首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黄河流域是我国遭受地震灾害最为严重的流域,近年来探测工作对黄河中下游的活动断层有较多新认识,如构成北华北盆地与南华北盆地新构造分界的新乡-商丘断裂,新发现存在多个晚更新世活动段,具备发生中强级以上地震的可能,对识别沿黄河中下游的地震危险源、提高地震危险性认识有重要影响。本文通过总结近年来活动断层探测的最新进展,分析了沿黄河中下游地区的活动断层分布特征及其可能产生的灾害影响,并提出后续工作规划建议。  相似文献   

2.
利用日本气象厅历史海温资料、NCEP/NCAR再分析资料、海表温度和降水资料,研究了1951-2010年前期西太平洋暖池(简称暖池)热含量异常与长江中下游夏季降水的关系,及其可能影响途径.结果表明,前期暖池热含量与长江中下游夏季降水存在超前2个季节的显著负相关关系,前期11-1月(即上年11月-当年1月,下同)暖池关键区(166.5°E-173.5°W,7.5°S-3.5°N)0~200 m热含量的偏低(高)对长江中下游夏季降水偏多(少)的预测有重要指示意义.前期暖池热含量异常的持续存在,及其外强迫作用激发的具有一定斜压性结构的夏季东亚-太平洋型遥相关(EAP),可能是影响长江中下游夏季降水的主要原因.暖池热含量在前期11-1月异常偏低导致其西北侧菲律宾异常反气旋形成并维持,夏季菲律宾异常反气旋向西北方向扩展加强,东亚沿岸EAP波列形成,使得长江中下游及其以东的西北太平洋副热带地区受异常气旋控制,且长江中下游地区为北方冷空气与南方暖湿气流的交汇区.同时,对流层高层东亚沿岸亦存在位置较中低层向西北偏移的EAP波列,长江中下游及其以南地区为异常偏强高压,高层辐散与中低层辐合相配合,有利于长江中下游地区对流发展和降水增多;反之亦然.  相似文献   

3.
A series of independent faulted basins developed in the present middle reaches of the Yellow River during late Cenozoic, among which the Sanmen Lake Basin is located in the east edge of the Loess Plateau, a transitional zone between the second and third macromorphological step of China. The thick strata of the Sanmen Group deposited in the large basin. The Sanmen Group is a perfect place for the study on paleoenvironmental change, tectono-climatic cycles as well as the formation and evolution of the Yellow River. In this paper, the paleoenvironmental changes, regional tectonic movement and the evolutionary process of the Sanmen Lake Basin during the past 5 Ma were reconstructed based on the analysis of paleomagnetic stratigraphy, pollen, TOC and carbonate content from the Huangdigou outcrop near the Sanmenxia Reservoir, Pinglu County, Shanxi Province. The sedimentary records from the outcrop indicate that the basin was first formated by fault activity at about 5.4 MaBP, and after the strong tectonic movement at 3.6 MaBP the lake enlarged and the rainfall of summer monsoon increased. There was no great climatic transition near 2.6 MaBP, corresponding to the bottom age of loess in the Loess Plateau. After Olduvai event (about 1.77 MaBP) the Picea and Abies were presented in the sediments, which indicates a colder climate. The tectonic movement at 1.2 MaBP caused the light angular discordance between the upper and lower Sanmen Group. The sedimentary records show a cold and wet climate during the prosperous periods of loess accumulation such as L15, L9, L6. The tectonic intensification periods of the Sanmen Basin correspond with the tectonic movements in the Qinghai-Xizang Plateau chronologically. The earliest age of the outflow from the Paleo-Sanmen Lake or the partly cutting off of the Sanmenxia Gorge was about 0.41- 0.35 MaBP. The age of cutting thoroughly the Sanmenxia Gorge by the Yellow River and the disappearance of the Paleo-Sanmen Lake was about 0.15 MaBP, which symbolized the formation of the present Yellow River and had an important influence on the environmental and morphological evolution in the middle and lower reaches of the Yellow River.  相似文献   

4.
The Yiluo River is the largest tributary for the middle and lower reaches of the Yellow River below Sanmenxia Dam. Changes of the hydrological processes in the Yiluo River basin, influenced by the climatic variability and human activities, can directly affect ecological integrity in the lower reach of the Yellow River. Understanding the impact of the climatic variability and human activities on the hydrological processes in the Yiluo River basin is especially important to maintain the ecosystem integrity and sustain the society development in the lower reach of the Yellow River basin. In this study, the temporal trends of annual precipitation, air temperature, reference evapotranspiration (ET0) and runoff during 1961–2000 in the Yiluo River basin were explored by the Mann‐Kendall method (M‐K method), Yamamoto method and linear fitted model. The impacts of the climatic variability and vegetation changes on the annual runoff were discussed by the empirical model and simple water balance model and their contribution to change of annual runoff have been estimated. Results indicated that (i) significant upwards trend for air temperature and significant downwards trend both for precipitation and ET0 were detected by the M‐K method at 95% confidence level. And the consistent trends were obtained by the linear fitted model; (ii) the abrupt change started from 1987 detected by the M‐K method and Yamamoto method, and so the annual runoff during 1961–2000 was divided into two periods: baseline period (1961–1986) and changeable period (1987–2000); and (iii) the vegetation changes were the main cause for change of annual runoff from baseline period to changeable period, and climatic variability contributed a little to the change of annual runoff of the Yiluo River. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
1840年以来长江大洪水演变与气候变化关系初探   总被引:25,自引:3,他引:22  
长江洪水灾害是我国频率高、为患严重的自然灾害之一.本文依据可靠资料,选择1840年至2000年间32次大洪水记录,探讨其演变与气候变化的关系.认知1910s前的19世纪冷期出现大洪水13次(包括1870年的极值大洪水事件)频率为1.9次/10a.1921-2000年间出现了大洪水19次,频率为2.4次/10a.20世纪暖期又分出两个变暖时段,前一变暖时段的峰值期1920s-1940s出现大洪水9次,包含1931年全流域大洪水.后一变暖时段,即1980s与1990s出现大洪水8次.实测记录到的最大洪水1954年位于前一变暖时段结束阶段.1990s是全球,也是我国近百年中最暖年代,受东南季风影响大的中下游地区夏季降水量是近百年最多的,大暴雨频率也是有较多记录的40年来最高的.以此出现了10年5次大洪水高频率现象,包含1998年全流域型大洪水,表明了全球变暖的显著影响.也指示30-40年问周期性振荡中多雨年代.如此可预期21世纪初期降水会有小幅度下降与大洪水频率在短期内降低的可能性.长江上游受西南季风影响较大,19世纪下半期与20世纪上半期为多降水期,大洪水频率较高.20世纪下半期为少降水期,大洪水频率较低.关于气候变化研究有待深入,前景不易预估.  相似文献   

6.
Using annual precipitation and discharge data measured in the past five decades,this paper analyzed the regional differences over west China in terms of climate and discharge variations,and investigated the relationship between the regional characteristics and the activities of South and East Asian sum-mer monsoon. Results revealed that the precipitation and discharge in the upper reaches of the Yellow River (Central West China) have a negative correlation with those in Xinjiang (northwest China) and the Yarlung Zangbo River (the upper reaches of the Brahmaputra Rive,southwest China) regions. The geographical patterns of precipitation and discharge variations are different over west China,i.e. the regional climate displays the alteration of dry-wet-dry or wet-dry-wet from north to south in west China. The negative correlation of annual discharges between Xinjiang and the upper reaches of the Yellow River is found statistically significant in the decadal scale,and that between the Yarlung Zangbo River and the upper reaches of the Yellow River is found active in the interannual scale. The regional char-acteristics indicate that the discharge/precipitation variations in the upper reaches of the Yellow River are dominated by the East Asian summer monsoon while their variations in Xinjiang are affected by both the west wind and East Asian summer monsoon.  相似文献   

7.
Abstract

The spatial distribution and trends in the frequency of precipitation extremes over the last 44 years (1960–2003), especially since 1990, have been analysed using daily precipitation data from 147 stations in the Yangtze River basin. The research results are as follows: (1) The 15 mm precipitation isohyet approximately divides the precipitation extremes (corresponding to the 95th percentile) of the stations in the middle and lower Yangtze reaches (higher) from those of the upper Yangtze reaches (lower). Also the starting time of the precipitation extremes in the middle and lower Yangtze reaches is earlier than of those in the upper Yangtze reaches. Precipitation extremes are concentrated mostly in June in the middle and lower Yangtze reaches, and July in the upper Yangtze reaches. (2) During the period 1960–2003, the first two decades had fewer precipitation extremes than the last two decades. There have been significant increasing trends and step changes in frequency of annual total precipitation extremes and precipitation extremes with a 1–5 day gap in the middle and lower Yangtze reaches. Precipitation extremes occur more frequently in shorter periods, separated by a few days. Precipitation extremes are also becoming more concentrated in the month with the highest frequency of extremes (June) in the middle and lower Yangtze reaches. In the upper Yangtze reaches, there is an upward tendency of extreme events in June. Increasing precipitation extremes in June for both the middle and lower, and the upper Yangtze reaches will increase the probability of flooding if the observed trends of the last 40 years continue into the future.  相似文献   

8.
黄河下游南四湖地区黄河河道变迁的湖泊沉积响应   总被引:11,自引:2,他引:9  
黄河下游地区湖泊演化多与黄河河道变迁密切相关,进行高分辨率的湖泊沉积环境的研究,可揭示历史时期黄河下游的河道变迁,本文以南四湖DS孔为例,探讨河道变迁的湖泊沉响应。  相似文献   

9.
李华贞  张强  顾西辉  史培军 《湖泊科学》2018,30(4):1138-1151
根据黄河流域1960—2005年5个水文站逐日流量、77个气象站1959—2013年逐日降水数据,结合流域内主要农作物种植面积及大型水库资料,全面探讨气候与农业面积变化及人类活动对黄河流域径流变化的影响.研究表明:黄河流域所有流量分位数总体呈下降趋势,并于1980s中后期到1990s中期发生突变.降水变化是黄河流域径流变化的主要影响因素.在考虑不同流量分位数情况下,农作物种植面积变化对不同分位数径流变化的影响也有差异性.花园口站农作物种植面积变化对径流量量级和可变性均有显著影响;其余4站各项气候变化与农作物种植指标参数较大,虽均未达到10%的显著性水平,但仍会对径流的量级变化产生影响.对唐乃亥站,农作物耕作面积的下降减少了灌溉用水,在0.5流量分位数时有高达60%增加径流量的间接作用.对于头道拐站,农作物耕作面积的增加使得流域总蒸发量增加,灌溉用水增加,在0.3流量分位数时有高达40%减少径流量的间接作用.该研究为气候变化与人类活动影响下黄河流域水资源优化配置提供重要理论依据.  相似文献   

10.
黄河径流量的历史演变规律及成因   总被引:31,自引:0,他引:31       下载免费PDF全文
马柱国 《地球物理学报》2005,48(6):1270-1275
基于黄河上、中和下游的径流及气候资料,对径流的年代际变化规律及与气候变化的关系进行了分析.结果表明:黄河流域的径流均存在显著的年代际变化趋势,径流的显著特征是从20世纪80年代开始的减少趋势,但并未达到历史的最低,径流减少的趋势在下游比上游更显著,而这种变化趋势与流域的气候变化趋势基本一致,说明在年代际尺度上,径流的变化主要受气候的控制;在不同季节,这种关系有明显差异,如在冬季两者的变化趋势有较大差异.分析还发现,近年来流域地表的干化是流域径流减少的原因,气温的升高更加剧了流域地表干化.  相似文献   

11.
《水文科学杂志》2013,58(1):90-100
Abstract

In the past 50 years, influenced by global climate change, the East Asian summer monsoon intensity (SMI) changed significantly, leading to a response by the water cycle of the Yellow River basin. The variation in SMI has three stages: (1) 1951–1963, SMI increased; (2) 1963–1965, SMI declined sharply, a feature that may be regarded as an abrupt change; and (3) 1965–2000, SMI remained at low levels and showed a tendency to decline slowly. The decreased SMI led to a reduction in water vapour transfer from the ocean to the Yellow River basin, and thus precipitation decreased and the natural river runoff of the Yellow River also decreased. Due to the increase in population and therefore in irrigated land area, the ratio of net water diversion to natural river runoff increased continuously. Comparison of the ratio of net water diversion to natural river runoff before and after the abrupt change in SMI indicates some discontinuity in the response of the man-induced lateral branch of the water cycle to the abrupt change in SMI. The frequently occurring flow desiccation in the lower Yellow River can be regarded as a response of the water cycle system to the decreasing summer monsoon intensity and increasing population. When the ratio of net water diversion exceeded the ratio of natural runoff of the low-flow season to the annual total natural runoff, flow desiccation in the lower Yellow River would occur. When the ratio of net water diversion is 0.3 larger than the ratio of the natural runoff of the low-flow season to the annual total natural runoff, an abrupt increase in the number of flow desiccation events is likely to occur.  相似文献   

12.
As a result of climate change/variation and its aggravation by human activities over the past several decades, the hydrological conditions in the middle Yellow River in China have dramatically changed, which has led to a sharp decrease of streamflow and the drying up of certain tributaries. This paper simulated and analysed the impact of sediment‐trapping dams (STDs, a type of large‐sized check dam used to prevent sediment from entering the Yellow River main stem) on hydrological processes, and the study area was located in the 3246 km2 Huangfuchuan River basin. Changes in the hydrological processes were analysed, and periods of natural and disturbed states were defined. Subsequently, the number and distribution of the STDs were determined based on data collected from statistical reports and identified from remote sensing images, and the topological relationships between the STDs and high‐resolution river reaches were established. A hydrological model, the digital Yellow River integrated model, was used to simulate the STD impact on the hydrological processes, and the maximum STD impact was evaluated through a comparison between the simulation results with and without the STDs, which revealed that the interception effect of the STDs contributed to the decrease of the streamflow by approximately 39%. This paper also analysed the relationship between the spatial distribution of the STDs and rainfall in the Huangfuchuan River basin and revealed that future soil and water conservation measures should focus on areas with a higher average annual rainfall and higher number of rainstorm hours. © 2015 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

13.
长江下游—南黄海地震带位于华北地震区东南部, 带内地震主要受长江下游和南黄海海域内一系列断裂的控制, 以中强地震活动为主, 是地震活动较强的地区。 本文充分利用该带最新的区域地震台网资料, 历史地震复核资料以及地震构造等资料, 统计和计算了b值、 V4和中小地震能量密度值, 探讨了带内b值空间分布与历史强震、 中小地震能量密度值空间分布的关系, 进一步研究了长江下游—南黄海地震带的地震活动性特征。 通过本文的研究, 获得了长江下游—南黄海地震带的地震活动性参数, 为概率危险性分析提供计算参数; 探讨了该带未来百年地震发展趋势, 初步判定了该带潜在地震危险区, 为地震活动中长期预测提供参考依据和方法; 研究结果对地震区划、 工程场地地震安全性评价、 地震活动中长期预测均有重要意义。  相似文献   

14.
Precipitation extremes could cause a series of social, environmental and ecological problems. This paper, taking Heihe River basin, the second largest inland river basin in China, as the study area, focused on the frequency analysis of precipitation extremes based on the historical daily precipitation records (1960–2010) at nine stations. Generalized Pareto distribution (GPD) was employed for fitting the peaks over threshold (POT) series, in which Hill plot, percentile method and the average annual occurrence number were used to select the threshold in GPD. Maximum likelihood estimate and L-moment were used to estimate the parameters. The inherent assumptions for POT series were investigated by auto-correlation coefficient, Mann–Kendall test, Spearman’s ρ test, cumulative deviation test and Worsley likelihood ratio test. 10, 20, 50 and 100 year precipitation extremes for Heihe River basin were calculated and analyzed as well. It was found the POT series derived from several methods involved were approximately independent and stationary, and GPD could give a satisfactory fit to the POT series for each station. For the upper and lower reaches, the frequency of precipitation extremes at long return periods (20, 50 year or longer) presented increasing in recent years, and the intensity of the highest precipitation were getting stronger as well. The intensity of the highest precipitation extremes for the lower reach (21 and 35 %) increased higher than those for the upper reach (10 and 11 %). For the middle reach, the frequency of precipitation extremes (over 20 year return level) was not found to be increased. The uneven spatial and temporal distribution of precipitation extremes for the basin especially for the upper and lower reaches were getting more and more serious, which would bring great challenges for the local water allocation and management.  相似文献   

15.
通过对黄河中游北洛河的野外考察,在宜君基岩峡谷全新世风成黄土-土壤剖面中发现三层古洪水滞流沉积物(SWD).野外观察和室内实验分析,证明它们是北洛河特大洪水悬移质泥沙在高水位滞流环境下的沉积物.这些古洪水滞流沉积层夹在全新世中期古土壤之内,其每一层记录了一期特大洪水事件.利用古水文学方法恢复了古洪水洪峰水位和流量,确定...  相似文献   

16.
Multiscale variability of streamflow changes in the Pearl River basin,China   总被引:1,自引:1,他引:0  
The Pearl River basin bears the heavy responsibility for the water supply for the neighboring cities such as Macau, Hong Kong and others. Therefore, effective water resource management is crucial for sustainable use of water resource. However, good knowledge of changing properties of streamflow changes is the first step into the effective water resource management. With this in mind, stability and variability of streamflow changes in the Pearl River basin is thoroughly analyzed based on monthly streamflow data covering last half century using Mann–Kendall trend test and scanning t- and F-test techniques. The results indicate: (1) significant increasing monthly streamflow is observed mainly in January–April, June and October–December. Monthly streamflow during May–September is in not significant changes. Besides, stations characterized by significant monthly streamflow changes are located in the middle and the lower Pearl River basin; (2) changing points of monthly streamflow series are detected mainly during mid-1960s, early 1970s, mid-1970s, early 1980s and early 1990s and these periods are roughly in good agreement with those of annual, winter and summer precipitation across the Pearl River basin, implying tremendous influences of precipitation changes on streamflow variations; (3) abrupt behaviors tend to be ambiguous from the upper to the lower Pearl River basin, which should be due to enhancing combined effects of abrupt changes of precipitation. The streamflow comes to be lower stability in recent decades. However, high stability of streamflow changes are observed at hydrological stations in the lower Pearl River basin. The results of this study will be of great scientific and practical merits in terms of effective water resource management in the Pearl River basin under the influences of climate changes and human activities.  相似文献   

17.
The plausible long‐term trend of precipitation in China and its association with El Niño–southern oscillation (ENSO) are investigated by using non‐parametric techniques. It is concluded that a greater number of decreasing trends are observed than are expected to occur by chance. Geographically, the decreasing trend was concentrated in most parts of China, including the Songliao River, Hai River, Huai River, Yellow River, Zhujiang River, and southern part of the Yangtze River basins, whereas an increasing trend appeared primarily in the western and middle parts of China, mainly including the Inland River basin, and the northern part of the Yangtze River basins. Monthly mean precipitation for the summer and early autumn months generally decreased, with the greatest decrease occurring in August. The precipitation in spring from January to April and later autumn, including September and October, tended to increase. The teleconnection between precipitation and ENSO has been investigated by using the non‐parametric Kendall's τ. The correlation coefficients between the southern oscillation index (SOI) and precipitation show the areas with positive or negative associations. Approximately 20% of the stations exhibit statistically significant correlations between SOI and precipitation, of which 70% show a negative correlation, with most of them appearing in southeast China and several appearing in northwest and northeast China. Similar regional patterns are also observed when the precipitation records are further subdivided into El Niño, La Niña, and neutral periods. Statistical tests for the three kinds of time series were carried out using the non‐parametric Wilcoxon rank‐sum test, and it is noted that the stations with significant differences in precipitation averages are mainly marked in the Yellow River basin and south China. The frequencies of below‐ and above‐average precipitation that occurred during the El Niño, La Niña, and neutral periods are estimated as well. The result shows that greater precipitation may be associated with El Niño episodes in south China, but drought may easily occur during El Niño episodes in the Yellow River basin. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Serious soil erosion on the Loess Plateau has be-come the focus of world attention.As early as the1950s China has started soil and water conservation work on the Loess Plateau in order to improve the lo-cal eco-environment and mitigate the threat of the coarse sediment in the middle Yellow River to the river channel at downstream.Facts proved that the best alternative is the integrated management of hill slopes and gullies in combination with biological and engineering measures.Biological m…  相似文献   

19.
In the past few years, the amount of sediment entering the Yellow River decreased significantly in areas with high and coarse sediment yield of the Loess Plateau. Some researchers considered that it was owing to the soil and water conservation project, while others believed that it was caused by the low precipitation. The observation data showed -2 that the ultimate sod erosion modulus m 1960s could reach 150,000 t km . However some experts preferred to believe that the ultimate soil erosion modulus in 1960s was wrong due to some uncertain mistakes. This paper quantitatively analyzed the spatial-temporal evolution pattern of sediment yield in areas with high and coarse sediment yield of the Loess Plateau over the past 50 years, by simulating the precipitation-runoff and soil erosion in 12 sample years with the digital watershed model. Some preliminary conclusions have been drawn as following: since the 1960s and 1970s, the rainstorm center had moved southward and the intensity of rainfall center became weaker and spread into dispersed rainfall distribution in areas with high and coarse sediment yield; the decrease of the amount of sediment entering the Yellow River was caused by the changes of rainfall type in recent years; the rainstorm of 1967 was concentrated in the re~ion nearby "Shenmu-Fugu" in Shaanxi Province, and the annual maximum transport modulus (150,000 t km-2 ) measured in Bullpen Ditch of the left bank tributary between "Shenmu" and "Fugu" in 1967 is reasonable.  相似文献   

20.
The Mangshan loess on China’s Central Plain, located on the transitional zone between the uplifting Loess Plateau and the subsiding North China Plain, is a proximal sandy loess transported from the fanhead of alluvial fan in the lower reaches of the Yellow River and has recorded the coupling effect of the tectonics and climate over the last 200 ka. An abrupt environmental change indicated by the abrupt rise of deposit rate in the late penultimate glaciation, about 150 ka BP, took place; that is, the Yellow River downcut and moved eastwards through the Sanmenxia Gorge and transported abundant materials from the Loess Plateau to form paleosol S1 with a thickness of 15.7 m and loess L1 with a thickness of 77.3 m. The loess-paleosol sequence at Mangshan has not only recorded detailed climate responses of this area to the East Asian monsoon, but also reflects the tectonogenetic environmental effect caused by the trunk stream of the Yellow River cutting through Sanmenxia Gorge into sea. Project supported by the National Natural Science Foundation of China (Grant No..49572132).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号