首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
Physico-chemical properties in the brine and under-ice water were measured in Saroma-ko Lagoon on the northeastern coast of Hokkaido, Japan, which is connected to the Sea of Okhotsk, during the period from mid-February through mid-March 2006. The brine within brine channels of the sea ice was collected with a new sampling method examined in this study. Salinity, dissolved inorganic carbon (DIC), total alkalinity (TA), dissolved oxygen (DO), nutrients and oxygen isotopic ratio (δ18O) contained in the brine within brine channels of the sea ice and in the under-ice water varied largely in both time and space during the ice melt period, when discharge from Saromabetsu River located on the southeast of the lagoon increased markedly due to the onset of snow melting. The under-ice plume expands as far as 4.5 km from the river mouth at mid-March 2006, transporting chemical components supplied from the river into the lagoon. The under-ice river water was likely transported into the sea ice through well-developed brine channels in the sea ice due to upward flushing of water through brine channels occurred by loading of snowfalls deposited over the sea ice. These results suggest that the river water plume plays an important role in supplying chemical components into the sea ice, which may be a key process influencing the biogeochemical cycle in the seasonally ice-covered Saroma-ko Lagoon.  相似文献   

2.
Biomass and primary productivity of benthic microalgae (BMA) and planktonic algae in Suo Nada, the western part of the Seto Inland Sea, Japan were compared in terms of unit area with regard to their seasonal and spatial distribution in 2002. Judging from light compensation depth and water depth, the southwestern part of Suo Nada was considered to be a potential habitat for BMA. Whereas the contribution of sedimented planktonic algae was high in biomass at the sediment surface, BMA was obviously significant both in biomass and primary production in the shallow southwestern part. However, the contribution of BMA to the total biomass in the entire water column was 7% in winter and 2% in summer. The primary production of BMA varied between 4.0 and 74.0 mg C m−2 d−1 in the southwestern part, accounting for 2–12% of the whole water column primary production. The ecological roles of BMA in the Suo Nada ecosystem are discussed, such as reduction of benthic nutrient flux, oxidation of surface sediments and feed for higher animals.  相似文献   

3.
Diatom algae, aquatic palynomorphs, and the grain-size of surface sediments from bays of the White Sea were investigated in a program dedicated to the study of marginal filters (MF) in the Severnaya Dvina, Onega, and Kem rivers. Three microalgal assemblages are established in surface sediments, which replace each other successively with distance from river mouths and are characterized by a gradual decrease in a share of freshwater species of diatoms and Chlorophyceae algae, significantly varying concentrations of marine diatoms and dinocysts due to changes in water salinity, grain-size composition of sediments, quantitative distribution of suspended particulate matter (SPM), and water productivity at different marginal filter stages.  相似文献   

4.
During two cruises to the Greenland Sea, we studied the abundance and biomass of the sea ice biota in summer and late autumn. The mean calculated biomass of the sympagic community was 0.2 g C m−2 ice. Algae contributed on average 43% to total biomass, followed by bacteria (31%), heterotrophic flagellates (20%), and meiofauna (4%). Diatoms were the main primary producers (60% of total algal biomass), but flagellated cells contributed significantly to the algal biomass. Among the meiofauna, ciliates, nematodes, acoel turbellarians and crustaceans were dominant. Calculated potential ingestion rates of meiofauna (0.6 g C m−2 (120 d)−1) are on the same order of magnitude as annual primary production estimates for Arctic multi-year sea ice. We therefore assume that grazing can control biomass accumulation of primary producers inside the sea ice.  相似文献   

5.
The species composition, cell concentration (N), and biomass (B) of the phytoplankton, as well as the chlorophyll a (Chl a) concentration, primary production (PP), and the concentrations of the dissolved inorganic micronutrients (phosphorus, silica, nitrogen as nitrite), were estimated for Kandalaksha Bay (KB), Dvina Bay (DB), and the basin (Bas) of the White Sea in August of 2004. The micronutrient concentrations were lower compared to the average long-term values for the summer period. The Chl a concentration varies from 0.9 to 2.0 mg/m3 for most of the studied areas, reaching up to 7.5 mg/m3 in the Northern Dvina River estuary. The surface water layer of the DB was the most productive area, where the PP reached up to 270–375 mg C/(m3 day). The phytoplankton biomass varied from 11 to 205 mg C/m3 with the highest values observed in the Bas and DB. Three groups of stations were defined during the analysis of the phytoplankton’s species composition similarity. The dinoflagellates Dinophysis norvegica and Ceratium fusus were particular to the phytoplankton assemblages in the KB; the diatom Ditylum brightwellii was particular to the upper and central parts of the DB. These three phytoplankton species were less abundant in the Bas.  相似文献   

6.
The temporary ice algae community in the mixing zone of brackish and fresh waters of the Taganrog Bay of the Azov Sea is described. A high abundance and biomass of planktonic algae and a high chlorophyll a concentration have been registered in samples of under-ice water taken on February 2013. The mass development of the diatom Stephanodiscus hantzschii Grunow blooming on the ice in the eastern part of Taganrog Bay is described for the first time. The quantitative data on the under-ice microalgae community and the related hydrochemistry are published. The obtained results could be used in total productivity estimates in the Azov Sea.  相似文献   

7.
Nereis diversicolor is generally considered to be a predator and deposit feeder, but have also been found to graze on benthic algae in shallow coastal areas. In this study we investigated the grazing effects on the development and growth of green algae, Ulva spp. Algal growth was studied in an experiment including two levels of sediment thickness; 100 mm sediment including macrofauna and 5 mm sediment without macrofauna, and three treatments of varying algal biomass; sediment with propagules, sediment with low algal biomass (120 g dry weight (dwt) m− 2) and sediment with high algal biomass (240 g dwt m− 2). In the 100 mm sediment, with a natural population of macrofauna, N. diversicolor was the dominating (60% of total biomass) species. After three weeks of experimentation the result showed that N. diversicolor was able to prevent initial algal growth, affect growth capacity and also partly reduce full-grown algal mats. The weight of N. diversicolor was significantly higher for polychaetes in treatments with algae added compared to non-algal treatments. There were also indications that a rich nutrient supply per algae biomass counteracted the grazing capacity of N. diversicolor.  相似文献   

8.
The research was performed along a transect from the Yamal Peninsula coast towards the outer shelf of the southwestern part of the Kara Sea in September 2007. 130 phytoplankton species have been identified, among which 63 were found in the area for the first time. The total phytoplankton numbers varied within the range of 0.2 to 11.3 × 109 cells/m2, while biomass within the range of 43 to 1057 mgC/m2. A well pronounced cross-shelf zoning in the phytoplankton communities was ascertained. The inner shelf zone about 30 km wide with depths down to 30 meters was characterized by the predominance of diatoms (up to 80% of the total algae numbers and biomass). The second group by value was dinoflagellates. Seaward in the area of the depth increase from 30 to 140 m, the zone of the Yamal Current was located, which was 40 km wide and notable for its active water dynamics. The total cell numbers in the zone reached a maximum for the entire investigated area: up to 11.3 × 109 cells/m2. The leading group in the phytoplankton was autotrophic flagellates, whose share in the total numbers reached 56–82%. Further than 70 km from the shore, the outer shelf zone was found with the water column rigidly stratified. The highest for the whole area phytoplankton biomass was identified here (up to 1.06 gC/m9), 80% of which was concentrated above the halocline. Diatoms dominated in the phytoplankton numbers (up to 92%) and biomass (up to 90%), which was related to the mass development of two species: Chaetoceros diadema and Leptocylindrus danicus.  相似文献   

9.
Studies of macrophytes in the coastal zone of the Artic Seas, including the White Sea, have shown the essential role of these algae in the activity of the coastal half-latitude ecosystems. In summer, during the macrophyte reproduction period, a great number of reproduction products are released into the water. For a short time, this considerably affects the ratio of the nanoplankton in the populations that inhibit the vast and shallow coastal areas. At different coastal sites in Chernorechenskaya Inlet, Kadalaksha Bay, during the period of intensive reproduction of Ascophyllum nodosum and Fucus vesiculosus, 42 plankton samples were collected in 2005. During this period the concentration of antherozoids in the water reached 55000 cells/ml (216 mg C/m3). The number of eggs was within the range of 0.05–0.7 cells/ml. The proportion of antherozoids in the total biomass of nanoplankton varied at different coastal sites from 0.37 to 99%, with a mean of 46% for the reproduction period of A. nodosum, and only 7% for the reproduction period of F. vesiculosus. As was shown by counts of F. vesiculosus female gametes in sedimentation traps, 1 m2 of the macrophyte bed (assuming 100% coverage) produces 18000–108000 eggs per day (0.33–2 mg C). The calculated flux of the reproductive material from the brown algae beds to the coastal water shows good agreement with the sample counts.  相似文献   

10.
L. S. Zhitina 《Oceanology》2011,51(6):1004-1011
The species composition, cell concentration, and biomass in the surface layer were determined at 10 stations in the central part of the Western Basin (WB) and one station in the Eastern Basin (EB) of the Large Aral Sea. A total of 42 algae species were found. Diatoms had the highest number of species. The similarity of the phytoplankton composition in the WB was high, whereas the phytoplankton composition in the WB and EB differed significantly. In the WB, the cell concentration and biomass of the phytoplankton varied from 826 × 103 to 6312 × 103 cells/l (the mean value was 1877 × 1586 × 103 cells/l) and from 53 to 241 μgC/l (the mean value was 95 × 56 μgC/l). In the EB, the phytoplankton abundance was 915 × 103 cells/l and 93 μgC/l. The vertical distribution of the phytoplankton in upper 35 m was investigated at one station in the WB. The maximum values of the algal cell concentration and biomass were recorded under the thermocline at the 20 m depth. The integrated biomass of the phytoplankton was 14 gC/m2.  相似文献   

11.
The problem of recognition of algal genera based on the remote sensing data requires the analysis of the algae biomass’s distribution. This study provides the analysis of the algae spatial and temporal variations in the Peter the Great Bay. While 116 algal genera were observed, only a few genera have dominated. Usually, the dominant genus contributed about 60% of the sample’s biomass (the minimal value is 20% usually) and 4 dominant genera contributed about 90% of the total phytoplankton biomass. The effective scattering crosssection of the algae in the samples is very changeable and this feature looks promising for the recognition problem. It was found that the spatial and temporal variations of the algal biomass are significant, but the percentage characteristics of a few dominant genera are relatively stable with no significant dependence on a region and a biomass value. The algae’s composition analysis has demonstrated that the same algal genera are propagated in different parts of the Bay. For a given region and month, the set of algae dominated that constitutes about 90% of the monthly biomass is rather small (not more than 10 genera usually). Most of the alga genera (∼75%) do not ever reach a mono domination state (more than 50% of the sample’s biomass).  相似文献   

12.
Primary production of phytoplankton and ice and under-ice flora of the Kara Sea and regions thereof has been assessed using region-specific models and MODIS-Aqua satellite data for 2002–2015. Average annual primary production of phytoplankton calculated for the growing season (April–October) amounted to 165 mg С m–2 day–1. Annual primary production of phytoplankton was 35 g C/m2. Annual primary production of phytoplankton in the entire Kara Sea was 13 × 1012 g C. Annual primary production of ice and underice flora calculated using an integrated biophysical model was 1.7 × 1012 g C, or 12% of total primary production of the Kara Sea; the ice cover dynamics and published data were taken into account for the calculations. The results have been compared to earlier primary production estimates for the Kara Sea. The extent of the increase in sea productivity during warming of the Arctic and the decrease in ice cover area are discussed.  相似文献   

13.
Populations dominated by Cystoseira zosteroides, an endemic and threatened Mediterranean seaweed, colonize deep-water rocky habitats down to more than 50 m depth. Assemblages dominated by this species display high algal and invertebrate species richness. Algal biomass averages 1134 g dw m−2. Erect and turf algae account for only 25% of total algal dry weight, while encrusting corallines are responsible for the remaining 75%. Sponges, bryozoans and ascidians constitute the dominant sessile macrofauna. Cystoseira zosteroides is the dominant erect algae, with a mean biomass of 60.6 g dw m−2, and densities ranging from 4 to 7 plants m−2. The alien turf alga Womersleyella setacea has a biomass of 104.2 g dw m−2 and covers most of the understory substrate. The size-frequency distribution of C. zosteroides populations shows differences over time. Mean annual growth of the main axis is around 0.5 cm and mean annual mortality rate is lower than 2%. Recruitment was almost nil during the studied period of time (10 years). Processes structuring these deep-water Cystoseira stands must be driven by episodic disturbances, after-disturbance recruitment pulses, and long periods of steady growth that last at least 10 years. However, it is also possible that recruitment is irreversibly inhibited by the alien alga W. setacea in which case these old-growth stands are faced with extinction. The highly diversified assemblages and the low growth and low mortality rates of C. zosteroides indicate high vulnerability to natural and anthropogenic disturbances, and call for effective measures to ensure their conservation.  相似文献   

14.
Results of plankton biota studies in the southwestern Kara are presented. The spatial distribution of hydrochemical and hydrophysical parameters related to structural and functional characteristics of phytoplankton in the surface water is considered. The chlorophyll a concentration varied in the surface layer of the Kara Sea from 0.08 to 3.22 mg m–3 (mean value 0.62 mg m–3). Primary production varied from 0 to 1.92 mg C m–3 day–1 (the mean value of 0.42 mg C m–3 day–1) in the ice-covered water areas and was greater by a factor of four, ranging from 1.01 to 3.46 mg C m–3 day–1 (the mean value of 1.79 mg C m–3 day–1) in ice-free areas. In this case, the total algal biomass varied from 0.8 to 110.7 mg C m–3 (mean value 10.6 mg C m–3). It is shown that in the study period, waters from the western Kara Sea were more productive than the estuarine water areas of the Ob and Yenisei rivers. The activity of phototrophic phytoplankton in river waters was almost completely absent. It is established that the contents of nutrients and iron were higher than the threshold for limitation of phytoplankton development. The experiments showed that the production activity of phototrophic algae is restrained by light deficit beneath the ice.  相似文献   

15.
The studies were carried out on September 27–30, 2007, in the area of the Ob estuarine frontal zone and over the adjacent inner Kara Sea shelf. Based upon the latitudinal changes in the salinity, the 100 nautical mile wide estuarine frontal zone was marked out. The frontal zone was inhabited by a specific zooplankton community dominated by species that occurred outside the frontal zone in only minor amounts. The biomass of the mesozooplankton averaging 984 mg/m3 in the frontal zone exceeded by 1.5 and 6 times the corresponding values in the inner desalinated area of the estuary and the adjacent areas of the Kara Sea shelf. At the inner southern periphery of the frontal zone, at maximal latitudinal salinity gradients (>2 psu per mile), the maximal development of the mesoplankton with the mean biomass for the water column of 3.1 g/m3 (37 g/m2) and up to 5.8 g/m3 in the subpycnocline layer was observed. The latitudinal extension of the biomass in the maximum zone did not exceed 10 miles. More than 90% of the maximum was composed of herbivorous zooplankton with the strong domination of the copepod Limnocalanus macrurus. The daily consumption within the zooplankton maximum area was estimated at 820 mgC/m2 per day. This value exceeds by two orders of magnitude the local primary production. At that level of consumption, the available phytoplankton biomass was consumed by grazers in less than 8 hours (!). A zooplankton aggregation at the southern periphery of the estuarine front exists due to the advection of phytoplankton from the adjacent river zone. The aggregation forms a natural pelagic biofilter where new allochthonous organic matter delivered by the river flow is accumulated and high secondary production is formed on its basis. An anomalously high concentration of planktic predatory Parasagitta elegans with biomass of over 1 g/m3 (46% of the total zooplankton biomass) was associated with the outer northern periphery of the estuarine frontal zone.  相似文献   

16.
1996年春季副热带环流区浮游植物生态的初步研究   总被引:3,自引:0,他引:3  
鉴定浮游植物种类54属184种(含变种和变型),其中暖水种为140种(占76.5%).硅藻类和甲藻类等浮游植物的平均总细胞密度为198.71×102个/m3;蓝藻类藻丝体平均密度为44.55×102条/m3.浮游植物各类别的分布与水域的磷酸盐含量、黑潮以及其他水系(涌升水和沿岸水等)等相关;蓝藻类的束毛藻(Trichodesmium)的分布还与50m以浅水体的平均水温关系密切.  相似文献   

17.
Young Sound is a deep-sill fjord in NE Greenland (74°N). Sea ice usually begins to form in late September and gains a thickness of 1.5 m topped with 0–40 cm of snow before breaking up in mid-July the following year. Primary production starts in spring when sea ice algae begin to flourish at the ice–water interface. Most biomass accumulation occurs in the lower parts of the sea ice, but sea ice algae are observed throughout the sea ice matrix. However, sea ice algal primary production in the fjord is low and often contributes only a few percent of the annual phytoplankton production. Following the break-up of ice, the immediate increase in light penetration to the water column causes a steep increase in pelagic primary production. Usually, the bloom lasts until August–September when nutrients begin to limit production in surface waters and sea ice starts to form. The grazer community, dominated by copepods, soon takes advantage of the increased phytoplankton production, and on an annual basis their carbon demand (7–11 g C m−2) is similar to phytoplankton production (6–10 g C m−2). Furthermore, the carbon demand of pelagic bacteria amounts to 7–12 g C m−2 yr−1. Thus, the carbon demand of the heterotrophic plankton is approximately twice the estimated pelagic primary production, illustrating the importance of advected carbon from the Greenland Sea and from land in fuelling the ecosystem.In the shallow parts of the fjord (<40 m) benthic primary producers dominate primary production. As a minimum estimate, a total of 41 g C m−2 yr−1 is fixed by primary production, of which phytoplankton contributes 15%, sea ice algae <1%, benthic macrophytes 62% and benthic microphytes 22%. A high and diverse benthic infauna dominated by polychaetes and bivalves exists in these shallow-water sediments (<40 m), which are colonized by benthic primary producers and in direct contact with the pelagic phytoplankton bloom. The annual benthic mineralization is 32 g C m−2 yr−1 of which megafauna accounts for 17%. In deeper waters benthic mineralization is 40% lower than in shallow waters and megafauna, primarily brittle stars, accounts for 27% of the benthic mineralization. The carbon that escapes degradation is permanently accumulated in the sediment, and for the locality investigated a rate of 7 g C m−2 yr−1 was determined.A group of walruses (up to 50 adult males) feed in the area in shallow waters (<40 m) during the short, productive, ice-free period, and they have been shown to be able to consume <3% of the standing stock of bivalves (Hiatella arctica, Mya truncata and Serripes Groenlandicus), or half of the annual bivalve somatic production. Feeding at greater depths is negligible in comparison with their feeding in the bivalve-rich shallow waters.  相似文献   

18.
The mouth area of the Severnaya Dvina River is characterized by a high level of methane in the water (from 1.0 to 165.4 μl/l) and in the bottom sediments (from 14 to 65000 μl/kg), being quite comparable to the productive mouth areas of the rivers in the temperate zone. The maximum methane concentrations in the water and sediments were registered in the delta in the segments of channels and branches with low rates of tidal and runoff currents to which domestic and industrial wastewaters are supplied. In the riverine and marine water mixing zone with its upper boundary situated far into the delta and displaced depending on the phase of the tidal cycle, a decrease of the methane amount with the salinity increase was observed. The prevailing role in the formation of the methane content level in the water of the mouth area pertains to the bottom sediments, which is testified to by the close correlation between the gas concentrations in these two media. The existence of periodicity in the variations of the methane content level in the water of the river downstream caused by the tidal effects was found.  相似文献   

19.
Recent changes in climate and environmental conditions have had great negative effects such as decreasing sea ice thickness and the extent of Arctic sea ice floes that support ice-related organisms. However, limited field observations hinder the understanding of the impacts of the current changes in the previously ice-covered regions on sea ice algae and other ice-related ecosystems. Our main objective in this study was to measure recent primary production of ice algae and their relative contribution to total primary production (ice plus pelagic primary production). In-situ primary productivity experiments with a new incubation system for ice algae were conducted in 3 sea ice cores at 2 different ice camps in the northern Chukchi Sea, 2014, using a 13C and 15N isotope tracer technique. A new incubation system was tested for conducting primary productivity experiments on ice algae that has several advantages over previous incubation methods, enabling stable carbon and nitrogen uptake experiments on ice algae under more natural environmental conditions. The vertical C-shaped distributions of the ice algal chl-a, with elevated concentrations at the top and bottom of the sea ice were observed in all cores, which is unusual for Arctic sea ice. The mean chl-a concentration (0.05 ± 0.03 mg chl-a m?3) and the daily carbon uptake rates (ranging from 0.55 to 2.23 mg C m?2 d?1) for the ice algae were much lower in this study than in previous studies in the Arctic Ocean. This is likely because of the late sampling periods and thus the substantial melting occurring. Ice algae contributed 1.5–5.7% of the total particulate organic carbon (POC) contents of the combined euphotic water columns and sea ice floes. In comparison, ice algae contributed 4.8–8.6% to the total primary production which is greater than previously reported in the Arctic Ocean. If all of the ice-associated productions were included, the contributions of the sea ice floes to the total primary production would be greater in the Arctic Ocean and their importance would be greater in the arctic marine ecosystems.  相似文献   

20.
大管岛礁区潮下带大型底栖海藻群落的初步研究   总被引:2,自引:0,他引:2  
1990年5月和11月对大管岛礁区潮下带大型底栖海藻进行了两次定量调查。共采到23种大型海藻,其群落构成以红藻类占优。海藻种类的区系温度性质属明显的温水性区系。5月份平均生物量为240.939/m2,11月份平均生物量为164.399/m2。两季度月都以岛西侧的D7断面平均生物量最高,分别为820.159/m2和472.509/m2。就垂直分布而言,1—2米水层内海藻分布密度最高,达527.549/m2。优势种为海蒿子和石花菜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号