首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The material was collected in the Ob River estuary and over the adjacent shallow Kara Sea shelf between 71°14′0 and 75°33′0N at the end of September 2007. Latitudinal zoning in the phytoplankton distribution was demonstrated; this zoning was determined by the changes in the salinity and concentration of nutrients. Characteristic of the phytocenosis in the southern desalinated zone composed of freshwater species of diatom and green algae were the high population density (1.5 × 106 cells/l), biomass (210 μgC/l), chlorophyll concentration (4.5 μg/l), and uniform distribution in the water column. High primary production (∼40 μgC/l/day) was recorded in the upper 1.5-m layer. The estuarine frontal zone located to the north contained a halocline at a depth of 3–5 m. Freshwater species with low population density (2.5 × 105 cells/l), biomass (24 μgC/l), and chlorophyll concentration (1.5 μg/l) dominated above the halocline. Marine diatom algae, dinoflagellates, and autotrophic flagellates formed a considerable part of the phytocenosis below the halocline; the community characteristics were twofold lower as compared with the upper layer. The maximal values of the primary production (∼10 μgC/l per day) were recorded in the upper 1.5-m layer. The phytocenosis in the seaward zone was formed by marine alga species and was considerably poorer as compared with the frontal zone. The assimilation numbers at the end of the vegetation season in the overall studied area were low, amounting to 0.4–1.0 μgC/μgChl/h in the upper layer and 0.03–0.1 μgC/μgChl/h under the pycnocline.  相似文献   

2.
The research was performed along a transect from the Yamal Peninsula coast towards the outer shelf of the southwestern part of the Kara Sea in September 2007. 130 phytoplankton species have been identified, among which 63 were found in the area for the first time. The total phytoplankton numbers varied within the range of 0.2 to 11.3 × 109 cells/m2, while biomass within the range of 43 to 1057 mgC/m2. A well pronounced cross-shelf zoning in the phytoplankton communities was ascertained. The inner shelf zone about 30 km wide with depths down to 30 meters was characterized by the predominance of diatoms (up to 80% of the total algae numbers and biomass). The second group by value was dinoflagellates. Seaward in the area of the depth increase from 30 to 140 m, the zone of the Yamal Current was located, which was 40 km wide and notable for its active water dynamics. The total cell numbers in the zone reached a maximum for the entire investigated area: up to 11.3 × 109 cells/m2. The leading group in the phytoplankton was autotrophic flagellates, whose share in the total numbers reached 56–82%. Further than 70 km from the shore, the outer shelf zone was found with the water column rigidly stratified. The highest for the whole area phytoplankton biomass was identified here (up to 1.06 gC/m9), 80% of which was concentrated above the halocline. Diatoms dominated in the phytoplankton numbers (up to 92%) and biomass (up to 90%), which was related to the mass development of two species: Chaetoceros diadema and Leptocylindrus danicus.  相似文献   

3.
Standing stocks and production rates of phytoplankton and abundance of bacteria were investigated at 39 stations in the Seto Inland Sea, Japan during four crulses in October 1993, January, April and June 1994. Primary productivity was measured by the13C tracer method. Photosynthetic rate varied from 0.41 to 32.1 μgC/1/h with an average value of 4.67 μgC/l/h. Annual primary production was estimated to be 218 gC/m2/year. Annual primary production in this study was 1.8 times as high as the values which were previously reported at same area. The reason for the disagreement between our primary production value and previous values is not thought to be due to the difference of methods used for measuring primary production or the different Chl.a concentrations but to the method of estimating the primary production in the euphotic zone from thein vitro measurements. The distribution of bacterial cells in surface seawater was examined during the same cruises. Bacterial cell density ranged from 0.32 to 3.4×106 cells/ml. The density was relatively high in the eutrophic regions of Hiroshima Bay and Osaka Bay In addition, a high density of bacteria was also observed in an area within Suo Nada where Chl.a was relatively low. The disparity between Chla and bacterial density in Suo Nada suggests that bacterial abundance can be controlled by the availability of substrates other than phytoplankton exudate.  相似文献   

4.
研究了南麂列岛海洋自然保护区浮游植物物种组成、数量分布、多样性指数及其与营养盐、浮游动物的关系.经鉴定,共发现浮游植物86种,隶属于33属.网样浮游植物平均密度为194.00×104个/m3,水样浮游植物平均密度为4.98×104个/m3,优势类群有角毛藻(Chaetoceros sp.)、角藻(Ceratuym sp.)、中肋骨条藻(Skeletonema costatum)、红色裸甲藻(Akashiwo sanyuineum)等.网样浮游植物多样性平均指数为2.28,水样浮游植物多样性平均指数为2.17.根据浮游植物组成特点,将其分为两个生态类群:近岸性和广布性类群,外海性类群.  相似文献   

5.
黑潮入侵深刻影响东海生态环境,但对其如何影响浮游植物群落组成与分布仍知之甚少。为此,于2011年四季对东海(26°~33°N,121°~128°E)共164个站位进行浮游植物拖网采集和环境因子测定,分析了浮游植物丰度和优势种组成及其对黑潮入侵的响应。调查共检出浮游植物9门509种(含变种、变型和未定种),其中硅藻305种、甲藻154种,蓝藻、定鞭藻、金藻、裸藻、绿藻、隐藻和黄藻种类数较少。秋季浮游植物细胞丰度最高(30 496.91×103 cells/m3),高值区位于黑潮与长江冲淡水交汇形成的锋面处;夏季次之(28 911.28×103 cells/m3),高值区分布与秋季相似;春季较少(19 180.76×103 cells/m3),高值区位于舟山群岛东南部;冬季最低(472.36×103 cells/m3),高值区位于东海南部。冬季受黑潮表层水入侵影响,主要优势种为铁氏束毛藻(Trichodesmium thiebautii);春、夏季主要优势种为骨条藻(Skeleto...  相似文献   

6.
2010年秋季南海北部浮游植物群落结构研究   总被引:5,自引:0,他引:5       下载免费PDF全文
2010年10月26日-11月24日在南海北部进行了浮游植物群落结构的调查,共鉴定浮游植物4门70属204种(包括未定种12种),浮游植物以硅藻为主,其物种数为146种,其细胞丰度占总浮游植物细胞丰度的93.17%;甲藻次之,其物种数为51种,占总浮游植物细胞丰度的0.63%;金藻门3属4种及蓝藻门2属3种;蓝藻门中以红海束毛藻(Trichodesmium erythraeum)为主。调查区浮游植物的细胞丰度介于0.06×103~107.50×103 cells/L之间,平均值为5.00×103 cells/L。海南岛东北部和粤东近岸表层浮游植物丰度较高。垂直分布上,表层和25 m层的浮游植物细胞丰度较高。浮游植物主要优势种类有菱形海线藻(Thalassionema nitzschioides)、舟形藻(Navicula spp.)、中肋骨条藻(Skeletonema costatum)、旋链角毛藻(Chaetoceros curvisetus)、斯氏几内亚藻(Guinardia stolterforthii)、具槽帕拉藻(Paralia sulcata)等。调查区表层和5 m层Shannon-Wiener多样性指数平均值分别为3.14和2.83,Pielou均匀度指数平均值分别为0.73和0.77;两种指数在表层和5 m层均表现出较高的一致性。环境分析表明除硅酸盐外,浮游植物细胞丰度与其他环境因子均呈极显著性的相关性,主要受到氮元素及磷酸盐的共同限制作用。  相似文献   

7.
Vertical distributions of phytoplankton biomass, compositions and size structure were investigated during the spring-intermonsoon (April 22 to 30) of 2010 along transact 10°N of the Bay of Bengal, northern Indian Ocean. Surface phytoplankton biomass (Chl a) was (0.065§0.009) μg/L, being greater than 80% of which was contributed by pico-phytoplankton (<3 μm). The Chl a concen- tration vertically increased to the maximal values at deep chlorophyll maximum (DCM) layer that shoaled eastwards from 75 to 40 m. The Chl a biomass at DCM layer generally varied between 0.2 and 0.4 μg/L, reaching the maximum of 0.56 μg/L with micro-phytoplankton cells (>20 μm) accounting for 58% and nano- (3-20 μm) or pico-cells for 15% and 27%, respectively. In particular, the cells concentration coupling well with phosphate level was observed at middle layer (75-100 m) of 87° to 89°E, dominated by micro-cells diatoms (e.g., Chaetoceros atlanticus v. neapolitana, Chaetoceros femur and Pseudonitzschia sp.) and cyanobacteria (i.e., Trichodesmium hildebrandtii), with the cells concentration reached as high as 4.0×104 and 4.3×104 cells/L. At the rest of the trans- act however, dino°agellates (e.g., Amphisdinium carterae and Prorocentrum sp.) were the dominant species, with the cells concentration varying from 0.3×103 to 6.8×103 cells/L. Our results also in- dicate that the regulation of large cells (micro-, nano-) on phytoplankton biomass merely occurred at DCM layer of the Bay.  相似文献   

8.
The phytoplankton community was studied in Bering Strait and over the shelf, continental slope, and deep-water zones of the Chukchi and Beaufort seas in the middle of the vegetative season (July–August 2003). Its structure was analyzed in relation to ice conditions and the seasonal patterns of water warming, stratification, and nutrient concentrations. The overall ranges of variation in phytoplankton abundance and biomass were estimated at 2.0 × 102 to 6.0 × 106 cells/l and 0.1 to 444.1 mg C/m3. The bulk of phytoplankton cells concentrated in the seasonal picnocline, at depths of 10–25 m. The highest values of cell density and biomass were recorded in regions influenced by the inflow of Bering Sea waters or characterized by intense hydrodynamics, such as the Bering Strait, Barrow Canyon, and the outer shelf and slope of the Chukchi Sea. In the middle of the vegetative season, the phytoplankton in the study region of the Western Arctic proved to comprise three successional (seasonal) assemblages, namely, the early spring, late spring, and summer assemblages. Their spatial distribution was dependent mainly on local features of hydrological and nutrient regimes rather than on general latitudinal trends of seasonal succession characteristic of arctic ecosystems.  相似文献   

9.
王云龙  蒋玫  袁骐 《海洋学报》2005,27(1):107-113
分析了北太平洋鱿鱼渔场浮游植物种类组成、分布特点及其与环境、中心渔场的关系.初步鉴定出36属129种,种类组成以暖水性种类居多(占58.9%),虽然冷水性占种类比例较少(占10.9%),但在细胞数量上占明显优势(占总量的68.05%),出现热带、亚热带与亚寒带区系共存的局面;其平面分布不均,平均总量为54.60×103个/m3;冷暖水系对浮游植物种类组成及数量分布均有显著的影响;中心渔场的形成与浮游植物高值区有着密切的关系.  相似文献   

10.
夏秋季南黄海浮游植物群落及其调控因子   总被引:1,自引:1,他引:0  
The phytoplankton water samples were collected in two multidisciplinary investigations which were carried out during summer(June) and autumn(November to December) of 2011. Phytoplankton species composition and abundance data were accomplished by Uterm?hl method. The phytoplankton community was dominated by diatoms and dinoflagellates in the southern Yellow Sea(YS) in summer and autumn. In summer, Paralia sulcata and Prorocentrum dentatum were the predominated species, the cell abundance ranged from 0.074 to 107.733×103 cells/L with an average of 9.057×103 cells/L. Two phytoplankton high abundance appeared in northwest part of the survey area and the Changjiang River Estuary, respectively. In autumn, Par. sulcata became the predominant species, and the phytoplankton cell abundance ranged from 1.035×103 to 8.985×103 cells/L, the average was 3.263×103 cells/L. The phytoplankton abundance in surface layer presented the homogeneous distributions. Canonical Correspondence Analysis(CCA) method was applied for discovering the relationship between environmental factors and the common found phytoplankton species. The responses of phytoplankton to nutrients were varied between summer and autumn. The abundance of most predominant species, Par. sulcata was strongly correlated to temperature and salinity in autumn, but not the case in summer.  相似文献   

11.
春季黄海浮游植物生态分区:物种组成   总被引:3,自引:1,他引:2  
Phytoplanktonic ecological provinces of the Yellow Sea(31.20°–39.23°N, 121.00°–125.16°E) is derived in terms of species composition and hydrological factors(temperature and salinity). 173 samples were collected from 40 stations from April 28 to May 18, 2014, and a total of 185 phytoplanktonic algal species belonging to 81 genera of 7phyla were identified by Uterm?hl method. Phytoplankton abundance in surface waters is concentrated in the west coast of Korean Peninsula and Korea Bay, and communities in those areas are mainly composed of diatoms and cyanobacteria with dominant species of Cylindrotheca closterium, Synechocystis pevalekii, Chroomonas acuta,Paralia sulcata, Thalassiosira pacifica and Karenia mikimotoi, etc. The first ten dominant species of the investigation area are analyzed by multidimensional scaling(MDS) and cluster analysis, then the Yellow Sea is divided into five provinces from Province I(P-I) to Province V(P-V). P-I includes the coastal areas near southern Liaodong Peninsula, with phytoplankton abundance of 35 420×10~3–36 163×10~3 cells/L and an average of 35 791×10~3 cells/L, and 99.84% of biomass is contributed by cyanobacteria. P-II is from Shandong Peninsula to Subei coastal area. Phytoplankton abundance is in a range of 2×10~3–48×10~3 cells/L with an average of 24×10~3cells/L, and 63.69% of biomass is contributed by diatoms. P-III represents the Changjiang(Yangtze River) Diluted Water. Phytoplankton abundance is 10×10~3–37×10~3 cells/L with an average of 24×10~3 cells/L, and 73.14% of biomass is contributed by diatoms. P-IV represents the area affected by the Yellow Sea Warm Current.Phytoplankton abundance ranges from 6×10~3 to 82×10~3 cells/L with an average of 28×10~3 cells/L, and 64.17% of biomass is contributed by diatoms. P-V represents the cold water mass of northern Yellow Sea. Phytoplankton abundance is in a range of 41×10~3–8 912×10~3 cells/L with an average of 1 763×10~3 cells/L, and 89.96% of biomass is contributed by diatoms. Overall, structures of phytoplankton community in spring are quite heterogeneous in different provinces. Canonical correspondence analysis(CCA) result illustrates the relationship between dominant species and environmental factors, and demonstrates that the main environmental factors that affect phytoplankton distribution are nitrate, temperature and salinity.  相似文献   

12.
河北沿岸微微型浮游植物的分布特征   总被引:1,自引:0,他引:1  
于2006年7月~ 2007年10月间,分4个季度调查了河北省沿岸微微型浮游植物的丰度和生物量及对浮游植物总生物量的贡献.结果显示:河北近岸海域聚球藻蓝细菌丰度为4.46×103个/mL(0.79×103~ 16.19×103个/mL),生物量(以碳计,下同)为1.31 mg/m3 (0.84~17.47 mg/m3),季节分布特征为秋季>冬季>夏季>春季.微微型光合真核生物丰度为4.43×102个/mL (0.84×102~ 17.47×102个/mL),生物量为1.11mg /m3 (0.21~ 4.37 mg/m3),季节变化变现为秋季>冬季>春季>夏季.微微型浮游植物对浮游植物总生物量的贡献年平均为5.32%(1.84%~ 8.91%),春季最高,秋季最低.温度在较冷季节(冬春季)里是影响聚球藻蓝细菌生长和分布的控制因素.总之,在近岸环境里,微微型浮游植物并不占优势.  相似文献   

13.
Studies in marine microbiology relevant to the cultivation of lobster in Fatty Basin were made. Biomass of bacteria and allied microorganisms in whole seawater column of the basin was very small (2×104 gC), but a large biomass was found in the sediments (3×105 gC). The decomposition of chitin occurred chiefly in the sediments. The rate of decomposition (500 g/day) was approximately half of the rate of production. However, the remaining production was considered not to be involved in the chitin cycle of the basin. This hypothesis was supported by the results of the analysis of the budget of organic matter in the area. Shell disease of lobster caused by chitinoclastic bacteria was detected, although it was not serious. A destructive yeast parasite of crustaceans,Metschnikowia, was collected only from a crab in the basin. This report is dedicated to Professor KenSugawara for his 70 years old anniversary.  相似文献   

14.
2006年冬季北黄海网采浮游植物群落结构   总被引:6,自引:1,他引:5       下载免费PDF全文
杜秀宁  刘光兴 《海洋学报》2009,31(5):132-147
根据2006年12月30日—至2007年1月17日北黄海的调查资料,对该海域浮游植物的种类组成、优势种、丰度及其分布和多样性等基本状况进行了分析。本次调查共鉴定浮游植物4门68属131种,主要以温带近岸和广布性种为主,其中硅藻有53属113种,占总种数的86.3%,甲藻有11属16种,占总种数的12.2%。浮游植物丰度平均值为88.89×104个/m3,硅藻丰度平均值为86.58×104个/m3,甲藻丰度平均值为2.28×104个/m3,硅藻丰度分布趋势决定了浮游植物丰度的分布趋势。辽宁南岸是浮游植物密集区,山东半岛北岸其次,而北黄海中部是浮游植物的稀疏区。优势种为:短角弯角藻(Eucampia zodiacus)、具槽帕拉藻(Paralia sulcata)、尖刺拟菱形藻(Pseu-do-nitzschia pungens)、密连角毛藻(Chaetoceros densus)、柔弱角毛藻(Chaetoceros debilis)、刚毛根管藻(Rhizosolenia setigera)。浮游植物群落Shannon-Weiner物种多样性指数平均值为1.80,Peilou均匀度指数平均值为0.42。与1959年1月相比,2007年1月北黄海浮游植物丰度由150.00×104个/m3降为88.89×104个/m3,下降了近41%,硅藻丰度由148.00×104个/m3降为86.58×104个/m3,而甲藻丰度由1.25×104个/m3上升为2.28×104个/m3,占浮游植物丰度的比例由0.8%上升为2.5%。主要优势种及优势属也发生了一定程度的变化,但浮游植物群落结构仍以硅藻为主、甲藻其次,浮游植物丰度总的分布格局变化不明显。  相似文献   

15.
2010年胶州湾网采浮游植物种类组成与数量的周年变化   总被引:2,自引:1,他引:1  
为了研究胶州湾网采浮游植物的种类组成与数量变化,作者根据2010年的胶州湾调查资料,对调查区浮游植物丰度、优势种类和季节变化进行分析研究。结果表明,胶州湾浮游植物主要由硅藻和甲藻两大类组成,硅藻占据绝对优势地位。除了7月以外,甲藻/硅藻比均0.2。生态类型主要以近岸广布种和暖温带种为主,在不同季节也出现了少数暖水种和外洋种。浮游植物丰度表现为明显的"双周期",冬、春两季较高,夏、秋两季较低。2月为全年最高峰,数量为1108×104个/m3,10月为夏、秋两季的高峰,数量为458.7×104个/m3。浮游植物群落的多样性指数平均为1.9。  相似文献   

16.
The Subei Shoal is a special coastal area with complex physical oceanographic properties in the Yellow Sea. In the present study, the distribution of phytoplankton and its correlation with environmental factors were studied during spring and summer of 2012 in the Subei Shoal of the Yellow Sea. Phytoplankton species composition and abundance data were accomplished by Uterm?hl method. Diatoms represented the greatest cellular abundance during the study period. In spring, the phytoplankton cell abundance ranged from 1.59×10~3 to 269.78×10~3 cell/L with an average of 41.80×10~3 cell/L, and Skeletonema sp. and Paralia sulcata was the most dominant species. In summer, the average phytoplankton cell abundance was 72.59×10~3 cell/L with the range of 1.78×10~3 to 574.96×10~3 cell/L, and the main dominant species was Pseudo-nitzschia pungens, Skeletonema sp., Dactyliosolen fragilissima and Chaetoceros curvisetus. The results of a redundancy analysis(RDA) showed that turbidity,temperature, salinity, pH, dissolved oxygen(DO), the ratio of dissolved inorganic nitrogen to silicate and SiO_4-Si(DIN/SiO_4-Si) were the most important environmental factors controlling phytoplankton assemblages in spring or summer in the Subei Shoal of the Yellow Sea.  相似文献   

17.
A five-year study of the interannual changes observed in May–June during the mass reproduction of coccolithophorids was carried out in the northeastern part of the Black Sea. The long-term dynamics were analyzed using the data on the phytoplankton collected during the last 40 years. The fraction of coccolithophorids represents either 20 or 60% of the total biomass of the algae and does not depend on either the previous winter conditions or the nitrogen content and the N: P ratio in the surface water layer. Our studies have revealed the dependency between the phosphate content and the size of the coccolythophorids’ fraction in the total phytoplankton biomass. The long-term population dynamics includes three periods. Until the mideighties, the coccolythophorid fraction in the Black Sea phytoplankton was insignificant (3%). The average biomass was equal to 8 μg/l. In the late eighties, the average biomass increased up to 106 μg/l. Since the midnineties, coccolythophorids often prevail in the number and mass among the other phytoplankton species. The general tendency for the growth of the coccolythophorid fraction in the phytoplankton cenoses coincides with the increase in the phosphate concentration in the near-surface water observed within the last 40 years. This fact corresponds to the experimental results, which demonstrate that the coccolythophorid development during May–June is phosphate-limited.  相似文献   

18.
李照  宋书群  李才文  俞志明 《海洋学报》2017,39(10):124-144
通过2013年3月和8月在长江口及其邻近海域进行的多学科综合调查,研究了枯水期和丰水期浮游植物的群落结构和空间分布特征,并探讨了影响其分布的环境因子效应。枯水期共发现浮游植物3门41属80种(不包括变种和变型),以硅藻为主,主要优势种为具槽帕拉藻(Paralia sulcata);浮游植物细胞丰度介于0.15×103~16.35×103 cells/L,平均值为(3.24±3.14)×103 cells/L;浮游植物细胞丰度在长江口外东北部海域形成高值,垂直变化较小,硅藻刻画了浮游植物的空间分布。丰水期共发现浮游植物4门67属135种(不包括变种和变型),甲藻物种数量和细胞丰度均升高,主要优势种为东海原甲藻(Prorocentrum donghaiense)和骨条藻(Skeletonema sp.);浮游植物细胞丰度介于0.2×103~1 925.45×103 cells/L,平均值为(41.67±186.00)×103 cells/L;浮游植物细胞丰度在长江口外形成南北两个高值区,随水深增加,细胞丰度逐渐降低。浮游植物的空间分布受长江口冲淡水影响,与盐度和浊度有显著的相关性;N/P比影响浮游植物群落结构,随着N/P比升高,甲藻的相对丰度升高,硅藻的相对丰度逐渐降低。浮游植物在层化水体的上层大量繁殖是底层低氧形成的必要条件,硅藻具有较高的沉降速率,因而以硅藻为主的群落更利于低氧的形成。  相似文献   

19.
2009年8,10,12月及2010年3月分别对烟台四十里湾的12个站位开展了四个航次的季节调查.研究发现浮游植物3门45属73种,其中硅藻46种,甲藻24种,褐胞藻3种.硅藻是构成调查区域浮游植物群落的主要类群.浮游植物种类与数量呈现出明显的季节变化特征.夏季(8月)物种数最多(57种),秋季(10月)次之(40种)...  相似文献   

20.
本文基于2018年5月(春季)、8月(夏季)、11月(秋季)和2019年1月(冬季)季度航次调查,采用冗余分析(RDA)和Bray-Curtis相似性聚类分析方法,讨论了烟台四十里湾及其邻近海域网采浮游植物丰度、优势种组成、多样性指数、均匀度指数的分布特征以及浮游植物与环境因子的关系。本年度调查共发现浮游植物4门69属116种,其中硅藻门50属85种,甲藻门15属27种,着色鞭毛藻门3属3种,未定类1种(三深碎裂藻,Ebria tripartita)。浮游植物丰度在8月份达到年度最高值,为2.89×108cells/m3,秋季次之,春季最低,春、秋、冬季浮游植物丰度均为~105cells/m3。硅藻门在4个季节中均占绝对优势,除春季出现甲藻门(夜光藻)优势种外,其余季节浮游植物优势种均为硅藻门。相邻季节浮游植物优势种更替明显,未出现4个季节共有的优势种。浮游植物多样性和均匀度指数均在夏季达到最低值,分别为1.58和0.31。RDA排序分析显示,不同季节影响浮游植物群落分布的环境因子不同,总体来讲,温度、溶解氧浓度、SiO32-浓度和NO3-浓度对浮游植物的丰度和平面分布有显著影响。Bray-Curtis相似性聚类结果显示,2018年每个季节浮游植物群落分布均可分为两个类群,其分布受营养盐分布的影响较为明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号