首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Archaea, one of the three domains of life along with Bacteria and Eukarya, contains ancient life forms such as methanogen that are observed today on Earth, and one lineage Asgard archaea is also considered the closest ancestor of Eukarya.Recently, with the development of interdisciplinary studies from Earth and Life sciences, archaeal organisms are considered to play pivotal roles in geochemical cycling in nature. However, our understanding of the attributes, origin and evolution, geochemical and ecological functions of Archaea is hampered by the scarcity of archaeal isolates, which has represented a challenge to researchers for the last 40 years. Cultivation-independent sequencing and phylogenomic analyses have demonstrated a considerable diversity of Archaea with more than 20 novel phyla. However, only four archaeal phyla have cultured representatives, leaving large gaps in our knowledge of the metabolic capabilities and ecological functions of the majority of archaeal strains identified exclusively by DNA sequencing. In this review, we summarize the discovery and development of archaeal research, highlight the knowledge gap between uncultured and cultured archaeal microbes, and call on the importance of devoting greater research efforts to archaeal cultivation. Finally, we outlined new ideas and strategic approaches, namely,(1)genome-based methods,(2) microbial network information-based methods,(3) genome-scale model-guided methods, and(4)machine learning methods, to enable the cultivation of uncultivated archaeal microbes using accumulated high-throughput sequencing data.  相似文献   

2.
The term"extreme environments"describes the conditions that deviate from what mesophilic cells can tolerate.These conditions are"extreme"in the eye of mankind,but they may be suitable or even essential living conditions for most microorganisms.Hyperthermophilic microorganisms form a branch at the root of the phylogenetic tree,indicating that early life originated from extreme environments similar to that of modern deep-sea hydrothermal vents,which are characterized by high-temperature and oxygen-limiting conditions.During the inevitable cooling and gradual oxidation process on Earth,microorganisms developed similar mechanisms of adaptation.By studying modern extremophiles,we may be able to decode the mysterious history of their genomic evolution and to reconstruct early life.Because life itself is a process of energy uptake to maintain a dissipative structure that is not in thermodynamic equilibrium,the energy metabolism of microorganisms determines the pathway of evolution,the structure of an ecosystem,and the physiology of cells."Following energy"is an essential approach to understand the boundaries of life and to search for life beyond Earth.  相似文献   

3.
Energy is the key issue of all life activities.The energy source and energy yielding pathway are the key scientific issues of the origin and early evolution of life on Earth.Current researches indicate that the utilization of solar energy in large scale by life was an important breaking point of the early evolution of life on Earth and afterwards life gradually developed and flourished.However,in the widespread biochemical electron transfer of life activities,it is still not clear whether the electron source is sun or how electrons originated from sun.For billions of years,the ubiquitous semiconducting minerals in epigeosphere absorb solar energy,forming photoelectrons and photoholes.In reductive and weak acidic environment of early Earth,when photoholes were easily scavenged by reducing matters,photoelectrons were separated.Photoelectrons could effectively reduce carbon dioxide to organic matters,possibly providing organic matter foundation for the origin of life.Photoelectrons participated in photoelectron transfer chains driven by potential difference and transfer into primitive cells to maintain metabolisms.Semiconducting minerals,by absorbing ultraviolet,also protected primitive cells from being damaged by ultraviolet in the origin of life.Due to the continuous photoelectrons generation in semiconducting minerals and utilization by primitive cells,photoelectrons from semiconducting minerals’photocatalysis played multiple roles in the origin of life on early Earth,such as organic synthesis,cell protection,and energy supply.This mechanism still plays important roles in modern Earth surface systems.  相似文献   

4.
During the early stages of the study of the origin of life, not enough attention was paid to the question of the correlation of chemical evolution on Earth and the all-important evolution of the still-to-be understood early Sun. Today, due to the advent of a significant fleet of space missions and the possibility of performing experiments in the International Space Station (ISS), a meaningful study begins to be possible concerning factors that led to an early onset of life on Earth. We wish to review and update recent work concerning the frontier between Space Weather (SpW) and Astrobiology. We argue that the present robust programs of various space agencies reinforce our hope for a better understanding of the bases of Astrobiology. Eventually, with a more realistic model of the Sun, more reliable discussions of all the factors influencing the origin of life on Earth, and hence Astrobiology, will be possible.  相似文献   

5.
The hydrocarbons and other organic compounds generated through abiogenic or inorganic processes are closely related to two science subjects,i.e.,energy resources and life’s origin and evolution."The earth’s primordial abiogenic hydrocarbon theory"and"the serpentinization of abiogenic hydrocarbon theory"are the two mainstream theories in the field of related studies.Serpentinization generally occurs in slow expanding mid-ocean ridges and continental ophiolites tectonic environment,etc.The abiogenic hydrocarbons and other organic compounds formed through the serpentinization of ultramafic rocks provide energy and raw materials to support chemosynthetic microbial communities,which probably was the most important hydration reaction for the origin and early evolution of life.The superposition of biological and abiological processes creates big challenge to the identification of the abiogenic organic materials in serpentinite-hosted ecosystem.Whether abiotic(inorganic)process can form oil and gas resource is a difficult question that has been explored continuously by scientific community for more than a century but has not yet been solved.However,some important progress has been made.The prospecting practice of abiogenic hydrocarbons in commercial gases from the Songliao Basin,China,provides an important example for exploring abiogenic natural gas resources.  相似文献   

6.
The graptolites studied here were collected from the Ashgillian Wufeng Formation in Wuning County, Jiangxi Province, which included 9 species ofDicellograptus, 2 species ofTangyalgraptus and 1 species ofDicranograptus. The polarity and states of 8 selected characters are analyzed based on the morphological features and stratigraphic sequences of the 12 species and a parsimonious cladogram is reconstructed by using the monothetic method proposed by Carnin and Sokal. A phyloneny tree of evolutionary significance formed by adding a time-axis to the cladogram indicates that the AshgillianDicellograptus in the investigated area includes two independent evolutionary lineages starting to diverge as early as in the Caradocian and, within the main lineage composed of the dicellograptids with square or subsquare basal portion, two clades represented respectively byDicellograptus cornplexus andD. turgidus mark the highest stage of the Ashgillian dicellograptid evolution.  相似文献   

7.
Archaea play an important role in global carbon and nitrogen cycles. Archaeal lipids, such as isoprenoid glycerol diakyl glycerol tetraethers (iGDGTs), are important biomarkers tracing change in archaeal community structure and biogeochemical processes in the natural environments. In this research, the spatial distributions of archaeal lipids in the surface sediments of the Jiulong River (JR) and the Jiulong River estuary (JRE) were examined. GDGT-0 (containing zero cyclopentyl ring) and crenarchaeol were the most abundant iGDGTs in the JR and JRE. From the rivers to the estuary, the total iGDGTs, GDGT-0, crenarchaeol and archaeol concentrations showed significant spatial variation; in particular, GDGT-0 and archaeol in the river may be predominantly derived in situ from methanogens, whereas crenarchaeol in the estuary mainly derived in situ from Thaumarchaeota. We inferred that archaeal community was dominated by methanogens in the Jiulong River and by Thaumarchaeota in the Jiulong River estuary, which are consistent with change in archaeal community structure observed in other estuarine environments.  相似文献   

8.
The observation of oil inclusions trapped prior to 2.0 Ga in Palaeoproterozoic rocks and the ability to obtain detailed molecular geochemical information from them provide a robust way for understanding the early biogeochemical evolution of the Earth. Oil-bearing fluid inclusions (FI) in ca. 2.45 Ga fluvial metaconglomerate of the Matinenda Formation at Elliot Lake, Canada were trapped in quartz and feld-spar during diagenesis and early metamorphism of the host rock, probably before ca. 2.2 Ga. The 2.1 Ga FA Formation sandstone of the Franceville Basin in Gabon that hosts the Oklo natural fission reactors has also been discovered to contain abundant Palaeoproterozoic oil-bearing FIs. This oil occurs within H2O and CO2-dominated inclusions trapped in syntaxial quartz overgrowths and intragranular and transgranular microfractures in detrital quartz, and was most likely trapped 2.1–1.98 Ga. Molecular geochemical analyses of both FI oils reveal a wide range of compounds, including n-alkanes, isoprenoids, monomethylalkanes, aromatic hydrocarbons, and trace amounts of complex multi-ring biomarkers including terpanes, hopanes, methylhopanes, steranes and diasteranes. To ensure a reliable interpretation of oil inclusions, a comprehensive series of outside-rinse blanks and procedural system blanks was analysed by gas chromatography-mass spectrometry; quantitative amounts of the hydrocarbons in these blanks were compared to the FI extracts, so as to provide confidence limits on the experimental integrity of each compound class. Maturity ratios based on reliably detected compound classes show that the FI oils were generated in the oil window, with no evidence of extensive thermal cracking. The presence of biomarkers for cyanobacteria and eukaryotes derived from and trapped in rocks deposited prior to 2.0 Ga is consistent with early evolution of oxygenic photosynthesis and suggests that some aquatic settings had become sufficiently oxygenated for sterol biosynthesis by this time. The extraction of biomarker molecules from Palaeoproterozoic oil-bearing FIs thus establishes a new method, using low detection limits and system blank levels, to trace evolution through Earth’s early history that avoids the potential contamination problems affecting shale-hosted hydrocarbons. Supported by the ARC Discovery Grant, which includes a QEII Fellowship to A.D., the Natural Sciences and Engineering Research Grant to D.M., and by the National Aeronautics and Space Administration Astrobiology Institute (R.B.)  相似文献   

9.
Growth patterns preserved in the accretionary skeletons of fossils provide the only known method of directly measuring the rate of the Earth's rotation in the distant past. From seasonal and tidal growth patterns of fossils, one can determine the number of days per year and per month, respectively, in the distant past. Together, these values can be used to distinguish the effects of moment of inertia changes on the length of day from those of tidal friction. When the Metazoan accretionary skeleton originated in the Late Precambrian-Cambrian, the length of day determined from fossils was approximately 19 hr. This value requires that density differentiation of the Earth was essentially complete well the end of the Precambrian. The growing length of day, as well as prior differentiation of oxygenated outer layers (atmosphere, hydrosphere, and crust) from the Earth's dense layers within, were prerequisites for the origin of the Metazoa. Circadia (=approximatelly 24 hr) rhythms in living Metazoa do not readily adapt to environemtal cycles less than about 19hr. Prokaryotes generally lack circadian rhythms because their generation times are less than a day; prokaryotes were well-adapted to Precambrian days less than 19 hr duration, as well as to oxygen-poor environments. As the length of day increased to 19 hr or more during the Late Precambrian, eukaryotes with life spans substantially longer than a day (and consequently with an ability to postpone energyusage beyond a day) evolved. During the Phanerozoic, moment of inertia changes were relatively small, so that lunar tidal friction became the most important cause of changing length of day. However, some researchers believe that even the former may have left an imprint on fossil growth patterns. This conclusion is difficult to confirm, given the uncertainties of growth pattern analyses. But facies-by-facies comparisons of growth patterns can help reduce this uncertainty: presumed tidal growth patterns should change systematically with depth of habitat, for example. Preliminary analyses for Late Ordovician brachiopods from Indiana suggest that this approach will be productive, and may help evaluate the suggestion that the Late Ordovician-Silurian was a time of unusual evolution of the Earth's moment of inertia during the Phanerozoic.  相似文献   

10.
A short review of recent observations of solar wind fluctuations in the magnetohydrodynamic (MHD) range of scales is presented. In recent years, the use of high time-resolution data on an extended interval of heliocentric distance has allowed significant advances in our knowledge of MHD fluctuations. We first focus on the origin and evolution of the Alfvénic-type fluctuations. The role of interplanetary sources and the influence of interactions with structures convected by the solar wind are examined. Then compressive fluctuations are investigated, with special attention being given to their nature and origin. Observations are discussed in the light of recent theories and models. Finally, predictions for MHD turbulence in polar regions of the heliosphere are highlighted.  相似文献   

11.
世界咸水湖的物理与化学特性   总被引:3,自引:0,他引:3  
王苏民 《湖泊科学》1993,5(3):278-286
本文根据近年来有关咸水湖的研究文献,介绍了咸水湖的概念、地理分布和湖盆的成因。进而从咸水湖的光学特性和热学特性两个方面阐述了湖泊的物理特性;从湖水盐度、蒸发和盐度、盐分来源,湖水的化学成分和类型以及盐湖的演化等方面说明咸水湖的化学特点;最后,从盐类沉积和古气候古环境关系的角度出发,指出咸水湖的古湖沼学研究在过去全球变化历史的重建中具有巨大的潜力,是全球研究体系中不可缺少的部分。  相似文献   

12.
Changes in vegetation cover within dune fields can play a major role in how dune fields evolve. To better understand the linkage between dune field evolution and interdune vegetation changes, we modified Werner's (Geology, 23, 1995: 1107–1110) dune field evolution model to account for the stabilizing effects of vegetation. Model results indicate that changes in the density of interdune vegetation strongly influence subsequent trends in the height and area of eolian dunes. We applied the model to interpreting the recent evolution of Jockey's Ridge, North Carolina, where repeat LiDAR surveys and historical aerial photographs and maps provide an unusually detailed record of recent dune field evolution. In the absence of interdune vegetation, the model predicts that dunes at Jockey's Ridge evolve towards taller, more closely‐spaced, barchanoid dunes, with smaller dunes generally migrating faster than larger dunes. Conversely, the establishment of interdune vegetation causes dunes to evolve towards shorter, more widely‐spaced, parabolic forms. These results provide a basis for understanding the increase in dune height at Jockey's Ridge during the early part of the twentieth century, when interdune vegetation was sparse, followed by the decrease in dune height and establishment of parabolic forms from 1953‐present when interdune vegetation density increased. These results provide a conceptual model that may be applicable at other sites with increasing interdune vegetation cover, and they illustrate the power of using numerical modeling to model decadal variations in eolian dune field evolution. We also describe model results designed to test the relative efficacy of alternative strategies for mitigating dune migration and deflation. Installing sand‐trapping fences and/or promoting vegetation growth on the stoss sides of dunes are found to be the most effective strategies for limiting dune advance, but these strategies must be weighed against the desire of many park visitors to maintain the natural state of the dunes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Membrane lipids are thought to be a crucial part of the homeoviscous adaptation of archaea to extreme conditions.This article reviews the recent lipidomic studies of physiological membrane adaptations of archaea, assesses the biomolecular basis of an organic paleothermometer, TEX86, and contemplates the future directions of archaeal lipidomics. The studies of extremophilic archaea have revealed that at least three different molecular mechanisms are involved in membrane adaptation of archaea:(1) regulation of the number of cyclopentane rings of caldarchaeol,(2) alteration of the diether-to-tetraether lipid ratio,and(3) variation of the proportion of saturated and unsaturated lipids. However, most of the studies have focused on a limited number of archaeal ether-linked lipids, such as glycerol dialkyl glycerol tetraethers(GDGTs), which only represent a fraction of the entire lipidome. Environmental factors such as growth temperature and pH have been most frequently reported, but biotic factors, including growth phases, nutrition, and enzymatic activities affecting the membrane lipid composition are often overlooked. Membrane lipids of mesophilic ammonia-oxidizing marine Thaumarchaeota have been applied in the reconstruction of past sea surface temperatures. However, recent culture-based physiological studies have demonstrated that non-thermal biotic factors, including dissolved oxygen, ammonia oxidation rate and the growth rate, are the main drivers of GDGT cyclization in Nitrosopumilus maritimus. Moreover, other related strains or ecotypes exhibit a markedly different set of stress adaptations. A trend is now developing to examine the whole lipid profile(lipidome) for studies of archaeal physiology and biochemistry related to lipid biosynthesis(lipidomics) to gain a better understanding of the biological mechanisms underpinning the applications of membrane lipid-based proxies in biogeochemical or ecological research.  相似文献   

14.
王武星  石耀霖 《地震》2013,33(4):123-134
本文提出利用全球应变率资料模拟全球地震活动特征的基本思想, 并作了初步探索。 利用GSRM的全球应变率场结果, 初步设计了模拟全球地震活动时空分布特征的细胞自动机模型。 该模型把地球考虑为一个自组织的整体系统, 制定了细胞自动机的演化规则, 获得了模拟的人工地震目录。 初步的模拟结果基本反映了全球地震活动的主要分布特征, 体现了全球构造活动强弱的主要格局, 初步达到了利用GPS等实测资料计算的应变率作为细胞自动机网格状态及其改变量来模拟复杂的全球地震活动特征的实验目的。  相似文献   

15.
Exceptionally well-preserved pillow lavas and inter-pillow hyaloclastites from the Barberton Greenstone Belt in South Africa contain textural, geochemical, and isotopic biomarkers indicative of microbially mediated alteration of basaltic glass in the Archean. The textures are micrometer-scale tubular structures interpreted to have originally formed during microbial etching of glass along fractures. Textures of similar size, morphology, and distribution have been attributed to microbial activity and are commonly observed in the glassy margins of pillow lavas from in situ oceanic crust and young ophiolites. The tubes from the Barberton Greenstone Belt were preserved by precipitation of fine-grained titanite during greenschist facies metamorphism associated with seafloor hydrothermal alteration. The presence of organic carbon along the margins of the tubes and low δ13C values of bulk-rock carbonate in formerly glassy samples support a biogenic origin for the tubes. Overprinting relationships of secondary minerals observed in thin section indicate the tubular structures are pre-metamorphic. Overlapping metamorphic and igneous crystallization ages thus imply the microbes colonized these rocks 3.4–3.5 Ga. Although, the search for traces of early life on Earth has recently intensified, research has largely been confined to sedimentary rocks. Subaqueous volcanic rocks represent a new geological setting in the search for early life that may preserve a largely unexplored Archean biomass.  相似文献   

16.
Located at the northeastern margin of the Qinghai-Tibet Plateau (QTP) in the Asian interior, the Lake Qinghai is sensitive to environmental change and thus an outstanding site for studying paleoenvironmental changes. Thick deposits in the Lake Qinghai provide important geological archives for obtaining high-resolution records of continental environmental history. The longest drilling core obtained from the Lake Qinghai, named Erlangjian (ELJ), reached about 1109 m and was investigated to determine its clay mineral assemblage and grain size distributions. Clay mineralogical proxies, including type, composition, and their ratios, as well as the illite crystallinity (KI) and chemical index (CI), in combination with grain size data, were used for reconstructing the history of paleoenvironmental evolution since the late Miocene in the Lake Qinghai Basin. The clay mineral records indicate that the clay mainly comprise detritus originating from peripheral material and has experienced little or no diagenesis. The proportion of authigenic origin was minor. Illite was the most abundant clay mineral, followed by chlorite, kaolinite, and smectite. Variations of clay mineral indexes reflect the cooling and drying trends in the Lake Qinghai region, and the grain size distribution is coincided with the clay minerals indexes. The paleoclimatic evolution of the Lake Qinghai Basin since the late Miocene can be divided into five intervals. The climate was relatively warm and wet in the early of late Miocene, then long-term trends in climate change character display cooling and drying; later in the late Miocene until early Pliocene the climate was in a short relatively warm and humid period; since then the climate was relatively colder and drier. These results also suggest multiple tectonic uplift events in the northeastern QTP.  相似文献   

17.
本文总结了渐进式扩张洋中脊和渐进式演化海盆的全球空间分布,并将西南次海盆与典型渐进式演化的亚丁湾加以比对,通过对海盆扩张中心的起源、扩张中心分段特征、火山活动、磁异常特征等的比较,为西南次海盆的演化提供新观点,为南海的演化观点寻找新证据.西南次海盆为渐进式扩张的海盆,与东部次海盆属于同一期扩张形成,海盆的渐进式扩张与渐进式扩张的方向很有可能受到地幔热柱(印支地幔柱、南海中部低速柱或海南地幔柱)的控制.南海的扩张演化模式并不是单一的,而是多种模式的综合,在考虑海底演化模式时应该同时考虑地幔柱的影响.  相似文献   

18.
Fluvial processes strongly influence riparian forests through rapid and predictable shifts in dominant species, tree density and size that occur in the decades following large floods. Modelling riparian forest characteristics based on the age and evolution of floodplains is useful in predicting ecosystem functions that depend on the size and density of trees, including large wood delivered to river channels, forest biomass and habitat quality. We developed a dynamic model of riparian forest structure that predicts changes in tree size and density using floodplain age derived from air photos and historical maps. Using field data and a riparian forest chronosequence for the 160-km middle reach of the Sacramento River (California, USA), we fit Weibull diameter distributions with time-varying parameters to the empirical data. Species were stratified into early and late successional groups, each with time-varying functions of tree density and diameter distributions. From these, we modelled how the number and size of trees in a stand changed throughout forest succession, and evaluated the goodness-of-fit of model predictions. Model outputs for the early successional group, composed primarily of cottonwoods and willows, accounted for most of the stand basal area and large trees >10 cm DBH for the first 50 years. Post-pioneer species with slower growth had initially low densities that increased slowly from the time of floodplain creation. Within the first 100 years, early successional trees contributed the most large wood that could influence fluvial processes, carbon storage, and instream habitat. We applied the model to evaluate the potential large wood inputs to the middle Sacramento River under a range of historical bank migration rates. Going forward, this modelling approach can be used to predict how riparian forest structure and other ecosystem benefits such as carbon sequestration and habitat quality respond to different river management and restoration actions.  相似文献   

19.
Hyesu  Yun  Songsuk  Yi  Jinyong  Oh  Hyunsook  Byun  Kooksun  Shin 《Island Arc》2007,16(2):262-275
Abstract   The Ulleung Basin is located in the southwestern part of the East Sea (Japan Sea) and contains thick Neogene sediment. Detailed examination of the stratigraphic distribution of dinoflagellates was carried out on samples from the onshore Pohang Basin (E well) and two wells (Gorae I and Dolgorae VII) in the southwestern Ulleung Basin, to investigate the early evolution of the basin. The results show that thick syn-rift sediments mainly consist of terrestrial deposits and are widespread over the basin. This supports an extensional tectonic origin for the basin. The initiation of the deposits dates back to 17–16.4 Ma. Furthermore, well-preserved Eocene to Oligocene dinoflagellate taxa found in Miocene deposits of wells implies that the age of initial rifting might be Oligocene or earlier. Our results provide constraints for understanding the opening process of the East Sea.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号