首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
北冰洋Gakkel洋中脊的地幔熔融控制因素及非岩浆地壳增生   总被引:3,自引:0,他引:3  
Spreading rate is a primary factor of mantle melting and tectonic behavior of the global mid-ocean ridges. The spreading rate of the Gakkel ridge decreases gradually from west to east. However, the Gakkel ridge can be divided into four thick-and-thin zones with varying crustal thicknesses along ridge axis. This phenomenon indicates that mantle melting of the Gakkel ridge is not a simple function of spreading rate. Mantle temperature, water content,mantle composition, and other factors are important in crustal accretion processes. Based on gravity-derived crustal thickness and wet melting model, we estimate that the mantle potential temperatures of the four zones are1 270, 1 220, 1 280, and 1 280°C(assuming that mantle water content equals to global average value), with corresponding mantle water contents of 210, 0, 340, and 280 mg/kg(assuming that mantle potential temperature is 1 260°C), respectivly. The western thinned crust zone is best modeled with low mantle temperature, whereas the other zones are mainly controlled by the enhanced conduction caused by the slower spreading rate. Along the Gakkel ridge, the crustal thickness is consistent with rock samples types. Predominated serpentinized peridotite and basalt are found in the area with crustal thickness 1.5 km and 2.5 km, respectively. The rock samples are including from basalt to peridotite in the area with crustal thickness between 1.5 and 2.5 km. Based on this consistency, the traditional magmatic accretion zone accounted for only 44% and amagmatic accretion accounted for 29% of the Gakkel ridge. The amagmatic accretion is a significant characteristic of the ultra-slow spreading ridge.  相似文献   

2.
The morphotectonic features and their evolution of the central Southwest Indian Ridge (SWIR) are dis- cussed on the base of the high-resolution flfll-coverage bathyraetric data on the ridge between 49°-51°E. A comparative analysis of the topographic features of the axial and flank area indicates that the axial topogra- phy is alternated by the ridge and trough with en echelon pattern and evolved under a spatial-temporal mi- gration especially in 49°-50.17°E. It is probably due to the undulation at the top of the mantle asthenosphere, which is propagating with the mantle flow. From 50.17° to 50.7°E, is a topographical high terrain with a crust much thicker than the global average of the oceanic crust thickness. Its origin should be independent of the spreading mechanism of ultra-slow spreading ridges. The large numbers of volcanoes in this area indicate robust magmatic activity and may be related to the Crozet hot spot according to RMBA (residual mantle Bouguer anomaly). The different geomorphological feature between the north and south flanks of the ridge indicates an asymmetric spreading, and leading to the development of the OCC (oceanic core complex). The tectonic activity of the south frank is stronger than the north and is favorable to develop the OCC. The first found active hydrothermal vent in the SWIR at 37°47'S, 49°39'E is thought to be associated with the detach- ment fault related to the OCC.  相似文献   

3.
We analyzed seafloor morphology and geophysical anomalies of the Southeast Indian Ridge(SEIR) to reveal the remarkable changes in magma supply along this intermediate fast-spreading ridge. We found systematic differences of the Australian-Antarctic Discordance(AAD) from adjacent ridge segments with the residual mantle Bouguer gravity anomaly(RMBA) being more positive, seafloor being deeper, morphology being more chaotic, M factors being smaller at the AAD. These systematic anomalies, as well as the observed Na_(8.0) being greater and Fe_(8.0) being smaller at AAD, suggest relatively starved magma supply and relatively thin crust within the AAD.Comparing to the adjacent ridges segments, the calculated average map-view M factors are relatively small for the AAD, where several Oceanic Core Complexes(OCCs) develop. Close to 30 OCCs were found to be distributed asymmetrically along the SEIR with 60% of OCCs at the northern flank. The OCCs are concentrated mainly in Segments B3 and B4 within the AAD at ~124°–126°E, as well as at the eastern end of Zone C at ~115°E. The relatively small map-view M factors within the AAD indicate stronger tectonism than the adjacent SEIR segments.The interaction between the westward migrating Pacific mantle and the relatively cold mantle beneath the AAD may have caused a reduction in magma supply, leading to the development of abundant OCCs.  相似文献   

4.
Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc–Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippine Sea Plate beneath the Eurasian Plate since the late Miocene. The tectonic evolution of the trough is similar to other active back-arcs, such as the Mariana Trough and southern Lau Basin, all of which are experiencing the initial rifting and subsequent spreading process. This study reviews all petrologic and geochemical data of mafic volcanic lavas from the Okinawa Trough, Ryukyu Arc, and Philippine Sea Plate, combined with geophysical data to indicate the relationship between the subduction sources(input) and arc or back-arc magmas(output) in the Philippine Sea Plate–Ryukyu Arc–Okinawa Trough system(PROS). The results obtained showed that several components were variably involved in the petrogenesis of the Okinawa Trough lavas: sub-continental lithospheric mantle underlying the Eurasian Plate, Indian mid-oceanic ridge basalt(MORB)-type mantle, and Pacific MORB-type mantle. The addition of shallow aqueous fluids and deep hydrous melts from subducted components with the characteristics of Indian MORB-type mantle into the mantle source of lavas variably modifies the primitive mantle wedge beneath the Ryukyu and subcontinental lithospheric mantle(SCLM) beneath the Okinawa Trough. In the northeastern end of the trough and arc, instead of Indian MORB-type mantle, Pacific MORB-type mantle dominates the magma source. Along the strike of the Ryukyu Arc and Okinawa Trough, the systematic variations in trace element ratios and isotopic compositions reflect the first-order effect of variable subduction input on the magma source. In general, petrologic data, combined with geophysical data, imply that the Okinawa Trough is experiencing the "seafloor spreading" process in the southwest segment, "rift propagation" process in the middle segment, and "crustal extension" process in the northeast segment, and a nascent ocean basin occurs in the southwest segment.  相似文献   

5.
The mineral chemistry and texture of clinopyroxenes in peridotite from the Kingkong tectonic zone of the Southwest Indian Ridge segment in an effort to constrain mantle melting beneath this slow-spreading ridge are reported. There are three types of clinopyroxenes in the abyssal peridotites: coarse-grained, intergranu- lar and exsolved. The compositional variations among these three types suggest that the coarse-grained clinopyroxene is a mantle-derived source. The A1, Na and Ti contents and the Na/Ti ratio of the coarse- grained clinopyroxene may be used to monitor the degree of partial melting, combined with the contradis- tinction with Spinel Cr#, which is calculated to be between 7.9% and 14.9%, and may represent low degrees of melting in the global ocean ridge system. The along-axis compositional variations in the coarse-grained clinopyroxene suggest that the degree of partial melting is primarily controlled by the transform faults on both sides of the ridge. Nonetheless, the northwestern side of the ridge may be affected by a hypothesised detachment fault as documented by the calculated P-T conditions. Simultaneously high Na and low Ti con- tents in the coarse-grained clinoovroxene points to mantle heterogeneities along the ridge axis.  相似文献   

6.
The models about lithospheric thickness and thermal conduction inside the lithosphere and the top layer ofthe asthenosphere have been proposed in this study for four type regions: the midoceanic ridge, the extinct spreading ridge, the lithospheric fault fissure and the mouth of the extinct submarine volcanoes which are in deep sea bottom. The solutions of the models are found to be the same. The formulas of temperature distribution inside the lithosphere and the top layer of the asthenosphere, the lithospheric thicknesses to the heat flow and the crustal ages to the heat flow are obtained. The crustal ages and the lithospheric thicknesses of the central basin are calculated. And they are used to draw the lithospheric thicknesses and crustal ages maps of the central basin (in this paper both the central basin and the basin are the central basin of the South China Sea). According to their characteristics, the central basin is divided into three regions. The lithospheric thicknesses, crustal ages and heat flow distribution characteristics are discussed respectively. The formation and evolution of the South China Sea are analysed and it is thought that the South China Sea has undergone three episode-seafloor spreadings.  相似文献   

7.
Interannual variability(IAV) in the barrier layer thickness(BLT) and forcing mechanisms in the eastern equatorial Indian Ocean(EEIO) and Bay of Bengal(BoB) are examined using monthly Argo data sets during 2002–2017. The BLT during November–January(NDJ) in the EEIO shows strong IAV, which is associated with the Indian Ocean dipole mode(IOD), with the IOD leading the BLT by two months. During the negative IOD phase, the westerly wind anomalies driving the downwelling Kelvin waves increase the isothermal layer depth(ILD). Moreover, the variability in the mixed layer depth(MLD) is complex. Affected by the Wyrtki jet, the MLD presents negative anomalies west of 85°E and strong positive anomalies between 85°E and 93°E. Therefore, the BLT shows positive anomalies except between 86°E and 92°E in the EEIO. Additionally, the IAV in the BLT during December–February(DJF) in the BoB is also investigated. In the eastern and northeastern BoB, the IAV in the BLT is remotely forced by equatorial zonal wind stress anomalies associated with the El Ni?o-Southern Oscillation(ENSO). In the western BoB, the regional surface wind forcing-related ENSO modulates the BLT variations.  相似文献   

8.
白垩纪以来太平洋上地幔组成和温度变化   总被引:1,自引:0,他引:1  
The geological evolution of the Earth during the mid-Cretaceous were shown to be anomalous, e.g., the pause of the geomagnetic field, the global sea level rise, and increased intra-plate volcanic activities, which could be attributed to deep mantle processes. As the anomalous volcanic activities occurred mainly in the Cretaceous Pacific, here we use basalt chemical compositions from the oceanic drilling(DSDP/ODP/IODP) sites to investigate their mantle sources and melting conditions. Based on locations relative to the Pacific plateaus, we classified these sites as oceanic plateau basalts, normal mid-ocean ridge basalts, and near-plateau seafloor basalts. This study shows that those normal mid-ocean ridge basalts formed during mid-Cretaceous are broadly similar in average Na8, La/Sm and Sm/Yb ratios and Sr-Nd isotopic compositions to modern Pacific spreading ridge(the East Pacific Rise). The Ontong Java plateau(125–90 Ma) basalts have distinctly lower Na8 and143Nd/144 Nd, and higher La/Sm and 87Sr/86 Sr than normal seafloor basalts, whereas those for the near-plateau seafloor basalts are similar to the plateau basalts, indicating influences from the Ontong Java mantle source. The super mantle plume activity that might have formed the Ontong Java plateau influenced the mantle source of the simultaneously formed large areas of seafloor basalts. Based on the chemical data from normal seafloor basalts, I propose that the mantle compositions and melting conditions of the normal mid-ocean ridges during the Cretaceous are similar to the fast spreading East Pacific Rise. Slight variations of mid-Cretaceous normal seafloor basalts in melting conditions could be related to the local mantle source and spreading rate.  相似文献   

9.
黑潮延伸体海表温度锋位置的变化特征   总被引:2,自引:1,他引:1  
High spatial resolution sea surface temperature(SST) data from 1993 to 2013 are used to detect the position of the Kuroshio Extension sea surface temperature front(KEF) from 141°E to 158°E,and the seasonal,monthly and interannual-to-decadal variations of the KEF position are investigated.The latitudinal position of the KEF varies with longitudes:the westernmost part of the KEF from 141°E to 144°E is relatively stable,whereas the easternmost part from 153°E to 158°E exhibits the largest amplitude of its north-south displacement.In the light of the magnitudes of the standard deviations at longitudes,then the KEF is divided into three sections:western part of the KEF(KEFw,141°–144°E),central part of the KEF(KEFc,144°–153°E) and eastern part of the KEF(KEFe,153°–158°E).Further analysis reveals that the KEFw position is dominated by the decadal variability,while the KEFc and KEFe positions change significantly both on interannual and decadal time scales.In addition,the KEFw position is well correlated with the KEF path length.The possible mode leading to the decadal oscillation of the KEFw is further discussed.The KEFw position exhibits significant connections with the Pacific decadal oscillation(PDO) index and the north Pacific gyre oscillation(NPGO) index with a time lag of 40 and 33 months,respectively.  相似文献   

10.
南海北部大陆边缘天然气水合物稳定带厚度的地热学研究   总被引:1,自引:1,他引:0  
The exploration of unconventional and/or new energy resources has become the focus of energy research worldwide,given the shortage of fossil fuels.As a potential energy resource,gas hydrate exists only in the environment of high pressure and low temperature,mainly distributing in the sediments of the seafloor in the continental margins and the permafrost zones in land.The accurate determination of the thickness of gas hydrate stability zone is essential yet challenging in the assessment of the exploitation potential.The majority of previous studies obtain this thickness by detecting the bottom simulating reflectors(BSRs) layer on the seismic profiles.The phase equilibrium between gas hydrate stable state with its temperature and pressure provides an opportunity to derive the thickness with the geothermal method.Based on the latest geothermal dataset,we calculated the thickness of the gas hydrate stability zone(GHSZ) in the north continental margin of the South China Sea.Our results indicate that the thicknesses of gas hydrate stability zone vary greatly in different areas of the northern margin of the South China Sea.The thickness mainly concentrates on 200–300 m and distributes in the southwestern and eastern areas with belt-like shape.We further confirmed a certain relationship between the GHSZ thickness and factors such as heat flow and water depth.The thickness of gas hydrate stability zone is found to be large where the heat flow is relatively low.The GHSZ thickness increases with the increase of the water depth,but it tends to stay steady when the water depth deeper than 3 000 m.The findings would improve the assessment of gas hydrate resource potential in the South China Sea.  相似文献   

11.
As an active back-arc basin, the Okinawa Trough is located in the southeastern region of the East China Sea shelf and is strongly influenced by the subduction of the Philippine Sea Plate. Major element, trace element and Sr-NdPb isotopic composition data are presented for volcanic rocks from the Iheya Ridge(IR), the middle Okinawa Trough. The IR rocks record large variations in major elements and range from basalts to rhyolites. Similar trace element distribution characteristics together with small variations in ~(87)Sr/~(86)Sr(0.703 862–0.704 884), ~(144)Nd/~(143)Nd(0.512 763–0.512 880) and Pb isotopic ratios, demonstrate that the IR rocks are derived from a similar magma source. The fractional crystallization of olivine, clinopyroxene, plagioclase, and amphibole, as well as accessory minerals, can reasonably explain the compositional variations of these IR rocks. The simulations suggest that approximately 60% and 75% fractionation of an evolved basaltic magma can produce trace element compositions similar to those of the intermediate rocks and acid rocks, respectively. The analysis of their Sr-Nd-Pb isotopic content ratios suggest that the source of the rocks from the IR is close to the depleted mantle(DM) but extends to the enriched mantle(EMII), indicating that the mantle source of these rocks is a mixture between the DM and EMII end members. The simulations show that the source of the IR volcanic rocks can be best interpreted as the result of the mixing of approximately 0.8%–2.0% subduction sediment components and 98.0%–99.2% mantlederived melts.  相似文献   

12.
Some of the islets in the eastern Beibu Gulf are covered by Quaternary volcano strata. The rock samples from these islets mainly consist of quartz tholeiites (at Shenjiandao), olivine tholeiites (at Linshidao and Xieyang- dao) and alkali basalts (at Yangpubi and Jianshidao), and basically represent four periods of the Quaternary volcanism of Hainan Island and its adjacent regions. Except for the samples from Shenjiandao, most of the Quaternary volcanics of these islets belong to alkali magma series. The trace element characteristics of all of these samples show they are OIB (oceanic island basalt) -like, which implies that their deep geodynamic setting may be related to a mantle plume. The Sr-Nd-Pb isotopic compositions show that the mantle source beneath the Quaternary strata can be regarded as a result of binary mixing between a depleted, DMM (de- pleted MORB mantle)-like source and an enriched mantle type 2 (EM2). The EM2 may be originated from the Hainan mantle plume, and has been metasomatized by carbonaceous fluids released from ancient re- cycled oceanic crust at an asthenospheric mantle level. These features, together with typical trace element ratios, reflect that the parent magma was not subjected to crustal contamination during its ascent to the surface. This study provides further petrological and geochemical evidence for the existence of the Hainan mantle plume.  相似文献   

13.
Large-scale detachment faults on mid-ocean ridges (MORs) provide a window into the deeper earth. They have megamullion on their corrugated surfaces, with exposed lower crustal and upper mantle rocks, rela- tively high residual Bouguer gravity anomaly and P-wave velocity, and are commonly associated with ocean- ic core complex. According to 30 detachment faults identified on MORs, we found that their distances to the axis mostly range from 5 to 50 km, half-spreading rates range from 6.8 to 17 mm/a, and activity time ranges from recent to 3 Ma. Most of the detachment faults are developed on the slow spreading Mid-Atlantic Ridge (MAR) and ultra-slow spreading Southwest Indian Ridge (SWIRl, with the dominant half-spreading rates of 7-13 mm/a, especially 10-13 mm/a. Furthermore, they mostly occur at the inside corner of one segment end and result in an asymmetric seafloor spreading. The detachment faults on MORs are mainly controlled by the tectonism and influenced by the magmatism. Long-lived detachment faults tend to be formed where the ridge magma supply is at a moderate level, although the tectonism is a first-order controlling factor. At the slow spreading ridges, detachment faults tend to occur where local magma supply is relatively low, whilst at the ultra-slow spreading ridges, they normally occur where local magma supply is relatively high. These faults are accompanied by hydrothermal activities, with their relationships being useful in the study of hydrothermal polymetallic sulfides and their origin.  相似文献   

14.
The decadal variations of the North Pacifi c Tropical Water (NPTW) at 137°E in the western North Pacific Ocean are investigated based on the repeated hydrographic observations along with two global gridded ocean products. The results indicate that the maximum salinity of NPTW experiences signifi cant quasi-decadal variations, having maxima around 1979, 1987, 1995, 2004, and 2012, while minima around 1974, 1983, 1991, 1999, and 2008 during the period of interest. The NPTW area also shows similar quasidecadal variation, expanding/shrinking as its maximum salinity increases/decreases at the 137°E section. These variations are induced mainly by changes in the mixed layer salinity in the source region and largescale circulation in the northwestern tropical Pacific Ocean, both of which are related to the Pacific Decadal Oscillation. The underlying processes at work are further confi rmed through conducting the subsurface salinity budget analysis. Besides, short-term processes are also at work through nonlinear interactions, especially after 2000.  相似文献   

15.
Polymetalic sulfide is the main product of sea-floor hydrothermal venting, and has become an important sea-floor mineral resources for its rich in many kinds of precious metal elements. Since 2007, a number of investigations have been carried out by the China Ocean Mineral Resources Research and Development Association(COMRA)cruises(CCCs) along the Southwest Indian Ridge(SWIR). In 2011, the COMRA signed an exploration contract of sea-floor polymetallic sulfides of 10 000 km2 on the SWIR with the International Seabed Authority. Based on the multibeam data and shipborne gravity data obtained in 2010 by the R/V Dayang Yihao during the leg 6 of CCCs21, together with the global satellite surveys, the characteristics of gravity anomalies are analyzed in the Duanqiao hydrothermal field(37°39′S, 50°24′E). The "subarea calibration" terrain-correcting method is employed to calculate the Bouguer gravity anomaly, and the ocean bottom seismometer(OBS) profile is used to constrain the two-dimensional gravity anomaly simulation. The absent Moho in a previous seismic model is also calculated.The results show that the crustal thickness varies between 3 and 10 km along the profile, and the maximum crustal thickness reaches up to 10 km in the Duanqiao hydrothermal field with an average of 7.5 km. It is by far the most thicker crust discovered along the SWIR. The calculated crust thickness at the Longqi hydrothermal field is approximately 3 km, 1 km less than that indicated by seismic models, possibly due to the outcome of an oceanic core complex(OCC).  相似文献   

16.
El Nino, Anti-El Nino and normal years are defined in this paper according to time-de-pendent variations of El Nino and Southern Oscillation index. Statistics and analyses have been made of hydrological observation data related to 137°E section (34°N-l°S) from 1967 to 1983. It is shown from the results that there are obvious interannual variabilities of tempera-  相似文献   

17.
In this paper, by making use of data from Cooperative Study of the Kurosio and Adjacent Reions (CSK) together with part of the Geomagnetic Electrokinetograph (GEK) surface current observation data, we analyse the E section in detail for the following contents:1. The variation characteristics of time and space in the current field of the Kuroshio.2. The current axis structures of the Kuroshio and its main axis shift to the right with depth. Some parameter indications of the hydrographical elements are presented.3. Comparison is made among the East of Taiwan Island, the Kuroshio in the East China Sea and the Kuroshio crossing the E section.4. The geostrophic transports are calculated and their variations are analysed. The great difference of vertical transport distribution between the warm half year and cold half year is specifically indicated.We think that this paper is of benefit to further studying the Kuroshio and to the exploitation and utilization of its resources.  相似文献   

18.
Based on the interpretation of high resolution 2D/3D seismic data,sedimentary filling characteristics and fullfilled time of the Central Canyon in different segments in the Qiongdongnan Basin of northwestern South China Sea have been studied.The research results indicate that the initial formation age of the Central Canyon is traced back to 11.6 Ma(T40),at which the canyon began to develop due to the scouring of turbidity currents from west to east.During the period of 11.6–8.2 Ma(T40–T31),strong downcutting by gravity flow occurred,which led to the formation of the canyon.The canyon fillings began to form since 8.2 Ma(T31) and were dominated by turbidite deposits,which constituted of lateral migration and vertical superposition of turbidity channels during the time of8.2–5.5 Ma.The interbeds of turbidity currents deposits and mass transport deposits(MTDs) were developed in the period of 5.5–3.8 Ma(T30–T28).After then,the canyon fillings were primarily made up of large scale MTDs,interrupted by small scale turbidity channels and thin pelagic mudstones.The Central Canyon can be divided into three types according to the main controlling factors,geomorphology-controlled,fault-controlled and intrusionmodified canyons.Among them,the geomorphology-controlled canyon is developed at the Ledong,Lingshui,Songnan and western Baodao Depressions,situated in a confined basin center between the northern slope and the South Uplift Belt along the Central Depression Belt.The fault-controlled canyon is developed mainly along the deep-seated faults in the Changchang Depression and eastern Baodao Depression.Intrusion-modified canyon is only occurred in the Songnan Low Uplift,which is still mainly controlled by geomorphology,the intrusion just modified seabed morphology.The full-filled time of the Central Canyon differs from west to east,displaying a tendency of being successively late eastward.The geomorphology-controlled canyon was completely filled before3.8 Ma(T28),but that in intrusion-modified canyon was delayed to 2.4 Ma(T27) because of the uplifted southern canyon wall.To the Changchang Depression,the complete filling time was successively late eastward,and the canyon in eastern Changchang Depression is still not fully filled up to today.Difference in full-filled time in the Central Canyon is mainly governed by multiple sediment supplies and regional tectonic activities.Due to sufficient supply of turbidity currents and MTDs from west and north respectively,western segment of the Central Canyon is entirely filled up earlier.Owing to slower sediment supply rate,together with differential subsidence by deep-seated faults,the full-filled time of the canyon is put off eastwards gradually.  相似文献   

19.
The Moho interface provides critical evidence for crustal thickness and the mode of oceanic crust accretion. The seismic Moho interface has not been identified yet at the magma-rich segments (46°-52°E) of the ultra- slow spreading Southwestern Indian Ridge (SWIR). This paper firstly deduces the characteristics and do- mains of seismic phases based on a theoretical oceanic crust model. Then, topographic correction is carried out for the OBS record sections along Profile Y3Y4 using the latest OBS data acquired from the detailed 3D seismic survey at the SWIR in 2010. Seismic phases are identified and analyzed, especially for the reflected and refracted seismic phases from the Moho. A 2D crustal model is finally established using the ray tracing and travel-time simulation method. The presence of reflected seismic phases at Segment 28 shows that the crustal rocks have been separated from the mantle by cooling and the Moho interface has already formed at zero age. The 2D seismic velocity structure across the axis of Segment 28 indicates that detachment faults play a key role during the processes of asymmetric oceanic crust accretion.  相似文献   

20.
The Okinawa Trough(OT) is a back-arc basin at an initial spreading stage that is under the influence of subduction of the Philippine Sea Plate. In this study, we analyzed the geochemical compositions of basaltic glass in the OT and discussed the effects of different magmatic sources, evolution, and subducted components in basalts. Our results showed that the middle and southern regions of the OT exhibit characteristics consistent with an iron-rich tholeiite series. Trace element proportions conform to the typical spider diagram pattern characteristic of back-arc basin basalts, rich in large ion lithophile elements(LILEs) including Rb, Ba, Pb, U, and Th, while depleted in high field-strength elements(HFSEs) including Nb, Ta, Zr, Hf, and Ti. The distribution of rare earth elements(REEs) is also consistent with enrichment by right-leaning light rare earth elements(LREEs).The addition of enriched mantle type I(EMI) materials as well as mantle heterogeneity may have led to variable degrees of enrichment in different regions. The magma source of the middle trough has undergone crystallization towards pyroxene, while development of plagioclase was restricted partly, and the crystallization of spinel and olivine ceased altogether. At the same time, crystallization of the southern OT magma source was dominated by olivine and including the formation of plagioclase, pyroxene, and magnetite(or titanomagnetite). Finally, the results of this study showed that 90% Th, 95% Ba in the southern basalt, 50%–70% Th and 70%–90% Ba in the middle basalt originated from subducted component. Different subducted component influence may be due to different subduction zone structural feature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号