首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using the 5-day averaged data from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, and precipitation from rain gauge stations in China for the period 1981–2000, we investigated seasonal variations and associated atmospheric circulation and precipitation of the southwesterly wind over eastern China. The southwesterly wind over eastern China begins earliest over southeastern China and strengthens gradually from spring to the early summer, as it extends northward. The strengthening of the spring southwesterly wind, the tropospheric upward motion, and the convergence of low-level water vapor over southeastern China results in the beginning of the local rainy season. The beginning of the Mei-yu (Plum rainfall) is connected with the northward march of the southwesterly wind. The southwesterly wind reaches the valley of the Yangtze River in the early summer and northern China in the middle summer. This signifies an onset of the large-scale southwesterly wind over eastern China. Accordingly, the rain belt over southeastern China moves to the valley of the Yangtze River in the early summer and to northern China in the middle summer. Moreover, the southerly wind extends southward to the South China Sea from the spring to summer, though it does not stretch from the South China Sea to southeastern China at those times. The strengthening of the southerly wind over southeastern China is associated with a weakening/strengthening of the eastward/westward subtropical tropospheric temperature gradient between southwestern China and the western North Pacific. The developments of a low-pressure system over southwestern China and the subtropical high-pressure system over the western North Pacific may contribute to the strengthening of the southwesterly wind. A northward advance of the high-pressure system favors the southwesterly wind stretching from southeastern China to northern China. The onset of the Indian summer monsoon also strengthens the summer southwesterly wind over eastern China.  相似文献   

2.
The structural evolution of Typhoon Morakot(2009) during its passage across Taiwan was investigated with the WRF model. When Morakot approached eastern Taiwan, the low-level center was gradually filled by the Central Mountain Range(CMR), while the outer wind had flowed around the northern tip of the CMR and met the southwesterly monsoon to result in a strong confluent flow over the southern Taiwan Strait. When the confluent flow was blocked by the southern CMR, a secondary center(SC) without a warm core formed over southwestern Taiwan. During the northward movement of the SC along the west slope of the CMR, the warm air produced within the wake flow over the northwestern CMR was continuously advected into the SC, contributing to the generation of a warm core inside the SC. Consequently, a well-defined SC with a warm core, closed circulation and almost symmetric structure was produced over central western Taiwan, and then it coupled with Morakot's mid-level center after crossing the CMR to reestablish a new and vertically stacked typhoon. Therefore, the SC inside Morakot was initially generated by a dynamic interaction among the TC's cyclonic wind, southwesterly wind and orographic effects of the CMR, while the thermodynamic process associated with the downslope adiabatic warming effect documented by previous studies supported its development to be a well-defined SC. In summary, the evolution of the SC in this study is not in contradiction with previous studies, but just a complement, especially in the initial formation stage.  相似文献   

3.
Summary This study analyzes the mechanisms of the development of a heavy rainfall event (17 June 1987) over the lee side of the Central Mountain Range (CMR) in northeastern Taiwan during the southwesterly monsoon. This heavy rainfall event was examined using gridded data from the European Centre for Medium-Range Weather Forecasts, surface rainfall data and numerical model results, employing a non-hydrostatic fifth-generation mesoscale model (MM5) developed by the National Center for Atmospheric Research and Pennsylvania State University. A tropical depression was simulated over the northern South China Sea on 16 June. Convergence, resulting from the southeasterly winds associated with the circulation from the tropical depression, and northeasterly winds over the Taiwan Strait, occurred over the northern Bashi Channel at 850 hPa. The convergence amplified planetary vorticity and the vorticity associated with the intensifying tropical depression. Consequently, a mesovortex with low pressure over the northeastern edge of the tropical depression near southern Taiwan was produced. Additional convergence over the ocean adjacent to southern Taiwan caused by the interaction between the northeasterly flow, which was deflected over the southeastern slope of the CMR, and the southeasterly flow of the tropical depression, also affected the intensity of the mesovortex. When the mesovortex moved northward and reached southern Taiwan, the southeasterly flow associated with it interacted with an east-southeasterly flow, which was related to the tropical depression, to form a mesoscale convective system (MCS) over the ocean adjacent to southeastern Taiwan. As the mesovortex moved northward, the MCS, which was embedded in the southeasterly flow, also drifted inland toward northeastern Taiwan. The orographic lifting and the ascending motion associated with the deceleration of the easterly flow near the CMR enhanced the MCS over northeastern Taiwan and produced heavy rainfall. To examine the role of Taiwan’s orography on the modelled rainfall, two simulations were conducted; one which included Taiwan’s orography and one which excluded it. In both simulations, the mesovortex in the northern Bashi Channel and the MCS near southeastern Taiwan were reproduced. However, in the simulation excluding the orography, the mesovortex was slightly less intense. In addition, without the extra orographic lifting and the ascending motion caused by flow deceleration, rainfall over northeastern Taiwan was weaker than in the simulation with the orography.  相似文献   

4.
Summary The effect of mountains on the occurrence of precipitation systems on Taiwan island is very significant, especially as mountain areas occupy about two-thirds of the land-mass. The mountains are, on average, about 3 km high. To investigate the formation of precipitation systems influenced by Pacific high pressure systems, we selected five cases (May 24, 25 and 26, June 19 and 20 in 1987) during a field program, TAMEX (Taiwan Area Mesoscale Experiment, Kuo and Chen, 1990). In all cases most of the rainfall took place in the afternoon when the level of free convection (LFC) was at about the 1 km height. If the average wind (below 3 km in height) was from the south (May 25 and 26), higher amounts of precipitation would be found along the sloped areas of western and eastern Taiwan. Rainfall also occurred in southern and northern Taiwan. If the average wind was from the southwest (May 24), the precipitation pattern was similar to that on May 25, except over the plains area in southwest and northeast Taiwan, where the amount was less. However, if the prevailing wind direction changed little with height and the average wind was from the south-southeast (June 19), higher rainfall amounts occurred from northwestern to central Taiwan. If the average wind was from the south and wind direction changed little with height (June 20), higher rainfall amounts took place in northern and central Taiwan. A nonhydrostatic model was used to simulate the formation of precipitation systems in all five cases. Simulation results indicated that the mixing ratio of rainwater could occur on the upstream side of a mountain slope and in the central mountain areas, where topographic lifting from the environmental wind and an upslope flow due to surface heating were evident. On the downstream side of the mountain, upward motion due to lee-side convergence and upslope motion from surface heating would also help rain form.With 13 Figures  相似文献   

5.
基于ERA5再分析资料、广东省风廓线雷达、雷达拼图产品和实况观测数据,分析了2020年6月7日夜间—8日珠三角(珠江三角洲)北部暖区强降水过程中主雨带与南岭南部地形走势一致的原因,阐释地形对此次强降水的触发和维持作用。结果表明:(1)此次过程发生在典型的暖区暴雨环流特征的背景下,主要影响系统为对流层中层弱短波槽扰动、低空急流和边界层急流脉冲等;(2)雷达回波表现为团状结构,多以对流单体形态生消,伴随明显的“列车效应”现象,但3个不同发展阶段内回波的持续时间、强度,以及触发地、传播和移动方向等均存在差异;(3)由于边界层西南(偏南)风增强和地形作用,新的对流单体在珠江口附近和珠三角西北侧被触发,同时由于南岭南侧地形对边界层暖湿气流的阻挡和拦截等作用,使得气流在珠三角北部形成明显的辐合抬升,造成该区域内对流单体移速减慢和汇聚,增强了降水强度;(4)强降水长时间的持续与海陆热力差异、冷池和边界层暖湿气流增强等引起的地面露点锋和中尺度辐合线有关。露点锋为强降水的发展和维持提供了热力不稳定条件,地面辐合线加强了对流层底层气流的辐合抬升,进一步增强了强降水区的降水强度。研究结果有助于认识珠三角北部...  相似文献   

6.
Detailed spatiotemporal structures for the submonthly-scale (7–25 days) intraseasonal oscillation (ISO) in summer monsoon rainfall and atmospheric circulation were investigated in South Asia using high-quality rainfall and reanalysis datasets. The Meghalaya–Bangladesh–coast of the western Myanmar (MBWM) region is the predominant area of submonthly-scale ISO in the Asian monsoon regions. The distinct rainfall ISO is caused by a remarkable alternation of low-level zonal wind between westerly and easterly flows around the Gangetic Plain on the same timescales. In the active ISO phase of the MBWM, a strong low-level westerly/southwesterly flows around the plain and a center of cyclonic vorticity appears over Bangladesh. Hence, a local southerly flows toward the Meghalaya Plateau and there is strong southwesterly flow towards the coast along southeastern Bangladesh and western Myanmar, resulting in an increase in orographic rainfall. Rainfall also increases over the lowland area of the MBWM due to the low-level convergence in the boundary layer under the strong cyclonic circulation. The submonthly-scale low-level wind fluctuation around the MBWM is caused by a westward moving n = 1 equatorial Rossby (ER) wave. When the anticyclonic (cyclonic) anomaly related to the ER wave approaches the Bay of Bengal from the western Pacific, humid westerly/southwesterly (easterly/southeasterly) flows enhance around the Gangetic Plain on the northern fringe of the anticyclone (cyclone) and in turn promote (reduce) rainfall in the MBWM. Simultaneously, robust circulation signals are observed over the mid-latitudes. In the active phase, cyclonic anomalies appear over and around the TP, having barotropic vertical structure and also contributing to the enhancement of low-level westerly flow around the Gangetic Plain. In the upper troposphere, an anticyclonic anomaly is also observed upstream of the cyclonic anomaly over the TP, having wavetrain structure. The mid-latitude circulation around the TP likely helps to induce the distinct ISO there in conjunction with the equatorial waves. Thus, the distinct ISO in the MBWM is strongly enhanced locally (~500 km) by the terrain features, although the atmospheric circulation causing the ISO has a horizontal scale of ~6,000 km or more, extending across the whole Asian monsoon system from the tropics to mid-latitudes.  相似文献   

7.
华南沿海暖区辐合线暴雨地形动力机制数值模拟研究   总被引:9,自引:1,他引:8  
华南沿海暖区暴雨是单一暖气团降水。本文采用客观分析方法确定暖区暴雨主要影响系统为两类辐合线低值系统:偏南向辐合线与西南向辐合线;此类辐合线系统具有强烈的辐合上升层次与暖心结构,是一类强烈的暖区暴雨天气系统。偏南向辐合线多出现在粤西沿海,而西南向辐合线多出现于粤东沿岸,分别具有短时团状与持续带状两类强降水。华南沿海地区山脉河口众多,其中珠江口以西的团状云雾山正面阻挡偏南向辐合线,河口以东的带状莲花山侧面阻挡西南向辐合线。利用WRF数值模式分别研究粤东和粤西山脉对两类辐合线及其暴雨的地形影响,包括正面阻挡和侧面摩擦。结果显示,将偏南向型辐合线所遇云雾山范围地形降低80%后,因正面阻挡缺失,辐合线及其降水向北推进,雨带强度减弱,形状改变。地形的正面阻挡促使低层辐合气流迅速抬升触发强降水。降水释放的凝结潜热,又加强系统的上升运动和暖心结构强度与层厚,进而增强暴雨。填充偏南向型狭管地形的试验显示,狭管效应构成对强降水位置和强度的直接强迫影响,加之与云雾山正面阻挡配合,两项作用造成粤西暴雨频繁特征。测试粤东西南向莲花山脉对西南向辐合线的侧向阻挡与摩擦效应,通过对比莲花山两种地表粗糙度环境模拟效果,获得显著的局地垂直上升速度差,显示粤东沿海山脉的侧向摩擦不仅增强西南辐合线强度也加强垂直上升运动强度,由于西南气流的持续,山脉走向与气流的配置,维持了降雨时长及雨带范围。同时对粤西近海西南辐合气流及河口的暴雨雨带也有连带增强与维持作用。进一步地山脉地形抬升以其抬升迅速,范围集中,层次深厚,而有别于锋面气团抬升。加之近海水汽充沛,抬升后中层凝结释放的配合,增强了辐合线低值系统强度,造成暖区降水雨强远高于华南锋面降水。  相似文献   

8.
Warm-sector heavy rainfalls along the south China coast from April to June during 2009–2014 can be divided into two main types based on their low-level circulations. Type I is the southerly pattern with meridional convergence line at the west of the Pearl River estuary, which is formed by the convergence of southeasterly, southerly, and southwesterly flows. Type II is the southwesterly pattern with a latitudinal convergence line at the east of the Pearl River estuary, which is formed by the convergence of westerly and southwesterly flows. Statistics on 6-hourly heavy rainfall events indicates that, during the afore-mentioned 6 years, there were on average 73.2 occurrences of the southerly pattern and 50.3 occurrences of the southwesterly pattern per year. After the onset of summer monsoon in the South China Sea, the occurrence frequencies of both patterns increase remarkably. The synthetic diagnosis of pattern circulation shows that, at 500 hPa, for the southerly pattern, there is a broad warm high ridge, and a temperature ridge is behind the high ridge, which causes an obvious warm advection at the high ridge area. There is no frontal region. For the southwesterly pattern, the circulation is a weak trough with a temperature trough behind it. The position of the frontal region is near Yangzi River, and the south China coast is in the warm-sector of the frontal region. At the vertical cross-section of each of the two categories of heavy rainfall, there is a strong vertical motion center stretching to 400 hPa, where the convergence layer in the rainfall region is deep and with several vertical convergence centers overlapping one another. Both types of heavy rainfalls are with abundant water vapor, accompanied with deep convective instability energy layers, and with strong release of latent heat caused by condensation of water vapor. The release of latent heat leads to the warming-up and stretching of the air column, thus strengthens deep convergence and vertical velocity upward. There is a stronger latent heat-release in the southwesterly pattern than in the southerly pattern, while in the southerly pattern, the warm advection at middle and upper levels is stronger than the latent head release. To study the thermo-dynamic development mechanisms, weather research and forecasting model (WRF) numerical simulations are made and the results show that, in the two rainstorm regions, latent heat release warms up the air column, hence significantly increase the depth and strength of the vertical velocity. Moreover, the release of latent heat strengthens convergent circulation at lower levels and weakens divergent circulation at middle levels, whose influence can be as strong as 30%–50% of the wind circulation strength of the two types of the warm-sector heavy rainfall over the south China coast, and further enhances deep convection, promoting warm-sector storm development.  相似文献   

9.
A heavy rainfall event caused by a mesoscale convective system (MCS), which occurred over the Yellow River midstream area during 7–9 July 2016, was analyzed using observational, high-resolution satellite, NCEP/NCAR reanalysis, and numerical simulation data. This heavy rainfall event was caused by one mesoscale convective complex (MCC) and five MCSs successively. The MCC rainstorm occurred when southwesterly winds strengthened into a jet. The MCS rainstorms occurred when low-level wind fields weakened, but their easterly components in the lower and boundary layers increased continuously. Numerical analysis revealed that there were obvious differences between the MCC and MCS rainstorms, including their three-dimensional airflow structure, disturbances in wind fields and vapor distributions, and characteristics of energy conversion and propagation. Formation of the MCC was related to southerly conveyed water vapor and energy to the north, with obvious water vapor exchange between the free atmosphere and the boundary layer. Continuous regeneration and development of the MCSs mainly relied on maintenance of an upward extension of a positive water vapor disturbance. The MCC rainstorm was triggered by large range of convergent ascending motion caused by a southerly jet, and easterly disturbance within the boundary layer. While a southerly fluctuation and easterly disturbance in the boundary layer were important triggers of the MCS rainstorms. Maintenance and development of the MCC and MCSs were linked to secondary circulation, resulting from convergence of Ekman non-equilibrium flow in the boundary layer. Both intensity and motion of the convergence centers in MCC and MCS cases were different. Clearly, sub-synoptic scale systems in the middle troposphere played a leading role in determining precipitation distribution during this event. Although mesoscale systems triggered by the sub-synoptic scale system induced the heavy rainfall, small-scale disturbances within the boundary layer determined its intensity and location.  相似文献   

10.
Summary  Two-thirds of the land mass of Taiwan island is mountainous, which affects the airflow and precipitation systems over the island. In this study, we discuss the characteristics of precipitation systems when the prevailing wind direction is from the north-east during winter. Observations indicate that rainfall amounts were higher in northeastern Taiwan (the upstream side of the mountains) and that a rainfall shadow occurred in southwestern Taiwan. Simulation results from a non-hydrostatic model indicate that airflow was deflected in eastern Taiwan, while relatively high (low) pressure areas formed in eastern (western) Taiwan. A higher mixing ratio of rainfall occurred over northeastern Taiwan while lighter rainfall occurred in the eastern, and northwestern areas and the southern tip of Taiwan. This was consistent with the observational data except for the southern tip of Taiwan. Uplift due to the topography near the mountainous areas, as well as low level convergence near the coastal areas (due to the deceleration of an easterly wind in northeastern Taiwan), helped form the mixing ratio of rain. Transportation of the mixing ratio of rainfall, due to low level westward flow and upper level eastward flow, caused it to cover a larger area. The mixing ratio of rainfall formed in the upper mountainous areas in northeastern Taiwan if the upstream moisture content was reduced significantly. A temperature inversion at low levels resulted in a decrease in relative humidity and an increase in stability, requiring that the mixing ratio of rainfall should develop closer to the mountainous areas. If a low level wind blew parallel to the orientation of the mountains (NNE-SSW), a higher mixing ratio of rainfall could occur in the mountainous areas of western Taiwan. Received January 30, 1998 Revised February 19, 1999  相似文献   

11.
两类华南沿海暖区暴雨特征及热力发展机制对比研究   总被引:8,自引:4,他引:8  
对2009—2014年4—6月的华南沿海暖区暴雨依据低层环流进行分类:第一类为偏南向型,即珠江口以西经向性偏南向辐合线型,由东南、偏南、西南三支气流汇合;第二类为西南向型,即珠江口以东纬向性西南向辐合线型,由偏西和西南风两支气流汇合。6小时强降水统计显示,6年中偏南向型年平均73.2次,西南向型年平均50.3次。南海夏季风爆发后,两种类型发生频数均明显增加。两类低层辐合线系统对应上层的合成特征显示,500 hPa天气形势偏南向型为宽阔暖脊,温度脊落后,有较明显的暖平流,无锋区;西南向型为弱槽,中纬度温度槽落后,锋区偏北,华南位于锋面前暖区,有弱波动。两类暴雨垂直剖面上有深厚垂直速度中心伸展到400 hPa;对应强烈的辐合层为几个垂直叠置的辐合中心;均为水汽充沛,对流不稳定能量层次深厚,有较强凝结潜热释放,造成气柱增暖拉伸,加强深厚多中心辐合及上升气流,其中西南向型凝结潜热释放更强,偏南向型中高层暖平流强于其凝结潜热释放。探讨热力发展机制的数值模拟显示,凝结潜热释放对气柱增温,大大增强暴雨区垂直速度厚度与强度,并增强暴雨区低层辐合环流,减弱中层辐散环流,其影响力达到环流强度的30%~50%,有利于维持强烈对流,促进暖区暴雨的发展。   相似文献   

12.
霍飞  江志红  刘征宇 《大气科学》2014,38(2):352-362
本文首先利用最大协方差分析方法,探讨青藏高原积雪与中国降水之间的联系,发现中国夏末秋初(8~10月,简称ASO)降水与前期及同期高原积雪有着显著联系,当春夏季青藏高原西部多雪时,其后ASO中国长江及其以南地区多雨,而东部沿海的狭长区域少雨。进一步引入最大响应估计等方法,研究中国区域降水对高原积雪异常的响应及其可能的物理机制,结果表明,冬春季高原多雪异常可持续到夏季,并通过改变地表热力状况,导致ASO南亚高压减弱,同时在高、低空激发出两支波列:高层200 hPa波列沿中高纬西风急流传播,自高原经蒙古到达日本呈现明显的“负—正—负”位势高度异常传播,日本上空为气旋性异常环流;低层850 hPa波列起于高原,经孟加拉湾至中国南海,沿着西南气流传播,导致台湾附近的反气旋性异常环流,其西侧的偏南气流,将南海丰富的水汽输送至中国南部湖南、广西;而高层中心位于日本的气旋性异常环流西侧的偏北气流利于北方天气尺度扰动向南移动,它们为长江中下游及其以南地区多雨提供了有利条件。进一步计算定常波波数也表明,高层西风急流与低层西南季风气流作为波导,有利于高原上空的扰动沿着高、低空2支通道向东传播。由于东部沿海浙江、福建为正位势高度异常区,低层反气旋性异常环流则抑制了该区域的降水。  相似文献   

13.
本文以850 hPa、200 hPa月平均风场和西太平洋副热带高压脊线北抬至25°N日期资料及福建省25个代表站(县)5—7月的降水资料为基本分析素材。首先标定福建入夏异常的标准与年例,其次揭示850 hPa2、00 hPa 6月风场与异常年例的基本特征,进而探讨了对福建入夏早晚的影响关系。结果表明:在低层索马里-阿拉伯海区的越赤道气流强劲,南海至东亚低纬区域西南风偏大,西太平洋区域低纬度地区南风减弱、东风强劲,且东西风交汇区偏西;而在高层辐合区东风范围偏大,索马里-阿拉伯海区的区域东风风速强劲,青藏高原南侧和副高主体季节性位移的关键区以吹东风为主,东亚区域经向度小,位于青藏高原至我国东部区域范围内,形成一逆时针“距平”风环流;在此高低层风场特征的匹配下,有利于福建提早进入夏季;反之亦然。  相似文献   

14.
Summary Numerical experiments are performed for inviscid flow past an idealized topography to investigate the formation and development of lee mesolows, mesovortices and mesocyclones. For a nonrotating, low-Froude number flow over a bell-shaped moutain, a pair of mesovortices form on the lee slope move downstream and weaken at later times. The advection speed of the lee vortices is found to be about two-thirds of the basic wind velocity, which is due to the existence of a reversed pressure gradient just upstream of the vortices. The lee vortices do not concur with the upstream stagnation point in time, but rather form at a later time. It is found that a pair of lee vortices form for a flow withFr=0.66, but take a longer time to form than in lower-Froude number flows. Since the lee vortices are formed rather progressively, their formation may be explained by the baroclinically-induced vorticity tilting as the mountain waves become more and more nonlinear.A stationary mesohigh and mesolow pressure couplet forms across the mountain and is produced in both high and low-Froude number flows. The results of the high Froude number simulations agree well with the classical results predicted by linear, hydrostatic mountain wave theory. It is found that the lee mesolow is not necessarily colocated with the lee vortices. The mesolow is formed by the downslope wind associated with the orographically forced gravity waves through adiabatic warming. The earth's rotation acts to strengthen (weaken) the cyclonic (anticyclonic) vortex and shifts the lee mesolow to the right for an observer facing downstream. The cyclonic vortex then develops into a mesocyclone with the addition of planetary vorticity at later times. For a flow over a steeper mountain, the disturbance is stronger even though the Froude number is kept the same.For a southwesterly flow past the real topography of Taiwan, there is no stagnation point or lee vortices formed because the impinging angle of the flow is small. A major mesoscale low forms to the southeast of the Central Mountain Range (CMR), while a mesohigh forms upstream. For a westerly flow past Taiwan, a stagnation point forms upstream of the mountain and a pair of vortices form on the lee and move downstream at later times. The cyclonic vortex then develops into a mesocyclone. A mesolow also forms to the southeast of Taiwan. For a northeasterly flow past Taiwan, the mesolow forms to the northwest of the mountain. Similar to flows over idealized topographies, the Taiwan mesolow is formed by the downslope wind associated with mountain waves through adiabatic warming. A conceptual model of the Taiwan southeast mesolow and mesocyclone is proposed.With 16 Figures  相似文献   

15.
横断山脉中西部降水的季节演变特征   总被引:3,自引:2,他引:1  
肖潺  宇如聪  原韦华  李建 《气象学报》2013,71(4):643-651
利用台站观测逐日降水资料,对横断山脉中西部地区的降水季节演变特征进行了分析,发现该地区降水具有独特的季节变化特征:雨季开始早,从第10候前后降水开始迅速增加,至第19候前后就达到第1个峰值;雨季时间长,从第10候前后雨季开始,至第60候雨季结束,雨季持续长达8个月;多峰值特征明显,雨季先后经历3个降水峰值,分别在第19、35、55候前后.通过再分析资料对这一地区风场的季节变化进行分析发现,这些降水的季节演变特征与这一地区独特地形下风场季节演变密不可分.雨季开始早与第10候起低层西风、南风迅速加强,特别是西风加强有关;第2、3个降水峰值则与西南风,特小,降水主要受西风系统影响,与西风系统的季节变化密切相关;而第2、3个降水峰值分别发生在西太平洋副热带高压西伸、东退进程中,位势高度场东高西低,降水主要受西南风控制,并伴有南风辐合,与南风的季节变化相关.别是经向南风增强有关.对3个降水峰值时刻的环流背景进行了分析,第1个降水峰值发生时,位势高度东西方向水平差异  相似文献   

16.
天津地区两次副高边缘特大暴雨过程的多尺度对比分析   总被引:2,自引:0,他引:2  
利用常规观测资料、加密自动站资料、NCEP 1°×1°再分析资料、卫星云图资料、多普勒天气雷达资料和雷达变分同化分析系统(VDRAS)资料、风廓线资料,对2012年7月21—22日和25—26日两次特大暴雨过程(分别简称"7·21"过程和"7·25"过程)进行对比分析。结果表明:(1)"7·21"过程的主要影响系统是低槽和地面冷锋,暴雨发生前,其动力条件较好;而"7·25"过程属于槽前暖区降水,其发生前热力不稳定条件较好。(2)两次过程中,台风"韦森特"顶部的东南气流与副高边缘的偏南气流共同构成了这两次华北暴雨的水汽通道,但两支气流辐合的位置不同。(3)"7·21"过程在冷空气侵入后,槽前辐合明显,对流组织性加强,而"7·25"过程主要是由中低层南风风速辐合导致;两次过程的维持机制均与雷暴高压的出流与偏南气流辐合有关;"7·21"过程中尺度对流系统伴随着高空槽系统的东移南压,自西北向东南方向移动,而"7·25"过程中尺度对流系统则是在西南气流引导下,自西南向东北移动。  相似文献   

17.
This study investigates influencing weather systems for and the effect of Tibetan Plateau (TP)’s surface heating on the heavy rainfall over southern China in June 2010, focusing on the four persistent heavy rainfall events during 14-24 June 2010. The ma jor weather systems include the South Asian high, midlatitude trough and ridge, western Pacific subtropical high in the middle troposphere, and shear lines and eastward-moving vortices in the lower troposphere. An ensemble of convection-permitting simulations (CTL) is carried out with the WRF model for these rainfall events, which successfully reproduce the observed evolution of precipitation and weather systems. Another ensemble of simulations (SEN) with the surface albedo over the TP and its southern slope changed artificially to one, i.e., the surface does not absorb any solar heating, otherwise it is identical to CTL, is also performed. Comparison between CTL and SEN suggests that the surface sensible heating of TP in CTL significantly affects the temperature distributions over the plateau and its surroundings, and the thermal wind adjustment consequently changes atmospheric circulations and properties of the synoptic systems, leading to intensified precipitation over southern China. Specifically, at 200 hPa, anticyclonic and cyclonic anomalies form over the western and eastern plateau, respectively, which enhances the southward cold air intrusion along the eastern TP and the divergence over southern China;at 500 hPa, the ridge over the northern plateau and the trough over eastern China are strengthened, the southwesterly flows along the northwestern side of the subtropical high are intensified, and the positive vorticity propagation from the plateau to its downstream is also enhanced significantly;at 850 hPa, the low-pressure vortices strongly develop and move eastward while the southwesterly low-level jet over southern China strengthens in CTL, leading to increased water vapor convergence and upward motion over the precipitation region.  相似文献   

18.
2010年6月中国南方发生持续性强降水,其强度与2008年6月相当,超过近年来其他年份。但是,与2008年6月相比,2010年6月对流层中低层低值系统活动在青藏高原至长江中下游地区异常频繁,副热带高压(副高)位置异常偏西、强度偏强,导致低层异常风场辐合区及强降水区域相对偏北。分析2010年6月14—24日中国南方连续出现的4次持续性强降水过程,发现南亚高压、对流层中层的中纬度槽脊和西太平洋副高以及低层切变线和东移低涡是造成持续性强降水的主要天气系统。利用WRF模式对2010年6月强降水过程实施显式对流集合模拟试验,在控制试验重现观测到的地面降水和天气系统特征的基础上,在敏感性试验中将青藏高原的地表短波反照率修改为1.0,对比两组模拟试验的结果表明:控制试验中青藏高原的地表感热加热作用使得高原及其周边地区的大气温度发生变化,相应的热成风平衡调整使得对流层低层至高层大气环流和天气系统特征发生显著变化,增强了中国南方的持续性降水。200 hPa青藏高原西部形成反气旋性环流异常,东部形成气旋性环流异常,青藏高原东部南下的冷空气加强,中国南方辐散增强;500 hPa青藏高原北部的脊加强,中国东部的槽加深,副高西北侧的西南风明显增强,从青藏高原向下游传播的正涡度也显著加强;850 hPa的低涡强烈发展并逐步东移,华南沿海的西南低空急流更为强盛,导致降水区的水汽辐合、上升运动及降水强度都增强。  相似文献   

19.
颜玲  周玉淑  刘宣飞 《大气科学》2017,41(2):289-301
利用NCEP/NCAR(美国国家环境预报中心/国家大气研究中心)的全球预报系统(GFS)再分析资料、欧洲气象中心(ERA-interim)资料以及中国气象局观测站点的实况降水观测结合CMORPH卫星反演降水资料,对2014年第10号台风Matmo生成后西北行并登陆台湾及福建过程中的特征进行了分析,揭示出Matmo移动路径主要受西太平洋副热带高压(简称西太副高)外围引导气流影响。动、热力物理量场分析表明,Matmo在登陆福建前后,福建上空一直维持深厚的涡旋结构,福建东南部上空的上升区与台湾海峡及福建西部附近的下沉运动区形成明显的垂直环流圈。同时,南海上空有明显的西南急流(风速大于16 m s-1),Matmo的水汽来源主要有两条,分别为孟加拉湾和南海以及西太副高南侧。充足的水汽输送及低层水汽辐合抬升有利于Matmo登陆后的强降水发生和维持。Matmo登陆福建后仍然保持低层辐合、高层辐散,有利于持续暴雨的发生。Matmo登陆福建期间始终处于风速垂直切变小值区(小于9 m s-1)中,环境风速的弱垂直切变有利于Matmo暖心结构及高空辐散形势的维持,是Matmo在登陆后依然能维持自身强度不衰减的原因之一。  相似文献   

20.
利用1981—2000年候平均NCEP/NCAR再分析资料和CMAP全球降水资料,分析了从中国东部大陆到西太平洋副热带地区季风和降水季节变化的特征及其与热带季风降水的关系,探讨了季风建立和加强的原因。夏季东亚—西太平洋盛行的西南风开始于江南和西太平洋副热带的春初,并向北扩展到中纬度,热带西南风范围向北扩展的迹象不明显。从冬到夏,中国西部和西太平洋副热带的表面加热季节变化可以使副热带对流层向西的温度梯度反转比热带早,使西南季风在副热带最早开始;从大气环流看,青藏高原东侧低压槽的加强和向东延伸,以及西太平洋副热带高压的加强和向西移动,都影响着副热带西南季风的开始和发展;初夏江南的南风向北扩展与副热带高压向北移动有关,随着高原东侧低压槽向南延伸,槽前的偏南风范围向南扩展。随着副热带季风建立和向北扩展,其最大风速中心前方的低层空气质量辐合和水汽辐合以及上升运动也加强和向北移动,导致降水加强和雨带向北移动。热带季风雨季开始晚,主要维持在热带而没有明显进入副热带,江淮梅雨不是由热带季风雨带直接向北移动而致,而是由春季江南雨带北移而致。在热带季风爆发前,副热带季风区水汽输送主要来自中南半岛北部和中国华南沿海,而在热带季风爆发后,水汽输送来自孟加拉湾和热带西太平洋。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号