首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sediment study suggests that Washington and Norfolk canyons off the Mid-Atlantic States are not inactive, but have served periodically since the Late Pleistocene as conduits of sediment originating on the adjacent shelf and upper slope. Large quantities of sand occur in the canyon heads as thin beds and laminae, and on the continental slope as mixtures of sand (to >40%), silt and clay that are extensively reworked by burrowing organisms. Sandy turbidites occur in the canyons on the rise. Basinward dispersal, from the outer shelf and uppermost slope, is recorded by heavy mineral suites and bioclastic components, primarily foraminifera of shallow marine origin, in the lower slope and upper continental rise canyon cores. The down-axis movement of material, presumably episodic, in the Holocene to recent results from offshelf spillover into canyon heads, failure on the steep walls bordering canyons on the slope, and resuspension by bottom currents.  相似文献   

2.
Organic matter in four Quaternary sediment cores from the Gulf of Mexico and one core from the Washington State coast have been analyzed for lignin and stable carbon isotope compositions. Holocene sequences of all five cores contain organic matter with high relative abundances of 13C (δ13C = ?19.0 to ?22.5% versus PDB) and low lignin concentrations, both of which are consistent with a marine origin. Distinctly lower 13C concentrations (δ13C = ?24.0 to ?25.5%) occur in underlying glacial-age sequences from four of the five cores, including the core from the Washington coast where such trends are previously unreported. Although the carbon isotopic compositions of these Pleistocene sediments are typical of predominantly land-derived organic matter, they contain only about 5% of the lignin found in modern sediments of similar δ13C from adjacent continental shelves. The lignin-poor organic matter in the glacial-age deposits appears to be either marine-derived or terrigenous material that likely was depleted in vascular plant debris at the time of deposition.  相似文献   

3.
利用多道α能谱仪,对2005年8~9月在海南岛近海采集的7个沉积岩芯进行了210Pb的沉积速率测定,探讨了海南岛近海陆架上现代沉积速率的区域性分布特征,结果表明:位于港湾内的B1168站位由于沉积物供应充足,有最高的沉积速率,达2.9 cm/a;位于河口海湾附近且受沿岸流影响的B289站位,有很高的沉积速率,可达1.6 cm/a,沉积环境较稳定;位于西南海底沙脊区北缘且靠近昌化江河口的B97、B135、B10站位也有较高沉积速率,分别达到1.0、0.89和0.47 cm/a,在表层都出现了210Pb放射性活度倒置的现象,表明所处区域有较强混合作用;处于西南外陆架的C4站位受北部湾环流影响,沉积速率为0.6 cm/a;位于东部外陆架的B377站位处于上升流区,沉积速率较低,为0.21 cm/a.可见,海南岛近海陆架上的现代沉积速率存在着明显的区域分布:在物质来源丰富的沿岸流作用区和河口区附近,现代沉积速率很高;在陆架环流沉积作用区,现代沉积速率也较高;在水深较大的外陆架上,由于沉积物供应相对匮乏,沉积速率一般较低;在近岸潮流沙脊区,由于水动力很强,无法形成现代细粒沉积.同时,在陆架上,沉积速率有随着水深的增加而降低的趋势.由此可见,海南岛近海海域的沉积速率与该区的物质供应、水动力条件和海底地形等因素有密切关系.  相似文献   

4.
Stable isotope ratios (δ13C) of total organic carbon were measured in surface sediments from the continental margins of the northern and western Gulf of Mexico, the north coast of Alaska and the Niger Delta. Gulf of Mexico outer-shelf isotope ratios were in the same range as has been reported for Atlantic coastal shelf sediments, ?21.5 to ?20‰. Off large rivers including the Mississippi, Niger and Atchafalaya (Louisiana), δ13C values increased from terrigenous-influenced (around ?24‰) to typically marine (~?20‰) within a few tens of kilometers from shore. This change was accompanied by a decrease in the amount of woody terrigenous plant remains in the sediment. Alaskan continental margin samples from the cold Beaufort Sea had isotopically more negative carbon (?25.5 to ?22.6‰) than did warmer-water sediments. The data indicate that the bulk of organic carbon in Recent sediments from nearshore to outer continental shelves is marine derived.  相似文献   

5.
The Cabo Frio region in the state of Rio de Janeiro, southeast coast of Brazil, is characterized by a local coastal upwelling system and converging littoral sediment transport systems that are deflected offshore at Cabo Frio, as a consequence of which a thick cross-shelf sediment deposit has developed over time. To investigate the evolution of this muddy deposit, geophysical, sedimentological and geochemical data from four sediment cores (3.8–4.1 m in length) recovered in water depths between 88 and 141 m were analyzed. The high-resolution seismic data show variable sediment thicknesses ranging from 1 to 20 m, comprising two sedimentary units separated by a high-impedance layer at a depth of about 10 m below the seafloor at the coring sites. According to the available age datings, the upper sedimentary unit is late Pleistocene to Holocene in age, whereas the lower unit (not dated) must, by implication, be entirely Pleistocene in age. The boomer-seismic reflection signal can be divided into three echo-types, namely transparent (inner shelf), stratified (middle shelf) and reflective (outer shelf), each type seemingly related to the local sediment composition. The upper 4 m of the upper sedimentary unit is dominated by silty sediment on the middle shelf, and by upward-fining sediments (silty sand to sandy silt) on the inner and outer shelf. The downcore trends of P-wave velocity, gamma-ray density and acoustic impedance are largely similar, but generally reversed to those of water and organic carbon contents. Total organic carbon contents increase with decreasing mean grain size, periodic fluctuations suggesting temporal changes in the regional hydrodynamics and primary productivity fuelled by the local upwelling system. The reconstruction of sedimentation rates in the course of the Holocene is based on 35 AMS age datings of organic material recovered from variable downcore depths. These range from a maximum of 13.3 cm/decade near the base of the inner shelf core (7.73–7.70 ka BP) to generally very low values (<0.11 cm/century) over the last thousand years in all cores. Over the last 6 ka there appear to have been three distinct sedimentation peaks, one between 6 and 5 ka BP, another between 4 and 3 ka PB, and one around 1 ka BP. Due to different time intervals between dates, not every peak is equally well resolved in all four cores. Based on the similar sedimentology of the inner and outer shelf cores, an essentially identical sedimentation model is proposed to have been active in both cases, albeit at different times. Thus, already during the last glacial maximum, alongshore sediment transport was deflected offshore by a change in shoreline orientation caused by the Cabo Frio structural high. The source of terrigenous material was probably a barrier-island complex that was subsequently displaced landward in the course of sea-level rise until it stabilized some 6.5 ka BP along the modern coast.  相似文献   

6.
Using an integrated multi-beam bathymetry, high-resolution seismic profile, piston core, and AMS 14C dating data set, the current study identified two sediment wave fields, fields 1 and 2, on the South China Sea Slope off southwestern Taiwan. Field 1 is located in the lower slope, and sediment waves within it are overall oriented perpendicular to the direction of down-slope gravity flows and canyon axis. Geometries, morphology, and internal seismic reflection configurations suggest that the sediment waves in field 1 underwent significant up-slope migration. Field 2, in contrast, is located more basinward, on the continental rise. Instead of having asymmetrical morphology and discontinuous reflections as observed in field 1, the sediment waves in field 2 show more symmetrical morphology and continuous reflections that can be traced from one wave to another, suggesting that vertical aggradation is more active and predominant than up-slope migration.Three sediment wave evolution stages, stage 1 through stage 3, are identified in both field 1 and field 2. During stage 1, the sediment waves are built upon a regional unconformity that separates the underlying mass-transport complexes from the overlying sediment waves. In both of these two fields, there is progressive development of the sediment waves and increase in wave dimensions from the oldest stage 1 to the youngest stage 3, even though up-slope migration is dominant in field 1 whereas vertical aggradation is predominant in field 2 throughout these three stages.The integrated data and the depositional model show that the upper slope of the study area is strongly dissected and eroded by down-slope gravity flows. The net result of strong erosion is that significant amounts of sediment are transported further basinward into the lower slope by gravity flows and/or turbidity currents. The interactions of these currents with bottom (contour) currents induced by the intrusion of the Northern Pacific Deep Water into the South China Sea and preexisting wavy topography in the lower slope result in the up-slope migrating sediment waves in field 1 and the contourites as observed from cores TS01 and TS02. Further basinward on the continental rise, turbidity currents are waned and diluted, whereas along-slope bottom (contour) currents are vigorous and most likely dominate over the diluted turbidity currents, resulting in the vertically aggraded sediment waves in field 2.The results from this study also provide the further evidence for the intrusion of the Northern Pacific Deep Water into the South China Sea and suggest that this intrusion has probably existed and been capable of affecting sedimentation in South China Sea at least since Quaternary.  相似文献   

7.
The stable continental margin of northeastern Brazil is unusually narrow, probably because of the small size and tropical character of the drainage basins of the hinterland, and correspondingly low rates of land erosion and marine sedimentation. The continental shelf, which is mainly a marine erosion surface, is also remarkably shallow, either because of upwarping or, more probably, because of the ineffectiveness of Pleistocene marine erosional processes on steeply sloping continental margins. Sediment accumulation is confined to the Sāo Francisco delta, seaward of which are fossil (?) lagoonal deposits, and to a poorly developed nearshore sand prism.The margin formed by seaward progradation of sediment on a subsiding basement, but the present morphology of the continental slope reflects chiefly Pleistocene canyon cutting and mass gravitational movements of sediment, which have exposed older strata in the upper slope. Beneath the continental slope is a magnetic anomaly (like the slope anomaly off the eastern U.S.A.), probably caused by a deeply buried dike of oceanic basalt, and apparently associated with a buried ridge which may have formed the seaward margin of the Sergipe—Alagoas Basin during the early history of the South Atlantic. Similar structures may be typical of the narrow easternmost part of the Brazilian margin.  相似文献   

8.
Clay mineralogy and trace-element geochemistry of two abyssal cores indicate that the primary source of surface-current-transported detrital material in the southern Grenada Basin changed from a continental, South American terrane to a volcanic, Lesser Antillean terrane at the end of the Pleistocene. The record of benthic foraminiferal assemblages demonstrates that the Caribbean Bottom Water (CBW) was relatively oxygen poor and less corrosive in late Pleistocene glacial times than in interglacial times. The change in the properties of CBW in the Holocene was related to a renewed influx of North Atlantic Deep Water in the Caribbean.  相似文献   

9.
Seventy-nine δ13C analyses of oceanic particulate matter (> 0·μ) from semi-tropical (Gulf of Mexico, Caribbean and Atlantic) and polar (South Indian Ocean) waters showed that the carbon isotope composition of the particulate matter from the cold polar surface waters was lighter (?24·7 to ?26·0‰) than that from the surface in the semi-tropical regions (?19·8 to ?22·3 ‰), reflecting the temperature effect on the photosynthetic fixation of carbon. δ13C for deep samples (> 330 m) were generally more negative than the surface samples, except in some well-mixed polar areas.A difference both in organic carbon isotopic composition and percentage organic carbon in the POM and the tops of sediment cores was also apparent; a loss of approximately 95 % of incoming carbon and an increase in 13C of several per mille being observed during deposition of particulate matter. This indicates that after settling on the bottom there is extensive diagenesis of the POM by organisms, indicating the non-refractory nature of the organic matter.  相似文献   

10.
11.
The floor of the western equatorial Atlantic Ocean can be divided into several distinct provinces based on detailed characteristics of the bottom echos recorded with short-ping (< msec.) 3.5 and 12 kHz sound sources. Two major types of echos are recorded: (I) distinct echos; and (II) indistinct echos.Indistinct echos can be further sub-divided into (A) continuous prolonged echos; and (B) hyperbolic echos. Each class of echos contains two or more unique echo types. The regional distributions of the various echo types recorded from the continental rise, Amazon Cone, and abyssal plains reveal much information about sedimentary processes.In the western equatorial Atlantic, hyperbolic echos are recorded only from small, isolated portions of the continental rise. This contrasts with the continental rise of the western North Atlantic where previous investigators have shown that hyperbolic echos parallel bathymetric contours along the entire rise and thus reflect shaping of the rise by geostrophic contour currents (Heezen et al., 1966; Hollister, 1967). The fact that regions of hyperbolic echos show little or no relationship to bathymetric contours of the continental rise of the western equatorial Atlantic suggests that contour currents have been unimportant in shaping the rise in this region.The three most widespread echo types recorded from the continental rise, Amazon Cone, and abyssal plains reveal much information about terrigenous sediment dispersal and deposition in the western equatorial Atlantic. Comparison of the thicknesses and frequencies of coarse (silt- to gravel-size), bedded, terrigenous sediment in piston cores with the echo type recorded at each coring site shows a correlation between echo type and the relative amount of coarse, bedded sediment within the upper few meters of the sea floor. The regional distributions of these three echo types indicate that dispersal of coarse terrigenous sediment has been downslope across the continental rise and Amazon Cone to the abyssal plains via gravity-controlled sediment flows. The Amazon River is the major sediment source and most coarse sediment is deposited on the lower Amazon Cone and proximal portions of the Demerara abyssal plain.  相似文献   

12.
Because organic matter originating in the euphotic zone of the ocean may have a distinctive nitrogen isotope composition (15N/14N), as compared to organic matter originating in terrestrial soils, it may be used to evaluate the relative nitrogen contribution to marine and estuarine sediment. The nitrogen isotope ratios of 42 sediment samples of total nitrogen and 38 dissolved pore-water ammonium samples from Santa Barbara Basin sediment cores were measured. The range of δ15N values for total nitrogen was +2.89 – +9.4‰ with a mean of +6.8‰ and for pore water ammonium, +8.2 – +12.4‰ with a mean of 10.2‰.The results suggest that the dissolved ammonium in the pore water is produced from bacterial degradation of marine organic matter. The range of δ15N values for total nitrogen in the sediment is interpreted as resulting from an admixture of nitrogen derived from marine (+10‰) and terrestrial (+2‰ marines. The marine component of this mixture, composed principally of calcium carbonate with smaller amounts of opal and organic matter, contains ~ 1.0% nitrogen. The terrestrial component, which comprises over 80% of the sediment, contains ~ 0.1% organically bound nitrogen and accounts for > 25% of the total nitrogen in Santa Barbara Basin sediment.  相似文献   

13.
14.
Bulk composition of ferromanganese nodules from the pelagic environment of the Pacific Ocean is apparently related to nodule-growth rate, sediment-accumulation rate, and biologic productivity in the overlying seawater. Nodules with a high MnFe ratio and high Ni and Cu concentrations tend to occur in areas where primary productivity in the surface layer of the ocean is high and the sediment-accumulation rate low. Nodules with a low MnFe ratio and low Ni and Cu concentrations occur in areas either where sediment-accumulation rate is high or biologic productivity is low. They may have a MnFe ratio as low as one and accrete at rates as low as 1 mm106yrs. Nodules with a larger MnFe ratio apparently have growth rates that are greater by as much as a factor of 10.  相似文献   

15.
Sedimentary processes and structures across the continental rise in the western Weddell Sea have been investigated using sediment acoustic and multichannel seismic data, integrated with multibeam depth sounding and core investigations. The results show that a network of channels with associated along-channel ridges covers the upper continental slope. The seismic profiles reveal that the channels initially developed as erosive turbidite channels with associated levees on their northern side due to Coriolis force. Later they were partly or fully infilled, probably as a result of decreasing turbidite activity. Now the larger ones exist as erosive turbidite channels of reduced size, whereas the smaller ones are non-erosive channels, their shape being maintained by contour current activity. Drift bodies only developed where slumps caused a distinctive break in slope inclination on the upper continental rise, which served to initiate the growth of a drift body fed by contour currents or by the combined action of turbidites and contourites. The history of sedimentation can be reconstructed tentatively by correlation of seismo-stratigraphic units with the stages of evolution of the drifts on the western side of the Antarctic Peninsula. Three stages can be distinguished in the western Weddell Sea after a pre-drift stage, which is delimited by an erosional unconformity at the top: (1) a growth stage, dominated by turbidites, with occasional occurrence of slumps during its initial phase; (2) during a maintenance stage turbiditiy-current intensity (and presumably sedimentation rate also) decreased, probably as a result of the ice masses retreating from the shelf edge, and sedimentation became increasingly dominated by contour current activity; and (3) a phase of sheeted-sequence formation. A southward decrease in sediment thickness shows that the Larsen Ice Shelf plays an important role in sediment delivery to the western Weddell Sea. This study shows that the western Weddell Sea has some characteristics in common with the southern as well as the northwestern Weddell Sea: contour currents off the Larsen Ice Shelf have been present for a long time, probably since the late Miocene, but during times of high sediment input from the shelves as a result of advancing ice masses a channel-levee system developed and dominated over the contour-current transport of sediment. At times of relatively low sediment input the contour-current transport dominated, leading to the formation of drift deposits on the upper continental rise. Seaward of areas without shelf ice masses the continental rise mainly shows a rough topography with small channels and underdeveloped levees. The results demonstrate that sediment supply is an important, maybe the controlling factor of drift development on the Antarctic continental rise.  相似文献   

16.
The nature and regional distributions of various types of bottom echoes recorded on 3.5-kHz echograms from the East Brazilian continental margin (8–30°S) provide valuable information about sedimentary processes which have been active on a regional scale. The ten types of echoes observed fall into two major classes: distinct and indistinct. Indistinct echoes have two sub-classes; prolonged and hyperbolic. A qualitative correlation is observed between three types of distinct and indistinct-prolonged echoes and the relative abundance of coarse, bedded sediment (silt, sand, gravel) in piston cores. Regions returning distinct echoes with continuous parallel sub-bottoms contain little or no coarse sediment; regions returning indistinct very prolonged echoes with no sub-bottoms contain very high concentrations of coarse sediment; and regions returning indistinct semiprolonged echoes with intermittent sub-bottoms contain moderate or intermediate amounts of coarse sediment. Thus the regional distributions of these three echo types reflect the dispersal of coarse terrigenous sediment throughout the region. High concentrations of coarse sediment are restricted to relatively small areas which are generally proximal to large deep-sea channels, whereas very low concentrations occur in distal regions such as the lowermost continental rise and adjacent abyssal plain. Moderate concentrations of coarse sediment occur throughout most of the continental rise. Five of the six types of hyperbolic echoes observed are reflected from erosional/depositional bed forms. Although some of these bed forms (especially on the upper continental rise) have probably been produced by gravity-controlled mass flows (turbidity currents, slumps, etc.) the fact that the most extensive and widespread regions of hyperbolic echoes occur in distal regions beneath the present axis of flow of the Antarctic Bottom Water suggests that most of these bed forms are the result of sediment reworking by the contour-following bottom currents of this water mass.  相似文献   

17.
Seventeen piston cores were collected at 25-km intervals following the 3500-m isobath along a 400-km portion of the continental rise off the southeastern United States. The area extends between the Hatteras Canyon System and the tip of the Blake Outer Ridge. This study evaluates the mechanisms of rise formation over a large continental-rise area.From north to south, the calcium-carbonate content increases, minerals indicative of a northerly source are partially replaced by minerals more representative of the southern U.S. and Caribbean, and the sedimentation rate decreases. No identifiable turbidites were noted in any of the cores. Coarse-grained layers are infrequent; most are less than 2 cm in thickness and none showed grading. Radiography of several cores revealed mottling throughout. Bottom photographs show that present bottom-current movement closely parallels contours and flow is in a general southerly direction.The results indicate that contour-following bottom currents are primarily responsible for shaping this part of the U.S. Atlantic rise. Turbidity currents may be important only as a source of sediment, via overflows, to be transported south by bottom currents.  相似文献   

18.
Abstract

Vertical variations of geotechnical properties in the uppermost sediment layers characterize the main sedimentary processes acting on the construction and destruction of progressive‐type continental slopes. In the Gulf of Lions, the original thicknesses and distribution of the uppermost sedimentary layers of the continental slope and rise, which consist of Holocene muds overlying Pleistocene muds, have been greatly modified by erosion and several kinds of slope failure processes. Each process is typified through sets of geotechnical properties measured in the eroded or slumped sections and in the associated sediment accumulations.

In slump scars, the water‐rich Holocene muds lie on fine, overconsolidated, Pleistocene muds with high plasticity and low shear strength. In bottom current‐eroded slopes, where modern sedimentation is extremely reduced, the Pleistocene muds frequently outcrop and may sometimes be overlain by a very thin layer of Holocene muds. The Pleistocene muds of eroded slopes are overconsolidated and more silty and less plastic than the Pleistocene muds from slopes affected by slope failure, their shear strength being 10 times greater.

Deposits at the toe of slumps are very often formed by several superposed three‐layer units (triplets of interstratified Holocene, transitional, and Pleistocene layers) issued from retrogressive slumping occurring in the slump scars above their head area. The main body of each layer is then relatively undisturbed, showing the usual burial geotechnical gradients due to overburden pressure (i.e., decrease of water content and increase of unit weight and shear strength). At the toe of bottom current‐eroded slopes, a thick and homogeneous layer of Holocene muds overlies the Pleistocene muds; this Holocene layer has unappreciable burial depth gradient of its geotechnical parameters because of a high rate of modem and continuous deposition.  相似文献   

19.
The South China Sea (SCS) shows favorable conditions for gas hydrate accumulation and exploration prospects. Bottom simulating reflectors (BSRs) are widely distributed in the SCS. Using seismic and sequence stratigraphy, the spatial distribution of BSRs has been determined in three sequences deposited since the Late Miocene. The features of gas hydrate accumulations in northern SCS were systematically analyzed by an integrated analysis of gas source conditions, migration pathways, heat flow values, occurrence characteristics, and depositional conditions (including depositional facies, rates of deposition, sand content, and lithological features) as well as some depositional bodies (structural slopes, slump blocks, and sediment waves). This research shows that particular geological controls are important for the presence of BSRs in the SCS, not so much the basic thermodynamic controls such as temperature, pressure and a gas source. Based on this, a typical depositional accumulation model has been established. This model summarizes the distribution of each depositional system in the continental shelf, continental slope, and continental rise, and also shows the typical elements of gas hydrate accumulations. BSRs appear to commonly occur more in slope-break zones, deep-water gravity flows, and contourites. The gas hydrate-bearing sediments in the Shenhu drilling area mostly contain silt or clay, with a silt content of about 70%. In the continental shelf, BSRs are laterally continuous, and the key to gas hydrate formation and accumulation lies in gas transportation and migration conditions. In the continental slope, a majority of the BSRs are associated with zones of steep and rough relief with long-term alternation of uplift and subsidence. Rapid sediment unloading can provide a favorable sedimentary reservoir for gas hydrates. In the continental rise, BSRs occur in the sediments of submarine fans, turbidity currents.  相似文献   

20.
The sources and distributions of polycyclic aromatic hydrocarbons (PAH) and aliphatic hydrocarbons are characterized in seventeen sediments from a highly river-influenced sedimentary environment off the southwestern coast of Washington. The major hydrocarbons are land-derived, introduced as preformed compounds and display long-term stability in sediment cores. A series of PAH of anthropogenic origin and two naturally derived compounds, retene and perylene, dominate the PAH composition in these sediments. Plantwax n-alkanes are the major aliphatic hydrocarbon constituents. Aliphatic hydrocarbons of marine origin, pristane and a series of four acyclic, multibranched C25 polyolefins, are also observed in many sediments. The concentrations of these marine-derived hydrocarbons decrease to negligible levels rapidly with sediment depth from the sea-sediment interface, suggesting degradation.In general, the major land-derived hydrocarbons are concentrated in the midshelf silt deposit which extends northwestward along the continental shelf from the Columbia River mouth. A quantitatively more minor, natural series of phenanthrene homologs, also of terrestrial origin, is preferentially advected further offshore and deposited in continental slope sediments. These distributions are consistent with recognized particle associations for these compounds and sediment dispersal processes in this coastal environment. Sediment core records suggest the present pattern of dispersal has persisted for at least the past century and possibly since the Late Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号