three main failure modes are sliding, overturning and failure of the foundations. To accomplish the design objectives, a design sea state is usually used when calculating the loads and scour around the structure. This design sea state corresponds to a certain sea state with specific return period values of a significant wave height. However, the combination of different simultaneous sea state parameters can produce other critical situations compromising the stability of the structure which then require the calculation of long time series of wave forces corresponding to long-term historical wave situations. Moreover, a design force associated to a certain return period can be defined from the time series of the stability parameters. The most accurate techniques which can be used to estimate structure stability are based on numerical and physical models, but these are very time consuming and the calculation of long time series is therefore unfeasible. Here, we propose a hybrid methodology to transform wave conditions into wave forces acting upon vertical structures and scour around it. The methodology consists of a selection of a subset of sea states representative of wave climate at the structure location, using a maximum dissimilarity algorithm, The wave forces acting upon the structure and scour around it, for the wave situations selected, are then estimated as is the reconstruction of the calculated parameters corresponding to historical sea states using an interpolation technique based on radial basis function. The validation of the results, through a direct comparison between reconstructed series and analytically (semi-empirical formulations) calculated ones, confirms the ability of the developed methodology to reconstruct time series of stability parameters on vertical breakwaters. This methodology allows its application to numerical and physical models.  相似文献   

15.
This study deals with the non-linear effects of shallow-water wind waves. It is assumed that wind waves are an ergodic, random process, quasi-normal, stationary in time and homogeneous in space. The probability density function of sea surface oscillations is approximated by Gram-Charlier series in a modified form due to Edgeworth. Based on the above assumptions and on the fundamental statistical and stochastical laws the author has obtained the following characteristics: the probability density functions of wave heights, wave phases and velocity of the point mean wave height and mean wave length. The derived formulae are compared by the experimental data of the international expedition ‘Lubiatowo-74’. The analysis carried out has shown that real waves and the Gaussian model contradict considerably.  相似文献   

16.
Accurately estimating the mean and extreme wave statistics and better understanding their directional and seasonal variations are of great importance in the planning and designing of ocean and coastal engineering works. Due to the lack of long-term wave measurement data, the analysis of extreme waves is often based on the numerical wave hind-casting results. In this study, the wave climate in the East China Seas (including the Bohai Sea, the Yellow Sea and the East China Sea) for the past 35 years (1979–2013) is hind-casted using a third generation wave model – WAMC4 (Cycle 4 version of WAM model). Two sets of reanalysis wind data from NCEP (National Centers for Environmental Prediction, USA) and ECMWF (European Centre for Medium-range Weather Forecasts) are used to drive the wave model to generate the long-term wave climate. The hind-casted waves are then analysed to study the mean and extreme wave statistics in the study area. The results show that the mean wave heights decrease from south to north and from sea to land in general. The extreme wave heights with return periods of 50 and 100 years in the summer and autumn seasons are significantly higher than those in the other two seasons, mainly due to the effect of typhoon events. The mean wave heights in the winter season have the highest values, mainly due to the effect of winter monsoon winds. The comparison of extreme wave statistics from both wind fields with the field measurements at several nearshore wave observation stations shows that the extreme waves generated by the ECMWF winds are better than those generated by the NCEP winds. The comparison also shows the extreme waves in deep waters are better reproduced than those in shallow waters, which is partly attributed to the limitations of the wave model used. The results presented in this paper provide useful insight into the wave climate in the area of the East China Seas, as well as the effect of wind data resolution on the simulation of long-term waves.  相似文献   

17.
在印度洋、大西洋沿岸,海岸工程设计波浪周期多在14 s以上,具有显著的中长周期波特征。通过以往工程项目的试验结果发现中长周期波下,规范计算的斜坡堤胸墙波浪力明显小于试验结果。因此,通过系列物理模型试验研究了中长周期波下的斜坡堤胸墙波浪力。分析斜坡坡度、肩台宽度和波浪条件对胸墙波浪力的影响。通过将试验结果与我国现有规范中的经验公式计算所得结果进行对比,发现规范更适用于胸墙底淹没的情况,而对于肩台出水情况,规范计算结果小于试验结果。由此提出了一种新的波浪力计算方法,计算准确度得到明显提高。  相似文献   

18.
精确的海浪有效波高(简称浪高)预测对于海上生产生活具有重要意义。针对现有海浪浪高预测模型对不同海洋要素间关联信息考虑不足,以及长时序浪高数据本身存在非平稳性的问题,本文设计了一种考虑物理约束与差值约束的海浪浪高时间序列预测方法。该方法基于风速与浪高之间的物理关联,设计物理约束,并通过提取差分信息设计差值约束,结合现有基于深度学习的时间序列预测模型,实现浪高预测。采用黄海和东海的6个不同站点浮标数据进行了大量实验。实验结果表明,本文提出的方法可以利用海洋要素间的物理关联,有效提高浪高预测精度,并避免因不同要素间融合造成的信息间干扰;同时,利用差值约束限制时间序列预测结果的变动范围。本文方法可以与不同类型的时间序列预测模型相结合,显著提升原有模型的性能,并在长时间序列的预测中体现出很好的鲁棒性,为海洋要素预测中物理与数据驱动模型的有效结合提供了思路和验证。  相似文献   

19.
By analysing the scatter diagrams of characteristic the wave height H and the period T on the basis of instrumental data from various ocean wave stations, we found that the conditional expectation and standard deviation of wave period for a given wave height can be better predicted by using the equations of normal linear regression rather than by those based on the log- normal law. The latter was implied in Ochi' s bivariate log-normal model(Ochi. 1978) for the long-term joint distribution of H and T. With the expectation and standard deviation predicted by the normal linear regression equations and applying proper types of distribution, we have obtained the conditional distribution of T for given H. Then combining this conditional P(T / H) with long-term marginal distribution of the wave height P(H) we establish a new parameterized model for the long-term joint distribution P(H,T). As an example of the application of the new model we give a method for estimating wave period associated with an extreme w  相似文献   

20.
The present paper describes the set-up and application of the third-generation wave model — WAM Cycle 4 to the Black Sea. The wind fields are calculated by a regional atmosphere model (REMO), which was driven with the conditions from the global NCEP re-analysis project. These atmospheric data are used to force the state-of-the-art WAM model. The validation is done by comparison of wave model output against directional buoy measurements registered at three deep-water locations and wave gauge data taken at a point in intermediate depth near the Black Sea coast. The results reveal that agreement between modeled and measured data is satisfactory and the quality of the simulations increases under more energetic and severer wind and wave conditions. Following the validation, a 41-year wave hindcast was implemented spanning the period 1958–1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号