首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
我国西部高原大气边界层中的对流活动   总被引:4,自引:0,他引:4       下载免费PDF全文
利用 1 998年第 2次青藏高原野外试验中的多普勒声雷达探测、低空探测观测以及卫星观测资料对高原大气边界层内的对流现象进行分析研究。声雷达探测到了高原边界层内有强烈的对流活动。这种对流泡中心的垂直速度可超过 1m/s,并存在尺度为 1个多小时的周期性 ,表现为中小尺度的有组织的湍流活动。高原边界层强对流得以发展和维持的物理机制是 :强辐射加热、复杂的地形地貌形成的下垫面不均一性造成边界层斜压性、边界层内的平流活动等 ,这些现象都有利于对流的发展。在这些条件的作用下 ,边界层内可以产生一系列有组织的强湍流大涡旋活动 ,这些大涡旋形成的热泡在向上发展的过程中有的能够发生合并 ,变得更大也更为猛烈 ,达到凝结高度以上可形成对流云 ,并发生充分的对流混合。成云过程凝结潜热释放更有利于对流运动进一步发展 ,使对流云逐步发展成更大的对流云团 ,从而产生卫星云图中显示的云团发展过程。  相似文献   

2.
The vertical velocity field and the convective plumes in the atmospheric boundary layer have been observed during morning hours with the acoustic Doppler sounder of the C.R.P.E. A method for plume determination using acoustic soundings in the well-mixed layer is presented. Using Telford's 1970 and Manton's 1975 models, a comparison is made between the predictions of the models and the plume properties as observed by the Doppler sodar. The mean plume velocity is found to be parabolic. It is shown, restricting Monin and Obukhov similarity to conditions inside plumes and using only vertical velocity within plumes, that the observed convective plumes carry nearly sixty percent of the sensible heat flux at the top of the surface layer.  相似文献   

3.
A model of buoyancy- and momentum-driven industrial plumes in a freely convective boundary layer is proposed. The development combines the Lagrangian similarity models of Yaglom for non-buoyant releases in the convective surface layer with the Scorer similarity model for industrial plumes. Constraints on the validity of the extension of Yaglom’s model to the entire convective planetary boundary layer, arrived at by consideration of Batchelor’s formulation for diffusion in an inertial subrange, are often met in practice. The resulting formulation applies to an interval of time in which the entrainment of the atmosphere by the plume is balanced by the entrainment of the plume by the atmosphere. It is argued that during this interval, both maximum plume rise and ground contact are achieved. Further examination of the physical interrelationship with the Csanady-Briggs formulation serves to consolidate the model hypotheses, as well as to simplify the derivation of maximum ground-level concentrations. Experimental evidence is presented for the validity of the model, based on Moore’s published data.  相似文献   

4.
We present a statistical cloud scheme based on the subgrid-scale distribution of the saturation deficit. When analyzed in large-eddy simulations (LES) of a typical cloudy convective boundary layer, this distribution is shown to be bimodal and reasonably well-fitted by a bi-Gaussian distribution. Thanks to a tracer-based conditional sampling of coherent structures of the convective boundary layer in LES, we demonstrate that one mode corresponds to plumes of buoyant air arising from the surface, and the second to their environment, both within the cloud and sub-cloud layers. According to this analysis, we propose a cloud scheme based on a bi-Gaussian distribution of the saturation deficit, which can be easily coupled with any mass-flux scheme that discriminates buoyant plumes from their environment. For that, the standard deviations of the two Gaussian modes are parametrized starting from the top-hat distribution of the subgrid-scale thermodynamic variables given by the mass-flux scheme. Single-column model simulations of continental and maritime case studies show that this approach allows us to capture the vertical and temporal variations of the cloud cover and liquid water.  相似文献   

5.
A model of buoyancy- and momentum-driven industrial plumes in a freely convective boundary layer is proposed. The development combines the Lagrangian similarity models of Yaglom for non-buoyant releases in the convective surface layer with the Scorer similarity model for industrial plumes. Constraints on the validity of the extension of Yaglom’s model to the entire convective planetary boundary layer, arrived at by consideration of Batchelor’s formulation for diffusion in an inertial subrange, are often met in practice. The resulting formulation applies to an interval of time in which the entrainment of the atmosphere by the plume is balanced by the entrainment of the plume by the atmosphere. It is argued that during this interval, both maximum plume rise and ground contact are achieved. Further examination of the physical interrelationship with the Csanady-Briggs formulation serves to consolidate the model hypotheses, as well as to simplify the derivation of maximum ground-level concentrations. Experimental evidence is presented for the validity of the model, based on Moore’s published data.  相似文献   

6.
Comparison of meteorological tower measurements with a high resolution CW-FM radar indicates that the device is applicable to studies of structure of temperature inversions, stable and unstable waves upon such inversions, thermal plumes and convective processes within the boundary layer. The radar also appears to follow the transport of insects by such processes.  相似文献   

7.
Design criteria for laboratory water-analogs of clear-air penetrative convection in the atmosphere are described. Consideration is given to the range of factors relevant to modelling both turbulent penetrative convection and the dispersion of buoyant point-source plumes within the convective boundary layer. Scaling arguments based on mixed-layer and plume scaling show that at typical laboratory scales, saline convection can satisfy the requirements for modelling buoyant plume dispersion under strongly convective (light wind) conditions better than heated water tanks or wind tunnels.  相似文献   

8.
Turbulent convection forced by a surface heat flux into a stably stratified region is a feature of both the atmospheric and oceanic planetary boundary layers. Of particular interest is the interface between the convective layer and the stable stratification, where the entrainment of fluid into the convective layer by penetrating plumes may lead to a reverse buoyancy flux, and an enhancement of the stable stratification. Whereas in the atmosphere the influence of rotation on this penetrative convection is negligible, oceanic convection may be subjected to lower Rossby numbers and hence greater rotational influence. To isolate the effects of rotation, we present three numerical solutions for turbulent penetrative convection, characterised by different rotation rates, with all other parameters being held constant. Our results indicate that at lower Rossby numbers the lateral scale of the plumes is reduced, whereas the vertical vorticity of the plumes is much enhanced. Vertical transports of buoyancy and kinetic energy across the convective layer are reduced, leading to less efficient penetration at the interface with the stratified layer, and hence less reverse buoyancy flux in this region.  相似文献   

9.
The local climate and atmospheric circulation pattern exert a clear influence on the atmospheric boundary layer (ABL) formation and development in Northwest China. In this paper, we use field observational data to analyze the distribution and characteristics of the ABL in the extremely arid desert in Dunhuang, Northwest China. These data show that the daytime convective boundary layer and night time stable boundary layer in this area extend to higher altitudes than in other areas. In the night time, the stable boundary layer exceeds 900 m in altitude and can sometimes peak at 1750 m, above which the residual layer may reach up to about 4000 m. The daytime convective boundary layer develops rapidly after entering the residual layer, and exceeds 4000 m in thickness. The results show that the deep convective boundary layer in the daytime is a pre-requisite for maintaining the deep residual mixed layer in the night time. Meanwhile, the deep residual mixed layer in the night time provides favorable thermal conditions for the development of the convective boundary layer in the daytime. The prolonged periods of clear weather that often occurs in this area allow the cumulative effect of the atmospheric residual layer to develop fully, which creates thermal conditions beneficial for the growth of the daytime convective boundary layer. At the same time, the land surface process and atmospheric motion within the surface layer in this area also provide helpful support for forming the particular structure of the thermal ABL. High surface temperature is clearly the powerful external thermal forcing for the deep convective boundary layer. Strong sensible heat flux in the surface layer provides the required energy. Highly convective atmosphere and strong turbulence provide the necessary dynamic conditions, and the accumulative effect of the residual layer provides a favorable thermal environment.  相似文献   

10.
龚澎  明杰  吕迎辉  张强 《气象科学》2024,44(1):115-124
利用WRF-EnKF同化系统,以2020年7月5日北京大兴发生的一次强对流天气背景下对流触发过程为个例,研究同化C波段相控阵雷达数据时更优的同化方案设置。本研究从同化频率、晴空数据处理阈值以及边界层杂波处理高度3个方面进行了研究。结果显示,高频同化可以抑制虚假回波,并有利于获得更准确的对流预报结果。将可靠晴空回波识别阈值设为-10 dBZ并剔除边界层内的低值回波可以有效改进对流触发的预报效果。为以后C波段相控阵雷达同化应用提供了新的同化方案思路。  相似文献   

11.
Although the residual layer has already been noted in the classical diurnal cycle of the atmospheric boundary layer,its effect on the development of the convective boundary layer has not been well studied. In this study, based on 3-hourly20 th century reanalysis data, the residual layer is considered as a common layer capping the convective boundary layer. It is identified daily by investigating the development of the convective boundary layer. The region of interest is bounded by(30°–60° N, 80°–120° E), where a residual layer deeper than 2000 m has been reported using radiosondes. The lapse rate and wind shear within the residual layer are compared with the surface sensible heat flux by investigating their climatological means, interannual variations and daily variations. The lapse rate of the residual layer and the convective boundary layer depth correspond well in their seasonal variations and climatological mean patterns. On the interannual scale, the correlation coefficient between their regional averaged(40°–50°N, 90°–110° E) variations is higher than that between the surface sensible heat flux and convective boundary layer depth. On the daily scale, the correlation between the lapse rate and the convective boundary layer depth in most months is still statistically significant during 1970–2012. Therefore, we suggest that the existence of a deep neutral residual layer is crucial to the formation of a deep convective boundary layer near the Mongolian regions.  相似文献   

12.
根据2017、2019年7月塔克拉玛干沙漠腹地GPS探空和地面观测数据,利用位温廓线法等方法,对比分析了沙漠腹地夏季晴天和沙尘暴天气大气边界层结构变化特征。结果表明:晴天和沙尘暴天气大气边界层结构特征显著不同。晴天大气边界层各气象要素垂直分布较为均一,白天对流边界层深厚,高度接近5 km,夜间稳定边界层一般在500 m左右。沙尘暴天气边界层内位温和比湿垂直变化较小,风速较大,可达24.0 m/s,其白天对流边界层在1.5 km左右,夜间稳定边界层在1 km左右。晴天辐射强烈,地表升温迅速,湍流旺盛,是形成晴天深厚对流边界层的主要因素。大尺度天气系统冷平流的动力条件,以及云和沙尘减弱了到达地表的辐射强度是形成沙尘暴天气独特的大气边界层结构的主要因素。  相似文献   

13.
A laboratory water-analog of clear-air penetrative convection in the atmosphere has been constructed to continue studies of the turbulent dispersion of buoyant plumes in the convective boundary layer (CBL). A unique feature is the utilization of saline rather than thermal convection, which has been made possible by the development of a reliable method for delivering a controllable buoyancy flux through a porous membrane. It has been shown in an earlier paper that at typical laboratory scales, a saline convection tank is well suited to modelling buoyant plume dipersion under strongly convective (light wind) conditions.A range of experiments has clearly demonstrated the validity of the model. Results for density and velocity variances show much less scatter than most comparable measurements because of the greatly improved sampling that is possible in the tank. The results are generally in good agreement with field data and other laboratory simulations but the improved accuracy of the data has highlighted the anomalously low values for the horizontal velocity variances produced by large-eddy simulations of the CBL. The cause of this apparent underprediction remains unresolved.  相似文献   

14.
Lifting of dust particles by dust devils and convective plumes may significantly contribute to the global mineral dust budget. During the Saharan Mineral Dust Experiment (SAMUM) in May–June 2006 vertical profiling of dusty plumes was performed for the first time. Polarization lidar observations taken at Ouarzazate (30.9°N, 6.9°W, 1133 m height above sea level) are analyzed. Two cases with typical and vigorous formation of convective plumes and statistical results of 5 d are discussed. The majority of observed convective plumes have diameters on order of 100–400 m. Most of the plumes (typically 50–95%) show top heights <1 km or 0.3DLH with the Saharan dust layer height DLH of typically 3–4 km. Height-to-diameter ratio is mostly 2–10. Maximum plume top height ranges from 1.1 to 2.9 km on the 5 d. 5–26 isolated plumes and clusters of plumes per hour were detected. A low dust optical depth (<0.3) favours plume evolution. Observed surface, 1 and 2–m air temperatures indicate that a difference of 17–20 K between surface and 2-m air temperature and of 0.9–1 K between the 1 and 2-m temperatures are required before convective plumes develop. Favourable horizontal wind speeds are 2–7 m s−1.  相似文献   

15.
R.E. Munn 《大气与海洋》2013,51(4):144-147
An acoustic echo sounder situated in downtown Toronto has been used to detect convective plumes in the planetary boundary layer and to measure, by means of the Doppler effect, the vertical air motions associated with them. The plumes observed were the order of 390 m in horizontal extent, were detectable to a height of about 400 m, and were characterized by peak upward velocities in excess of 1 m s?1. The sounder measurements are shown to be consistent with surface meteorological parameters, and suggest that free convection over an urban area of considerable surface roughness and non‐uniformity is not greatly different from that over uniform land surfaces or water.  相似文献   

16.
Experimental data for buoyant plumes released from high sources into layers having little ambient turbulence show that plume dispersion parameters vary in a manner similar to that during initial plume rise. This is consistent with general plume rise theory. Dispersion of plumes from tall stacks in a shoreline environment where a thermal internal boundary layer is formed often demonstrates this behaviour.  相似文献   

17.
The structure of thunderstorm in the atmospheric boundary layer in Beijing area is analysed by using three-year data of tower. It is indicated that the outflow current of the thunderstorm in the lower layer is a sort of density current. An area of evident wind direction shear is found at about half an hour to one hour before the arrival of the gust front.The maximum intensity of the shear can reach 0.35sec-1.The inner structure within the density current is also very complicated. At the nocturnal stable boundary layer in summertime, the development of the convective motions is often triggered due to the instability of the Kelvin-Helmholtz wave.  相似文献   

18.
Based on a decade of research on cloud processes, a new version of the LMDZ atmospheric general circulation model has been developed that corresponds to a complete recasting of the parameterization of turbulence, convection and clouds. This LMDZ5B version includes a mass-flux representation of the thermal plumes or rolls of the convective boundary layer, coupled to a bi-Gaussian statistical cloud scheme, as well as a parameterization of the cold pools generated below cumulonimbus by re-evaporation of convective precipitation. The triggering and closure of deep convection are now controlled by lifting processes in the sub-cloud layer. An available lifting energy and lifting power are provided both by the thermal plumes and by the spread of cold pools. The individual parameterizations were carefully validated against the results of explicit high resolution simulations. Here we present the work done to go from those new concepts and developments to a full 3D atmospheric model, used in particular for climate change projections with the IPSL-CM5B coupled model. Based on a series of sensitivity experiments, we document the differences with the previous LMDZ5A version distinguishing the role of parameterization changes from that of model tuning. Improvements found previously in single-column simulations of case studies are confirmed in the 3D model: (1) the convective boundary layer and cumulus clouds are better represented and (2) the diurnal cycle of convective rainfall over continents is delayed by several hours, solving a longstanding problem in climate modeling. The variability of tropical rainfall is also larger in LMDZ5B at intraseasonal time-scales. Significant biases of the LMDZ5A model however remain, or are even sometimes amplified. The paper emphasizes the importance of parameterization improvements and model tuning in the frame of climate change studies as well as the new paradigm that represents the improvement of 3D climate models under the control of single-column case studies simulations.  相似文献   

19.
Over warm, shallow coral reefs the surface radiation and energy fluxes differ from those of the open ocean and result in modification to the marine atmospheric boundary layer via the development of convective internal boundary layers. The complex interrelationships between the surface energy balance and boundary-layer characteristics influence local weather (wind, temperature, humidity) and hydrodynamics (water temperature and currents), as well as larger scale processes, including cloud field properties and precipitation. The nature of these inter-relationships has not been accurately described for coral reef environments. This study presents the first measurements of the surface energy balance, radiation budget and boundary layer thermodynamics made over a coral reef using an eddy-covariance system and radiosonde aerological profiling of the lower atmosphere. Results show that changes in surface properties and the associated energetics across the ocean-reef boundary resulted in modification to the marine atmospheric boundary layer during the Austral winter and summer. Internal convective boundary layers developed within the marine atmospheric boundary layer over the reef and were found to be deeper in the summer, yet more unstable during the winter when cold and drier flow from the mainland enhances heat and moisture fluxes to the atmosphere. A mixed layer was identified in the marine atmospheric boundary layer varying from 375 to 1,200 m above the surface, and was deeper during the summer, particularly under stable anticyclonic conditions. Significant cloud cover and at times rain resulted in the development of a stable stratified atmosphere over the reef. Our findings show that, for Heron Reef, a lagoonal platform reef, there was a horizontal discontinuity in surface energy fluxes across the ocean-reef boundary, which modified the marine atmospheric boundary layer.  相似文献   

20.
We use various temperature profilers located in and around New York City to observe the structure and evolution of the thermal boundary layer. The primary focus is to highlight the spatial variability of potential-temperature profiles due to heterogeneous surface forcing in an urban environment during different flow conditions. Overall, the observations during the summer period reveal the presence of thermal internal boundary layers due to the interaction between the marine atmospheric boundary layer and the convective urban environment. The summer daytime potential-temperature profiles within the city indicate a superadiabatic layer is present near the surface beneath a mildly stable layer. Large spatial variability in the near-surface (0–300 m) potential temperature is detected, with the thermal profile in the lower atmosphere uniquely determined by the underlying surface forcing and the distance from the coast. The summer and winter average night-time potential-temperature profiles show that the atmosphere is still convective near the surface. The seasonal averages of mixing ratio show large variability in the vertical direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号