首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical approach is used to investigate dynamic responses of a track system and the poroelastic half-space soil medium subjected to a moving point load under three-dimensional condition. The whole system is divided into two separately formulated substructures, the track sub-system and the ground. The ballast supporting rails and sleepers is placed on the surface of the ground. The rail is modeled by introducing the Green function for an infinitely long Euler beam subjected to the action of the moving point load and the reaction of sleepers represented by a continuous mass. Using the double Fourier transform, the governing equations of motion are then solved analytically in the frequency–wave-number domain. The time domain responses are evaluated by the inverse Fourier transform computation for a certain load velocities. Computed results show that dynamic responses of the soil medium are considerably affected by the fluid phase as well as the load velocity.  相似文献   

2.
The dynamic responses of a slab track on transversely isotropic saturated soils subjected to moving train loads are investigated by a semi-analytical approach. The track model is described as an upper Euler beam to simulate the rails and a lower Euler beam to model the slab. Rail pads between the rails and slab are represented by a continuous layer of springs and dashpots. A series of point loads are formulated to describe the moving train loads. The governing equations of track-ground systems are solved using the double Fourier transform, and the dynamic responses in the time domain are obtained by the inverse Fourier transform. The results show that a train load with high velocity will generate a larger response in transversely isotropic saturated soil than the lower velocity load, and special attention should be paid on the pore pressure in the vicinity of the ground surface. The anisotropic parameters of a surface soil layer will have greater influence on the displacement and excess pore water pressure than those of the subsoil layer. The traditional design method taking ground soil as homogeneous isotropic soil is unsafe for the case of RE 1 and RG 1, so a transversely isotropic foundation model is of great significance to the design for high train velocities.  相似文献   

3.
This paper examines stresses and excess pore fluid pressure that are induced in a saturated poroelastic soil of halfspace extent by a concentrated line load. The line load is moving at a constant velocity along the surface of the poroelastic halfspace. The governing equations for the proposed analysis are based on the Biot's theory of dynamics in saturated poroelastic soils. The governing partial differential equations are solved using Fourier transforms. The solutions for the stresses and excess pore pressure are expressed in the forms of inverse Fourier transforms. The numerical results are obtained by performing the numerical inversion of the transform integrals. A parametric study is presented to illustrate the influences of the velocity of moving load and the poroelastic material parameters on the stresses and excess pore pressure. At a high velocity, the maximum values of the stresses in a poroelastic halfspace are smaller than those in an elastic solid, whilst at a low velocity the stresses in a poroelastic halfspace are larger than those in an elastic halfspace. The potential of diffusivity has an important influence on the stresses and excess pore pressure.  相似文献   

4.
A truck–pavement–ground coupling model was established to study the dynamic responses of a saturated poroelastic half-space generated by a moving heavy truck on the uneven pavement. The ground was simulated as a fully saturated poroelastic half-space governed by Biot’s theory. The overlying pavement was simplified as a Kirchhoff thin plate. With the assumption of a sinusoidal pavement surface, the dynamic wheel–pavement force was obtained through a linear Hertizian contact model. The numerical results showed that this dynamic load could make considerable contributions to the stress and excess pore water pressure responses in the ground. Furthermore, the effective stress path of the soil unit beneath the pavement caused by the moving truck was firstly calculated and presented. It was found that the differences between the total stress path and the effective stress path became significant as the truck speed increased, thus the effective stress path was more suitable than total stress path to reflect the stress history of soil elements in the saturated ground during the passage of high-speed traffics.  相似文献   

5.
This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot’s poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.  相似文献   

6.
The indirect boundary element method is used to study the 3D dynamic response of an infinitely long alluvial valley embedded in a saturated layered half-space for obliquely incident SV waves. A wave-number transform is first applied along the valley’s axis to reduce a 3D problem to a 2D plane strain problem. The problem is then solved in the section perpendicular to the axis of the valley. Finally, the 3D dynamic responses of the valley are obtained by an inverse wave-number transform. The validity of the method is confirmed by comparison with relevant results. The differences between the responses around the valley embedded in dry and in saturated poroelastic medium are studied, and the effects of drainage conditions, porosity, soil layer stiffness, and soil layer thickness on the dynamic response are discussed in detail resulting in some conclusions.  相似文献   

7.
Recently, considerable efforts have been devoted to evaluation of seismic dynamic response of a circular tunnel. Conventional approaches have considered integral liners embedded in an elastic medium. In this study, we re-examine the problem with piecewise liners embedded in a porous medium. Surrounding saturated porous medium of tunnels is described by Biot's poroelastic theory, while the liner pieces and the connecting joints are treated as curved beams and characterized by curved beam theories. The scattered wave field in the porous medium is obtained by the wave function expansion method. The differential equations governing the vibration of a curved beam is discretized by the General Differential Quadrature (GDQ) method. The domain decomposition method is used to establish the global discrete dynamic equations for the piecewise tunnel. The surrounding soil and the tunnel are coupled together via the stress and the displacement continuation conditions which are implemented by the boundary collocation method. Numerical results demonstrate that the stiffness difference between the liner piece and the connecting joints has a considerable influence on the internal forces of the liner piece.  相似文献   

8.
An exact stiffness matrix method is presented to evaluate the dynamic response of a multi-layered poroelastic medium due to time-harmonic loads and fluid sources applied in the interior of the layered medium. The system under consideration consists of N layers of different properties and thickness overlying a homogeneous half-plane or a rigid base. Fourier integral transform is used with respect to the x-co-ordinate and the formulation is presented in the frequency domain. Fourier transforms of average displacements of the solid matrix and pore pressure at layer interfaces are considered as the basic unknowns. Exact stiffness (impedance) matrices describing the relationship between generalized displacement and force vectors of a layer of finite thickness and a half-plane are derived explicitly in the Fourier-frequency space by using rigorous analytical solutions for Biot's elastodynamic theory for porous media. The global stiffness matrix and the force vector of a layered system is assembled by considering the continuity of tractions and fluid flow at layer interfaces. The numerical solution of the global equation system for discrete values of Fourier transform parameter together with the application of numerical quadrature to evaluate inverse Fourier transform integrals yield the solutions for poroelastic fields. Numerical results for displacements and stresses of a few layered systems and vertical impedance of a rigid strip bonded to layered poroelastic media are presented. The advantages of the present method when compared to existing approximate stiffness methods and other methods based on the determination of layer arbitrary coefficients are discussed.  相似文献   

9.
This review type of paper shows how the poroelastodynamic theory of Biot can be applied to some soil dynamics problems encountered in transportation engineering, which have been solved by the present authors. These problems involve rigid walls retaining poroelastic soil and subjected to harmonic seismic waves and moving loads on poroelastic soil. Both classes of problems involve a soil layer over bedrock, are of the plane strain type and are solved analytically by two methods: a direct (almost exact and exact for the above two classes of problems) method and an approximate method. The effects of shear modulus, porosity, permeability and hysteretic damping of the soil medium as well as the seismic frequency for retaining walls and velocity for moving loads on the dynamic response are numerically evaluated in order to assess their relative importance on that response.  相似文献   

10.
In most previous studies on the dynamic response of a long cylindrical cavity subjected to internal transient dynamic loads, the porous medium was usually assumed to be completely saturated by ground water. In practice, however, the full saturation condition does not always exist. In this paper the surrounding soil and the lining of the cavity are respectively treated as a nearly saturated porous medium and an elastic material, and the governing equations for the dynamic problem are derived. A set of exact solutions are obtained in the Laplace transform domain for three types of transient loads, i.e. suddenly applied constant load, gradually applied step load and triangular pulse load. By utilizing a reliable numerical method of inverse Laplace transforms, the time-domain solutions are then presented. The influence of the degree of saturation of the surrounding soil on the dynamic response of the lined cavity is examined for numerical examples.  相似文献   

11.
The problem of harmonic wave diffraction by tunnels in an infinite poroelastic saturated soil obeying Biot's theory is studied numerically under conditions of plane strain and the effect of poroelasticity on the response is assessed through some parametric studies. The method is based on the theory of Mei and Foda, which considers the total field to be approximated by the superposition of an elastodynamic problem with modified elastic constants and mass density for the whole domain and a diffusion problem for the pore fluid pressure confined to a boundary layer at the free boundaries. Both problems are solved numerically by the boundary element method in the frequency domain. Results dealing with the response of a circular tunnel with and without an elastic concrete liner in an infinite poroelastic medium to incident harmonic P and SV plane waves are provided and compared against analytical ones as well as to those corresponding to linear elastic soil behaviour. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Based on Biot's wave equation, dynamic response of a circular tunnel with partially sealed liner in viscoelastic saturated soil is investigated. By introducing two scalar potential functions, the analytical solutions of stresses, displacements and pore pressure induced by axisymmetric gradually applied step load are derived in Laplace transform domain. Numerical results are obtained by inverting Laplace transform presented by Durbin and used to analyze the influences of partial permeable property of boundary and viscoelastic damping coefficient of soil on dynamic response of the tunnel. It is shown that the attenuation of radial displacement appeared with the increase of viscoelastic damping coefficient of soil, and relative rigidity of liner and soil, and the influence of partial sealing property of boundary on stresses, displacements and pore pressure is remarkable. The available solutions of permeable and impermeable boundary conditions are only two extreme cases of this paper.  相似文献   

13.
为探究孔隙尺寸效应(非局部参数表征)和介质局部非均匀效应(尺寸因子表征)对饱和土地基动力响应的影响,基于应变梯度非局部Biot理论,采用无网格法编制循环荷载下饱和土地基动力响应计算程序,验证无网格法程序的正确性。结果表明,尺寸因子为定值时,随着非局部参数的增加,观测点位移及孔压起始响应的时间有所延迟;而非局部参数为定值时,随尺寸因子的增加,观测点位移及孔压起始响应时间有所提前;说明考虑孔隙尺寸效应会减小系统的宏观模量,而考虑土体结构的非均匀效应则会增加系统的宏观模量。研究提出采用无网格法求解饱和土动力问题的方法和思路,可为今后研究饱和土动力学问题的研究提供借鉴。  相似文献   

14.
In this paper, the analytical layer-element method is utilized to analyze the plane strain dynamic response of a transversely isotropic multilayered half-plane due to a moving load. We assume that the studied system moves synchronously with the moving load, then the moving load relative to the moving system is considered to be motionless. Therefore, the vertical stress and the vertical displacement under the moving load need not update for the variation of the load position. Based on the governing equations of motion in the moving system, the analytical layer-element solutions for a finite layer and a half-plane in the Fourier transform domain are derived by using the algebraic operations in Ref. [7]. The global matrix of the problem can be obtained by assembling the analytical layer-elements of all layers. The corresponding solution in the frequency domain is further recovered by the inverse Fourier transform. Several examples are given to confirm the accuracy of the proposed method and to illustrate the influence of material properties.  相似文献   

15.
The closed form three-dimensional Green׳s function of a semi-infinite unsaturated poroelastic medium subjected to an arbitrary internal harmonic loading is derived, with consideration of capillary pressure and dynamic shear modulus varying with saturation. By applying the Fourier expansion techniques and Hankel integral transforms to the circumferential and radial coordinates, respectively, the general solution for the governing partial differential equations is obtained in the transformed domain. A corresponding boundary value problem is formulated. The integral solutions for the induced displacements, pore pressure and net stress are then determined considering the continuity conditions. The formulas are compared with the degenerated solution of saturated soils and confirmed. Numerical results reveal that the response of the unsaturated half-space depends significantly on the saturation by altering dynamic shear modulus to account for the effects of matric suction on soil stiffness. Slight differences between the results occur if only the saturation is taken into account. Moreover, a large source-depth results in a pronounced contribution to the reduction of surface displacement amplitudes. The analytical solutions concluded in the study offer a broader application to dynamic response associated with axi-symmetric and asymmetric conditions.  相似文献   

16.
隧道可液化土层围岩对地震动作用非常敏感,可液化土层动孔压的产生和发展使得地下结构受到上浮作用,从而影响地下结构的稳定性.通过对可液化土层中隧道动力响应计算,研究了不同静应力场隧道围岩动孔压场分布、围岩液化区域分布以及衬砌结构仰拱底与拱顶的动孔压差变化.研究结果表明,不同静应力场对围岩可液化土的动孔压分布、液化区域分布及...  相似文献   

17.
The scattering of SV waves by a canyon in a fluid-saturated, poroelastic layered half-space is modeled using the indirect boundary element method in the frequency domain. The free-field responses are calculated to determine the displacements and stresses at the surface of the canyon, and fictitious distributed loads are then applied at the surface of the canyon in the free field to calculate the Green's functions for displacements and stresses. The amplitudes of the fictitious distributed loads are determined from the boundary conditions, and the displacements arising from the waves in the free field and from the fictitious distributed loads are summed to obtain the solution. The effects of fluid saturation, boundary conditions, porosity, and soil layers on the surface displacement amplitudes and phase shifts are discussed, and some useful conclusions are obtained. It is shown that the surface displacement amplitudes due to saturation and boundary conditions, different porosities, or the presence of a soil layer can be very dissimilar, and large phase shifts can be observed. The resulting wavelengths for an undrained saturated poroelastic medium are slightly longer than those for a drained saturated poroelastic medium; and are longer for a drained saturated poroelastic medium than those for a dry poroelastic medium. As porosity increases, the wavelengths become longer; and a layered half-space produces longer wavelengths than a homogeneous half-space.  相似文献   

18.
列车引起场地振动的建模需要能够表达地层的动力格林函数.本文兼顾饱和土的流固两相耦合性、场地土的分层性和波动的三维传播性,构建了半解析的场地动力格林函数.首先,基于Biot方程,在傅里叶变换域求解固体骨架和流体的位移和应力.然后采用传递矩阵方法建立地表位移和应力间的关系,得到格林函数矩阵.进而讨论矩阵的一些固有特征,提出改善竖向位移计算效率的措施.最后利用推导的格林函数计算了几个典型算例.数值结果与文献中其他方法得到的结果十分接近,与场地振动的现场观测试验基本符合.软土场地振动的计算结果高于饱和砂土场地,高速列车场地振动强度高于低速列车.当车速接近场地瑞利波速,模拟结果中显示出马赫锥.数值结果还显示,即使车速略低于瑞利波速,马赫锥也可能出现.本文推导的格林函数将有助于深入理解列车等移动激励作用下层状饱和土场地的振动特征.  相似文献   

19.
The dynamic response of a double infinite beam system connected by a viscoelastic foundation under the harmonic line load is studied. The double infinite beam system consists of two identical and parallel beams, and the two beams are infinite elastic homogeneous and isotropic. A viscoelastic layer connects the two beams continuously. To decouple the two coupled equations governing the response of the double infinite beam system, a variable substitution method is introduced. The frequency domain solutions of the decoupled equations are obtained by using Fourier transforms as well as Laplace transforms successively. The time domain solution in the generalized integral form are then obtained by employing the corresponding inverse transforms, i.e. Fourier transform and inverse Laplace transform. The solution is verified by numerical examples, and the effects of parameters on the response are also investigated.  相似文献   

20.
This study proposes a Green’s function,an essential representation of water-saturated ground under moving excitation,to simulate ground borne vibration from trains.First,general solutions to the governing equations of poroelastic medium are derived by means of integral transform.Secondly,the transmission and reflection matrix approach is used to formulate the relationship between displacement and stress of the stratified ground,which results in the matrix of the Green’s function.Then the Green’s function is combined into a train-track-ground model,and is verified by typical examples and a field test.Additional simulations show that the computed ground vibration attenuates faster in the immediate vicinity of the track than in the surrounding area.The wavelength of wheel-rail unevenness has a notable effect on computed displacement and pore pressure.The variation of vibration intensity with the depth of ground is significantly influenced by the layering of the strata soil.When the train speed is equal to the velocity of the Rayleigh wave,the Mach cone appears in the simulated wave field.The proposed Green’s function is an appropriate representation for a layered ground with shallow ground water table,and will be helpful to understand the dynamic responses of the ground to complicated moving excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号