首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dense water formation and circulation in the Barents Sea   总被引:1,自引:0,他引:1  
Dense water masses from Arctic shelf seas are an important part of the Arctic thermohaline system. We present previously unpublished observations from shallow banks in the Barents Sea, which reveal large interannual variability in dense water temperature and salinity. To examine the formation and circulation of dense water, and the processes governing interannual variability, a regional coupled ice-ocean model is applied to the Barents Sea for the period 1948-2007. Volume and characteristics of dense water are investigated with respect to the initial autumn surface salinity, atmospheric cooling, and sea-ice growth (salt flux). In the southern Barents Sea (Spitsbergen Bank and Central Bank) dense water formation is associated with advection of Atlantic Water into the Barents Sea and corresponding variations in initial salinities and heat loss at the air-sea interface. The characteristics of the dense water on the Spitsbergen Bank and Central Bank are thus determined by the regional climate of the Barents Sea. Preconditioning is also important to dense water variability on the northern banks, and can be related to local ice melt (Great Bank) and properties of the Novaya Zemlya Coastal Current (Novaya Zemlya Bank). The dense water mainly exits the Barents Sea between Frans Josef Land and Novaya Zemlya, where it constitutes 63% (1.2 Sv) of the net outflow and has an average density of 1028.07 kg m−3. An amount of 0.4 Sv enters the Arctic Ocean between Svalbard and Frans Josef Land. Covering 9% of the ocean area, the banks contribute with approximately 1/3 of the exported dense water. Formation on the banks is more important when the Barents Sea is in a cold state (less Atlantic Water inflow, more sea-ice). During warm periods with high throughflow more dense water is produced broadly over the shelf by general cooling of the northward flowing Atlantic Water. However, our results indicate that during extremely warm periods (1950s and late 2000s) the total export of dense water to the Arctic Ocean becomes strongly reduced.  相似文献   

2.
Cold deep water in the South China Sea   总被引:1,自引:0,他引:1  
Two deep channels that cut through the Luzon Strait facilitate deep (>2000 m) water exchange between the western Pacific Ocean and the South China Sea. Our observations rule out the northern channel as a major exchange conduit. Rather, the southern channel funnels deep water from the western Pacific to the South China Sea at the rate of 1.06 ± 0.44 Sv (1 Sv = 106 m3s−1). The residence time estimated from the observed inflow from the southern channel, about 30 to 71 years, is comparable to previous estimates. The observation-based estimate of upwelling velocity at 2000 m depth is (1.10 ± 0.33) × 10−6 ms−1, which is of the same order as Ekman pumping plus upwelling induced by the geostrophic current. Historical hydrographic observations suggest that the deep inflow is primarily a mixture of the Circumpolar Deep Water and Pacific Subarctic Intermediate Water. The cold inflow through the southern channel offsets about 40% of the net surface heat gain over the South China Sea. Balancing vertical advection with vertical diffusion, the estimated mean vertical eddy diffusivity of heat is about 1.21 × 10−3 m2s−1. The cold water inflow from the southern channel maintains the shallow thermocline, which in turn could breed internal wave activities in the South China Sea.  相似文献   

3.
热带太平洋海温异常对北极海冰的可能影响   总被引:1,自引:1,他引:0  
本文利用1950-2015年间Hadley环流中心海冰和海温资料及NCEP/NCAR再分析资料,研究了热带太平洋海温异常对北极海冰的可能影响,并从大气环流和净表面热通量两个角度探讨了可能的物理机制。结果表明,在ENSO事件发展年的夏、秋季节,EP型与CP型El Niño事件与北极海冰异常的联系无明显信号。而La Niña事件期间北极海冰出现显著异常,并且EP型与CP型La Niña之间存在明显差异。EP型La Niña发生时,北极地区巴伦支海、喀拉海关键区海冰异常减少,CP型La Niña事件则对应着东西伯利亚海、楚科奇海地区海冰异常增加。在EP型La Niña发展年的夏、秋季节,热带太平洋海温异常通过遥相关波列,使得巴伦支海、喀拉海海平面气压为负异常并与中纬度气压正异常共同构成类似AO正位相的结构,形成的风场异常有利于北大西洋暖水的输入,同时造成暖平流,偏高的水汽含量进一步加强了净表面热通量收入,使得巴伦支海、喀拉海海冰异常减少。而在CP型La Niña发展年的夏季,东西伯利亚海、楚科奇海关键区受其东侧气旋式环流的影响,以异常北风分量占主导,将海冰从极点附近由北向南输送到关键区,海冰异常增加,而净表面热通量的作用较小。  相似文献   

4.
The Atlantic inflow in the Fram Strait(78°50′N) has synoptic scale variability based on an array of moorings over the period of 1998–2010. The synoptic scale variability of Atlantic inflow, whose significant cycle is 3–16 d, occurs mainly in winter and spring(from January to April) and is related with polar lows in the Barents Sea. On the synoptic scale, the enhancement(weakening) of Atlantic inflow in the Fram Strait is accompanied by less(more)polar lows in the Barents Sea. Wind stress curl induced by polar lows in the Barents Sea causes Ekman-transport,leads to decrease of sea surface height in the Barents Sea, due to geostrophic adjustment, further induces a cyclonic circulation anomaly around the Barents Sea, and causes the weakening of the Atlantic inflow in the Fram Strait. Our results highlight the importance of polar lows in forcing the Atlantic inflow in the Fram Strait and can help us to further understand the effect of Atlantic warm water on the change of the Arctic Ocean.  相似文献   

5.
Atlantic Water flow through the Barents and Kara Seas   总被引:2,自引:0,他引:2  
The pathway and transformation of water from the Norwegian Sea across the Barents Sea and through the St. Anna Trough are documented from hydrographic and current measurements of the 1990s. The transport through an array of moorings in the north-eastern Barents Sea was between 0.6 Sv in summer and 2.6 Sv in winter towards the Kara Sea and between zero and 0.3 Sv towards the Barents Sea with a record mean net flow of 1.5 Sv. The westward flow originates in the Fram Strait branch of Atlantic Water at the Eurasian continental slope, while the eastward flow constitutes the Barents Sea branch, continuing from the western Barents Sea opening.About 75% of the eastward flow was colder than 0°C. The flow was strongly sheared, with the highest velocities close to the bottom. A deep layer with almost constant temperature of about −0.5°C throughout the year formed about 50% of the flow to the Kara Sea. This water was a mixture between warm saline Atlantic Water and cold, brine-enriched water generated through freezing and convection in polynyas west of Novaya Zemlya, and possibly also at the Central Bank. Its salinity is lower than that of the Atlantic Water at its entrance to the Barents Sea, because the ice formation occurs in a low salinity surface layer. The released brine increases the salinity and density of the surface layer sufficiently for it to convect, but not necessarily above the salinity of the Atlantic Water. The freshwater west of Novaya Zemlya primarily stems from continental runoff and at the Central Bank probably from ice melt. The amount of fresh water compares to about 22% of the terrestrial freshwater supply to the western Barents Sea. The deep layer continues to the Kara Sea without further change and enters the Nansen Basin at or below the core depth of the warm, saline Fram Strait branch. Because it is colder than 0°C it will not be addressed as Atlantic Water in the Arctic Ocean.In earlier decades, the Atlantic Water advected from Fram Strait was colder by almost 2 K as compared to the 1990s, while the dense Barents Sea water was colder by up to 1 K only in a thin layer at the bottom and the salinity varied significantly. However, also with the resulting higher densities, deep Eurasian Basin water properties were met only in the 1970s. The very low salinities of the Great Salinity Anomaly in 1980 were not discovered in the outflow data. We conclude that the thermal variability of inflowing Atlantic water is damped in the Barents Sea, while the salinity variation is strongly modified through the freshwater conditions and ice growth in the convective area off Novaya Zemlya.  相似文献   

6.
根据中国近海高分辨率 ( 1 / 6°)环流模式的模拟结果 ,计算了南沙邻近海域与外海之间的海水体积、热量和盐量输运及其对印度尼西亚贯穿流的贡献。研究海域为 0°— 1 4°N的整个南海南部海域。计算得出 ,穿过研究海域流向印度尼西亚海域 ,最终流向印度洋的年平均体积、热量和盐量输运分别为 5 .2Sv( 1Sv =1× 1 0 6m3·s- 1 )、0 .5 7PW和 1 84Gg·s- 1 ,大约占印度尼西亚贯穿流相应输运量的 1 / 4。这一结果表明南海是全球大传送带这一全球海洋最主要热盐环流系统的重要通道之一。从南海流向印度尼西亚海域的通道以卡里马塔海峡为最主要 ,以下依次为巴拉巴克海峡、民都洛海峡和马六甲海峡。大的南向通量主要发生在冬、秋季 ,春末夏初总的通量向北。计算还得出输入本海区的热输运量比输出少 0 .0 64PW ,由这一结果推得 ,通过海 -气界面由大气进入海洋的年平均净热通量约为 30W·m- 2 。  相似文献   

7.
Oceanographic data from the regional data bank, covering a period from 1911 through to 1990, in combination with the climatic tangential wind stress data have been applied to determine the historical fields of summary currents in the north-western tropical Atlantic; currents of the major circulation elements in the active layer have been specified. It has been confirmed that a significant, in terms of climate, transport of surface and subsurface waters by the geostrophic component of the North Brazil current (NBC) to the northern tropical Atlantic does not take place. North-west of 2oN and 45o W, the current turns eastward, thus contributing to the generation of the equatorial countercurrent. The transport of the NBC within a 0–500 m layer near 1o N has been evaluated to be equivalent to 50 Sv, and the mean annual transport of the equatorial countercurrent to 30 Sv. Translated by Vladimir A. Puchkin.  相似文献   

8.
The northward outflow of cold, dense water from the Weddell Sea into the world ocean basins plays a key role in balancing the global heat budget. We estimate the geostrophic flow patterns in the northwestern Weddell Sea using box inverse methods applied to quasi-synoptic hydrographic data collected during the Brazilian DOVETAIL 2000 and 2001 austral summer cruises. The analysis is focused on the variations of the deep Weddell Sea outflow into the Scotia Sea within boxes that bound the main deep gaps over the South Scotia Ridge. To determine the geostrophic volume transports in each box, mass, salt, and heat are conserved within neutral density layers that are not in contact with the atmosphere. Implementing the inverse model and using property anomaly equations weighted by the flow estimate uncertainty our results are consistent with those reported in the literature. A bottom triangle extrapolation method is introduced, which improves the estimated property fluxes through hydrographic sections. In the austral summer of 2000 the transports of Weddell Sea Deep Water (WSDW) through the Philip Passage, Orkney Passage, and southwestern Bruce Passage are 0.01±0.01, 1.15±0.33, and 1.03±0.23 Sv (1 Sv=106 m3 s−1, >0 is northward), respectively. After extrapolation within bottom triangles these transports increase to 0.12±0.03, 3.48±1.81, and 1.20±2.16 Sv. Analysis of the hydrographic data reveal distinct oceanographic conditions over the Philip Passage region, with evidence of mesoscale meanders, warmer and saltier Warm Deep Water (WDW) and colder WSDW observed in 2001 than in 2000. Despite these differences the WSDW transport does not present a significant variation between 2000 and 2001. The WSDW transports through the Philip Passage in 2001 are 0.012±0.001 and 0.113±0.001 Sv after extrapolation within bottom triangles. The circulation derived from the inversion in the austral summer of 2001 suggests a sharp weakening of the barotropic cyclonic flow in the Powell Basin, which may be due to northerly and northeasterly winds associated with an atmospheric low-pressure center located west of the Antarctic Peninsula. We suggest that similar variations in atmospheric forcing may explain changes in the intensity of the cyclonic flow observed in the northwestern Weddell Sea and Powell Basin.  相似文献   

9.
We analyze the space-and-time variability of the meridional heat transport in the North Atlantic. The contribution of various mechanisms to the integral meridional heat transport (MHT) is estimated. The key role played by the drift transport of the Tropical Atlantic in the formation of the meridional oceanic heat transport is confirmed. On the basis of the general analysis of estimations obtained by various authors according to the data accumulated for 1870–2008 and the results of numerical analyses based on the data of NCEP/NCAR reanalysis, we show that the long-term average meridional drift heat (mass) transport attains its maximum values equal to (1.6 ± 0.1) PW [(17.4 ± 1.5) Sv] in the vicinity of 12.5°N in the Tropical Atlantic. The contribution of the heat transport caused by the horizontal Sverdrup circulation to the integral meridional heat transport is maximum in the vicinity of 30° N. On the average, it is equal to ∼ 40%. In the Subtropical Atlantic, the meridional heat transport varies with a period of ∼ 50–70 yr. The minimum value of the integral meridional heat transport was attained in the mid-1960s and its maximum value was at attained at the beginning of the 1990s. The location of the center of Azores pressure maximum makes it possible to conclude that the intensification of the total meridional heat transport in the Subtropical Atlantic on these time scales is accompanied by the displacement of the center of the North Subtropical anticyclonic gyre in the southwest direction.  相似文献   

10.
The character of the water exchange in the Denmark Strait for the period of 1958–2006 is studied based on the results of the numerical experiments using the model of the ocean circulation developed at the Institute of Numerical Mathematics of the Russian Academy of Sciences with a resolution of 0.25 degrees in latitude and longitude with 27 vertical levels. The calculations were performed for the North Atlantic area from 30° S, including the Arctic Ocean and the Bering Sea. The width of the Denmark Strait at 66° N is about 650 km, and the depth is approximately 550 m. The fields of the temperature, salinity, and density and the components of the current velocities were simulated. In this period, the average overflow of dense waters with the conventional potential density σ0 > 27.80 to the North Atlantic through the Denmark Strait was 1.86 ± 0.96 Sv, and, for the nearbottom and intermediate waters with σ0 > 27.50, it was 3.84 ± 1.31 Sv. The maximum values of the overflow transport through the strait were recorded in 1962, 1972, 1983, 1990, and 2000. Exactly these years showed the highest values of the North Atlantic oscillation (NAO) index. This fact confirms the domination of the decadal variability of the hydrogeological processes in the North Atlantic. The model section of the current velocity through the strait showed the occurrence of at least four well marked jets that vertically occupy the entire sectional area from the surface to the bottom. The two jets divided by a northward jet at the strait’s middle move southward along the Greenland slope. The northward current along Iceland is also identified. This structure of the currents is also supported by the analysis of the observed variability of the absolute topography of the ocean’s surface.  相似文献   

11.
A finite-difference quasigeostrophic (QG) model of an open ocean region has been employed to produce a dynamically constrained synthesis of acoustic tomography and satellite altimetry data with in situ observations. The assimilation algorithm is based upon the 4D variational data interpolation scheme controlled by the model's initial and boundary conditions. The data sets analyzed include direct and differential travel times measured at the array of five acoustic transceivers deployed by JAMSTEC in the region of the Kuroshio Extension in 1997, Topex/Poseidon altimetry, CTD soundings, and ADCP velocity profiles. The region monitored is located within the area 27.5°–36.5°N, 143°–155°. The results of assimilation show that mesoscale variability can be effectively reconstructed by five transceivers measuring direct and reciprocal travel times supported by relatively sparse in situ measurements. The misfits between model and data lie within the observational error bars for all the data types used in assimilation. We have compared the results of assimilation with the statistical inversion of travel time data and analyzed energy balances of the optimized model solution. Energy exchange between the depth-averaged and shear components of the observed currents reveals a weak decay of the barotropic mode at the rate of 0.2 ± 0.7⋅10−5 cm2/s3 due to topographic interaction. Mean currents in the region are unstable with an estimate of the available potential energy flux from the mean current to the eddies of 4.7 ± 2.3⋅10−5 cm2/s3. Kinetic energy transition has the same sign and is estimated as 2.8 ± 2.5⋅10−5 cm2/s3. Potential enstrophy is transferred to the mesoscale at a rate of 5.5 ± 2.7⋅10−18 s−3. These figures provide observational evidence of the properties of free geostrophic turbulence which were predicted by theory and observed in numerical experiments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The Arctic Mediterranean is important for climate studies because of its unique thermodynamic characteristics and its potential role in freshwater export, which would influences air-sea and ice-sea interactions and may change the North Atlantic thermohaline circulation. It is difficult to obtain consistent and complete estimates of heat and freshwater budgets due to sparse observation. In this paper, we use a coupled Arctic ocean/sea-ice model with NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data, long-term gauged river runoff data, precipitation data and estimates of volume transports to examine heat and freshwater budgets and pathways in dynamically and thermodynamically consistence. The model implements Neptune effect, flux-corrected-transport algorithm and more sophisticated treatments of heat and freshwater fluxes. Uncertainties and deficiencies in the modeling were also evaluated. Results indicate that the Arctic Ocean is provided heat mainly from the Fram Strait branch of Atlantic water at about 46 TW, which is within the range in literature. The Barents Sea branch carries about 43 TW of net heat entering the Barents Sea, but only 2 TW of net heat enters the Arctic Ocean. The Atlantic water is significantly modified in the Barents Sea. About 39 TW of heat is lost, which is consistent with the range of estimates by Simonsen and Haugan (1996). The model suggests 79,422 km3 of freshwater storage mainly distributing the Canada Basin, the Beaufort Sea and the Eurasian coast, which is in a good agreement with estimate by Aagaard and Carmack (1989). Freshwater origins from river runoff, precipitation and the Bering Strait throughflow. Liquid freshwater mainly exports via the Canadian Archipelago and Fram Strait at the rates of 3100 km3/yr and 1400 km3/yr. Sea-ice is dominantly transported through Fram Strait with 1923 km3/yr. Model discrepancies exist and climate drift is clear, which require comprehensive physical treatments of mixing processes and dense water processes in the model.  相似文献   

13.
利用非Boussinesq近似下MOM4p1的全球大洋环流预后模式,采用真实地形,以静止状态为初始条件,进行了1 400a积分,以研究平衡状态下大洋环流的结构。模式由月平均气候态强迫场驱动,包括192×189个水平网格和压力坐标下的31个垂直层次。着重研究达到平衡状态后,各洋际通道处的质量、热量输运和补偿及其在全球大洋环流中的作用。根据动能演变特征表明,积分过程分为3个阶段:风海流的成长及准稳定状态;热盐环流的成长过程以及热盐环流的稳定状态;由静止状态冷启动达到热盐环流的稳定状态,积分过程必须在千年以上。模式结果再现了从白令海峡到格陵兰海的北冰洋贯穿流和印度尼西亚贯穿流,并用已有观测资料对它们进行对比。分析表明,海面的倾斜结构是形成太平洋-北冰洋-大西洋贯穿流和印尼贯穿流的主要动力机制。分析指出,尽管在北大西洋存在1.4×106 m3/s的南向体积输运,但其热量输运却是北向的并达到1015 W量级,其原因是北向的上层海流温度远高于北大西洋深层水向南的回流。文章分析了经向体积和热量输运对北大西洋深层水补偿来源及大西洋经向翻转环流的贡献。模拟所得洋际交换的量值可以由经向补偿予以合理解释,并得到以往实测与数模结果的支持。洋际通道处的体积和热量交换突出体现了其在大洋传送带系统中的枢纽作用。  相似文献   

14.
The circulation and hydrography of the north-eastern North Atlantic has been studied with an emphasis on the upper layers and the deep water types which take part in the thermohaline overturning of the Oceanic Conveyor Belt. Over 900 hydrographic stations were used for this study, mainly from the 1987–1991 period. The hydrographic properties of Subpolar Mode Water in the upper layer, which is transported towards the Norwegian Sea, showed large regional variation. The deep water mass was dominated by the cold inflow of deep water from the Norwegian Sea and by a cyclonic recirculation of Lower Deep Water with a high Antarctic Bottom Water content. At intermediate levels the dominating water type was Labrador Sea Water with only minor influence of Mediterranean Sea Water. In the permanent pycnocline traces of Antarctic Intermediate Water were found.Geostrophic transports have been estimated, and these agreed in order of magnitude with the local heat budget, with current measurements, with data from surface drifters, and with the observed water mass modification. A total of 23 Sv of surface water entered the region, of which 20 Sv originated from the North Atlantic Current, while 3 Sv entered via an eastern boundary current. Of this total, 13 Sv of surface water left the area across the Reykjanes Ridge, and 7 Sv entered the Norwegian Sea, while 3 Sv was entrained by the cold overflow across the Iceland-Scotland Ridge. Approximately 1.4 Sv of Norwegian Sea Deep Water was involved in the overflow into the Iceland Basin, which, with about 1.1 Sv of entrained water and 1.1 Sv recirculating Lower Deep Water, formed a deep northern boundary current in the Iceland Basin. At intermediate depths, where Labrador Sea Water formed the dominant water type, about 2 Sv of entrained surface water contributed to a saline water mass which was transported westwards along the south Icelandic slope.  相似文献   

15.
The Climatic variability of the seasonal water exchange in the Strait of Gibraltar and the spatial structure of the tongue of the Mediterranean Waters (MW) in the Atlantic Ocean are studied. The analysis is based on the results of a numerical experiment using a 3D ocean circulation model developed at the Institute of Computational Mathematics (ICM RAS) with a resolution of the dataset over the latitude and longitude equal to 0.25 degree. The seasonal evolution of the salinity and density fields is calculated in the North Atlantic (from 20 °S, including the Mediterranean Sea) and in the Arctic Ocean (including the Bering Sea). The comparison of the model estimates with the results of field observations demonstrated good agreement. The transport of the MW into the Atlantic is close to the observed data (during the year, it varies from 1.8 Sv in the winter to 0.9 Sv in the summer). The complex pattern of the currents in the region of the MW spreading is confirmed. The alternating character of the saline MW tongue at the 1000-m level is shown for the first time. It is found that the zones of maximum salinities in the open part of the ocean coincide with the main trajectories of migration of MW lenses and the regions of their decomposition.  相似文献   

16.
This study deals with the inflow of warm and saline Atlantic water to the Nordic Seas, an important factor for climate, ecology and biological production in Northern Europe. The investigations are carried out along the Svinøy standard hydrographic section, which cuts through the Atlantic inflow to the Norwegian Sea just to the north of the Faroe–Shetland Channel. In the Svinøy section, we consider the Atlantic inflow as water with salinity above 35.0, corresponding to temperatures above 5°C. Current measurements for the period April 1995 to February 1999, positioned on the continental slope in water depths between 490 and 990 m, are combined with VM-ADCP, SeaSoar-CTD and CTD transects to estimate long-term transports and spatial features of the Atlantic inflow. A well-defined two-branched Norwegian Atlantic Current was revealed with an eastern and a western branch. The eastern branch appears as a narrow, topographically trapped, near barotropic, 30–50 km wide current, with a maximum speed of 117 cm/s. The western branch is also about 30–50 km wide, and appears as an unstable frontal jet about 400 m deep with a maximum speed of 87 cm/s. Between these two prominent branches, the observations show an average eddy field with a recirculation to the southwest. Transport estimates from the current records in the eastern branch show an annual mean inflow of 4.2 Sv (1 Sv=106 m3/s) with variation on a 25 h time scale ranging from −2.2 to 11.8 Sv, and between 2.0 and 8.0 Sv on a monthly time scale. The current record in the core of the eastern branch mirrors the estimated transport on a monthly time scale with a correlation coefficient of 0.86. Except for the year 1995–1996, this nearly four-year current record shows evidence of a systematic annual cycle with summer to winter variations in the proportion of 1 to 2. Comparison between the North Atlantic Oscillation (NAO) index and the current record on a three-month time scale shows a strong connection for most of the period. This reflects the strong coupling between the westerly winds and the inflow. The baroclinic transport west of the eastern branch, including the frontal jet, is inferred from hydrography in combination with VM-ADCP transects, and has a total mean of 3.4 Sv. Thus, investigations to date indicate a yearly mean Atlantic inflow of 7.6 Sv in the Svinøy section.  相似文献   

17.
In order to examine the formation, distribution and synoptic scale circulation structure of North Pacific Intermediate Water (NPIW), 21 subsurface floats were deployed in the sea east of Japan. A Eulerian image of the intermediate layer (density range: 26.6–27.0σθ) circulation in the northwestern North Pacific was obtained by the combined analysis of the movements of the subsurface floats in the period from May 1998 to November 2002 and historical hydrographic observations. The intermediate flow field derived from the floats showed stronger flow speeds in general than that of geostrophic flow field calculated from historical hydrographic observations. In the intermediate layer, 8 Sv (1 Sv ≡ 106 m3s−1) Oyashio and Kuroshio waters are found flowing into the sea east of Japan. Three strong eastward flows are seen in the region from 150°E to 170°E, the first two flows are considered as the Subarctic Current and the Kuroshio Extension or the North Pacific Current. Both volume transports are estimated as 5.5 Sv. The third one flows along the Subarctic Boundary with a volume transport of 5 Sv. Water mass analysis indicates that the intermediate flow of the Subarctic Current consists of 4 Sv Oyashio water and 1.5 Sv Kuroshio water. The intermediate North Pacific Current consists of 2 Sv Oyashio water and 3.5 Sv Kuroshio water. The intermediate flow along the Subarctic Boundary contains 2 Sv Oyashio water and 3 Sv Kuroshio water. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
利用NCEP再分析资料、Hadley中心的海表面温度(SST)资料等,从北大西洋秋季海表面温度异常(SSTA)变化入手,对其影响后期冬季大气环流场的机制进行了分析。研究结果如下:(1)北大西洋SST异常与大气环流异常之间存在着相互作用;(2)秋季北大西洋SSTA具有较好的持续性,"正负正"海温异常空间分布导致12月巴伦支海上空500hPa位势高度异常偏高;(3)异常环流形势对应的海表面风异常场(SSWA)通过阶段性风-蒸发-SST异常反馈机制(WES机制)利于海温异常分布的持续及对上空异常大气环流的反馈;(4)三极子海温结构中负异常海温自10月份开始有自西向东的移动,风作用下蒸发加大,伴随上升运动自欧洲西部爱尔兰群岛出现自西向东移动的降水正异常区,潜热释放有利于冬季巴伦支海上空的异常高压脊发展。研究表明,北大西洋秋季SSTA通过阶段性海气相互作用机制影响海洋温度分布和大气环流异常,对后期冬季中国东北部的气候变化产生影响。  相似文献   

19.
Wind data from NCEP and hydrographic data obtained from August 28 to September 10, 1994 have been used to compute circulation in the northern South China Sea and near Luzon Strait using three-dimensional diagnostic models with a modified inverse method. The numerical results are as follows: the main Kuroshio is located above 400 m levels near Taiwan’s eastern coast and above 800 m levels away from it. Near Luzon Strait above 400 m levels a branch of the Kuroshio joins with a part of the northward current, which comes from an area west of Luzon’s western coast and intrudes northwestward, then it branchs into western and eastern parts near 20°30′ N. The eastern part flows northward into an area east of Taiwan, while its western part continues to intrude northwestward, flowing through an area southwest of Taiwan. Net westward intruded volume transport through longitude Section AB at 121°00′ E from 19°00′ N to 21° 43′ N is about 3.5 × 106 m3s−1 in a layer above 400 m levels. The anticyclonic eddies W1 and W3 exist above 700 m levels east of Dongsha Islands and below 200 m levels in the eastern part of the region, respectively. The circulation in the middle region is dominated mainly by a basin-scale cyclonic gyre, and consists of three cyclonic eddies. Strong upwelling occurs in the middle region. The joint effect of baroclinity and relief and interaction between wind stress and relief both are important for real forcing of flow across contours of fH −1 in effecting the circulation pattern.  相似文献   

20.
The numerical analysis of the stationary field of current velocity on the upper boundary of the bottom boundary layer in the Barents Sea is performed on the basis of a simplified model taking into account the fields of wind velocity and density of water for the principal periods of the seasonal cycle and the bottom topography. The analysis is based on the climatic BarKode database and the data on the wind velocity over the Barents Sea for the last 50 yr. The numerical results demonstrate that the field of bottom currents is fairly nonuniform and the current velocities vary from several fractions of 1 cm/sec to 5 cm/sec in the zones with noticeable slopes of the bottom. The estimates of the thickness of the bottom boundary layer are obtained for the constant coefficient of bottom friction C f = 0.04. In the major part of the water area of the Barents Sea, the thickness of the bottom boundary layer is close to 1 m. In the regions with significant slopes of the bottom, it increases to 2–2.5 m and, in the two zones of intensification of the bottom currents, becomes as large as 5 m. The maximum estimate of the coefficient of turbulent viscosity is close to 5 cm2/sec. The mean value of the coefficient of vertical density diffusion K S is equal to 2.34 cm2/sec and its standard deviation is equal to 1.52 cm2/sec. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 31–49, September–October, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号