首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed mineralogical, bulk-rock geochemical and Sr-Nd isotopic data for the recently discovered Ahobil kimberlite(Pipe-16) from the Wajrakarur kimberlite field(WKF), Eastern Dharwar craton(EDC),southern India, are presented. Two generations of compositionally distinct olivine, Ti-poor phlogopite showing orangeitic evolutionary trends, spinel displaying magmatic trend-1, abundant perovskite, Tirich hydrogarnet, calcite and serpentine are the various mineral constituents. On the basis of(i) liquidus mineral composition,(ii) bulk-rock chemistry, and(iii) Sr-Nd isotopic composition, we show that Ahobil kimberlite shares several characteristic features of archetypal kimberlites than orangeites and lamproites. Geochemical modelling indicate Ahobil kimberlite magma derivation from small-degree melting of a carbonated peridotite source having higher Gd/Yb and lower La/Sm in contrast to those of orangeites from the Eastern Dharwar and Bastar cratons of Indian shield. The TDm Nd model age(~2.0 Ga) of the Ahobil kimberlite is(i) significantly older than those(1.5~1.3 Ga) reported for Wajrakarur and Narayanpet kimberlites of EDC,(ii) indistinguishable from those of the Mesoproterozoic EDC lamproites,and(iii) strikingly coincides with the timing of the amalgamation of the Columbia supercontinent. High bulk-rock Fe-Ti contents and wide variation in oxygen fugacity fO_2, as inferred from perovskite oxybarometry, suggest non-prospective nature of the Ahobil kimberlite for diamond.  相似文献   

2.
The petrology and geochemistry of some new occurrences of Mesoproterozoic diamondiferous hypabyssal-facies kimberlites from the Chigicherla, Wajrakarur-Lattavaram and Kalyandurg clusters of the Wajrakarur kimberlite field (WKF), Eastern Dharwar craton (EDC), southern India, are reported. The kimberlites contain two generations of olivine, and multiple groundmass phases including phlogopite, spinel, calcite, dolomite, apatite, perovskite, apatite and rare titanite, and xenocrysts of eclogitic garnet and picro-ilmenite. Since many of the silicate minerals in these kimberlites have been subjected to carbonisation and alteration, the compositions of the groundmass oxide minerals play a crucial role in their characterisation and in understanding melt compositions. While there is no evidence for significant crustal contamination in these kimberlites, some limited effects of ilmenite entrainment are evident in samples from the Kalyandurg cluster. Geochemical studies reveal that the WKF kimberlites are less differentiated and more primitive than those from the Narayanpet kimberlite field (NKF), Eastern Dharwar craton. Highly fractionated (La/Yb = 108–145) chondrite-normalised distribution patterns with La abundances of 500–1,000 × chondrite and low heavy rare earth elements (HREE) abundances of 5–10 × chondrite are characteristic of these rocks. Metasomatism by percolating melts from the convecting mantle, rather than by subduction-related processes, is inferred to have occurred in their source regions based on incompatible element signatures. While the majority of the Eastern Dharwar craton kimberlites are similar to the Group I kimberlites of southern Africa in terms of petrology, geochemistry and Sr–Nd isotope systematics, others show the geochemical traits of Group II kimberlites or an overlap between Group I and II kimberlites. Rare earth element (REE)-based semi-quantitative forward modelling of batch melting of southern African Group I and II kimberlite source compositions involving a metasomatised garnet lherzolite and very low degrees of partial melting demonstrate that (1) WKF and NKF kimberlites display a relatively far greater range in the degree of melting than those from the on-craton occurrences from southern Africa and are similar to that of world-wide melilitites, (2) different degrees of partial melting of a common source cannot account for the genesis of all the EDC kimberlites, (3) multiple and highly heterogeneous kimberlite sources involve in the sub-continental lithospheric mantle (SCLM) in the Eastern Dharwar craton and (4) WKF and NKF kimberlites generation is a resultant of complex interplay between the heterogeneous sources and their different degrees of partial melting. These observations are consistent with the recent results obtained from inversion modelling of REE concentrations from EDC kimberlites in that both the forward as wells as inverse melting models necessitate a dominantly lithospheric, and not asthenospheric, mantle source regions. The invading metasomatic (enriching) melts percolating from the convecting (asthenosphere) mantle impart an OIB-like isotopic signature to the final melt products.  相似文献   

3.
Tokapal kimberlite is the only well preserved crater facies kimberlite intruded within sedimentary sequence of Indravati basin in Bastar craton of central India. We present detailed petrographical and whole rock geochemical studies, carried out on ten samples collected from different locations from Tokapal kimberlite to constrain its genesis and also the mantle processes involved in the origin of this earlier characterized Group I kimberlite. Geochemical studies show that only SiO2 content and the mobile trace elements Ba, Sr, and K vary in the crater facies while rest others show restricted range and can be successfully used in evaluating the petrogenetic processes. Very low abundances of Rb (<2 ppm), Sr (<28 ppm), Ba (<52 ppm) and Cs (0.02–3 ppm) are observed which show possible effects of late-stage alteration rather than significant crustal contamination. The LREE enriched REE pattern, absence of positive Eu anomalies and HREE depletion also provide further additional evidence against crustal contamination considerably modifying magma composition. We infer the presence of less enriched (metasomatised) mantle source regions and comparatively greater degrees of partial melting responsible for the genesis of Tokapal kimberlite. Present study also suggests that crater facies Tokapal kimberlite intruding the Indravati basin, Bastar craton has a Group II kimberlite (orangeite) affinity. This finding is important in light of recent identification of Mainpur kimberlites of Bastar craton as orangeites.  相似文献   

4.
The northern part of the Nellore–Khammam schist belt and the Karimnagar granulite belt, which are juxtaposed at high angle to each other have unique U–Pb zircon age records suggesting distinctive tectonothermal histories. Plate accretion and rifting in the eastern part of the Dharwar craton and between the Dharwar and Bastar craton indicate multiple and complex events from 2600 to 500 Ma. The Khammam schist belt, the Dharwar and the Bastar craton were joined together by the end of the Archaean. The Khammam schist belt had experienced additional tectonic events at \(\sim \)1900 and \(\sim \)1600 Ma. The Dharwar and Bastar cratons separated during development of the Pranhita–Godavari (P–G) valley basin at \(\sim \)1600 Ma, potentially linked to the breakup of the Columbia supercontinent and were reassembled during the Mesoproterozoic at about 1000 Ma. This amalgamation process in southern India could be associated with the formation of the Rodinia supercontinent. The Khammam schist belt and the Eastern Ghats mobile belt also show evidence for accretionary processes at around 500 Ma, which is interpreted as a record of Pan-African collisions during the Gondwana assembly. From then on, southern India, as is known today, formed an integral part of the Indian continent.  相似文献   

5.
A number of limestone and metasomatised carbonate xenoliths occur in the 1,090 Ma Siddanpalli kimberlite cluster, Raichur kimberlite Field, Eastern Dharwar craton, southern India. These xenoliths are inferred to have been derived from the carbonate horizons of the Kurnool (Palnad) and Bhima Proterozoic basins and provide evidence for a connection between these basins in the geological past. A revised Mesoproterozoic age is proposed for the Bhima and Kurnool (Palnad) basins based on this kimberlite association and is in agreement with similar proposals made recently for the Chattisgarh and Upper Vindhyan sediments in Central India. The observed Bhima–Kurnool interbasinal uplift may have been caused by: (1) extension- or plume-related mafic alkaline magmatism that included the emplacement of the southern Indian kimberlites at ~1.1 Ga, (2) mantle plume-related doming of the peninsular India during the Cretaceous, or (3) Quaternary differential uplift in this region. It is not possible, with the currently available geological information to constrain the exact timing of this uplift. The deep erosion of primary diamond sources in the Raichur kimberlite Field in the upper reaches of the Krishna River caused by this uplift could be the elusive source of the alluvial diamonds of the Krishna valley. Mesoproterozoic sedimentary basins can host world class unconformity-type uranium deposits. In light of its inferred Mesoproterozoic age, a more detailed stratigraphic and metallogenic analysis of the Kurnool basin is suggested for uranium exploration.  相似文献   

6.
New mineralogical and bulk-rock geochemical data for the recently recognised Mesoproterozoic(ca.1100 Ma) and late Cretaceous(ca.90 Ma) kimberlites in the Timmasamudram cluster(TKC) of the Wajrakarur kimberlite field(WKF),Eastern Dharwar Craton,southern India,are presented.On the basis of groundmass mineral chemistry(phlogopite,spinel,perovskite and clinopyroxene),bulk-rock chemistry(SiO_2.K_2O,low TiO_2.Ba/Nb and La/Sm),and perovskite Nd isotopic compositions,the TK-1(macrocrystic variety) and TK-4(Macrocrystic variety) kimberlites in this cluster are here classified as orangeites(i.e.Group Ⅱ kimberlites),with geochemical characteristics that are very similar to orangeites previously described from the Bastar Craton in central India,as well as the Kaapvaal Craton in South Africa.The remaining kimberlites(e.g.,TK-2,TK-3 and the TK-1 microcrystic variant),are more similar to other 1100 Ma,Group Ⅰ-type kimberlites of the Eastern Dharwar Craton,as well as the typical Group Ⅰkimberlites of the Kaapvaal Craton.Through the application of geochemical modelling,based on published carbonated peridotite/melt trace element partition coefficients,we show that the generation of the TKC kimberlites and the orangeites results from low degrees of partial melting of a metasomatised,carbonated peridotite.Depleted mantle(T_(DM)) Nd perovskite model ages of the 1100 Ma Timmasamudram kimberlites show that the metasornatic enrichment of their source regions are broadly similar to that of the Mesoproterozoic kimberlites of the EDC.The younger,late Cretaceous(ca.90 Ma) TK-1(macrocrystic variant)and TK-4 kimberlites,as well as the orangeites from the Bastar Craton,share similar Nd model ages of1100 Ma,consistent with a similarity in the timing of source enrichment during the amalgamation of Rodinia supercontinent.The presence of late Cretaceous diamoncliferous orangeite activity,presumably related to the location of the Marion hotspot in southern India at the time,suggests that thick Iithosphere was preserved,at least locally,up to the late Cretaceous,and was not entirely destroyed during the breakup of Gondwana,as inferred by some recent geophysical models.  相似文献   

7.
We report groundmass perovskite U–Pb (SIMS) ages, perovskite Nd isotopic (LA-ICPMS) composition and bulk-rock geochemical data of the Timmasamudram diamondiferous kimberlite cluster, Wajrakarur kimberlite field, in the Eastern Dharwar craton of southern India. The kimberlite pipes gave similar Mesoproterozoic ages of 1086 ± 19 Ma (TK-1, microcrystic variant) and 1119 ± 12 Ma (TK-3). However, a perovskite population sampled from the macrocrystic variant of TK-1 gave a much younger Late Cretaceous age of ca. 90 Ma. This macrocrystic kimberlite phase intrudes the Mesoproterozoic microcrystic phase and has a distinct bulk-rock geochemistry. The Nd-isotope composition of the ~ 1100 Ma perovskites in the cluster show depleted εNd(T) values of 2.1 ± 0.6 to 6.7 ± 0.3 whereas the ~ 90 Ma perovskites have enriched εNd(T) values of − 6.3 ± 1.3. The depleted-mantle (DM) model age of the Cretaceous perovskites is 1.2 Ga, whereas the DM model age of the Proterozoic perovskites is 1.2 to 1.5 Ga. Bulk-rock incompatible trace element ratios (La/Sm, Gd/Lu, La/Nb and Th/Nb) of all Timmasamudram kimberlites show strong affinity with those from the Cretaceous Group II kimberlites from the Bastar craton (India) and Kaapvaal craton (southern Africa). As the Late Cretaceous age of the younger perovskites from the TK-1 kimberlite is indistinguishable from that of the Marion hotspot-linked extrusive and intrusive igneous rocks from Madagascar and India, we infer that all may be part of a single Madagascar Large Igneous Province. Our finding constitutes the first report of Cretaceous kimberlite activity from southern India and has significant implications for its sub-continental lithospheric mantle evolution and diamond exploration programs.  相似文献   

8.
The Late Cretaceous (ca. 100 Ma) diamondiferous Fort à la Corne (FALC) kimberlite field in the Saskatchewan (Sask) craton, Canada, is one of the largest known kimberlite fields on Earth comprising essentially pyroclastic kimberlites. Despite its discovery more than two decades ago, petrological, geochemical and petrogenetic aspects of the kimberlites in this field are largely unknown. We present here the first detailed petrological and geochemical data combined with reconnaissance Nd isotope data on drill-hole samples of five major kimberlite bodies. Petrography of the studied samples reveals that they are loosely packed, clast-supported and variably sorted, and characterised by the presence of juvenile lapilli, crystals of olivine, xenocrystal garnet (peridotitic as well as eclogitic paragenesis) and Mg-ilmenite. Interclast material is made of serpentine, phlogopite, spinel, carbonate, perovskite and rutile. The mineral compositions, whole-rock geochemistry and Nd isotopic composition (Nd: + 0.62 to − 0.37) are indistinguishable from those known from archetypal hypabyssal kimberlites. Appreciably lower bulk-rock CaO (mostly < 5 wt%) and higher La/Sm ratios (12–15; resembling those of orangeites) are a characteristic feature of these rocks. Their geochemical composition excludes any effects of significant crustal and mantle contamination/assimilation. The fractionation trends displayed suggest a primary kimberlite melt composition indistinguishable from global estimates of primary kimberlite melt, and highlight the dominance of a kimberlite magma component in the pyroclastic variants. The lack of Nb-Ta-Ti anomalies precludes any significant role of subduction-related melts/fluids in the metasomatism of the FALC kimberlite mantle source region. Their incompatible trace elements (e.g., Nb/U) have OIB-type affinities whereas the Nd isotope composition indicates a near-chondritic to slightly depleted Nd isotope composition. The Neoproterozoic (~ 0.6–0.7 Ga) depleted mantle (TDM) Nd model ages coincide with the emplacement age (ca. 673 Ma) of the Amon kimberlite sills (Baffin Island, Rae craton, Canada) and have been related to upwelling protokimberlite melts during the break-up of the Rodinia supercontinent and its separation from Laurentia (North American cratonic shield). REE inversion modelling for the FALC kimberlites as well as for the Jericho (ca. 173 Ma) and Snap Lake (ca. 537 Ma) kimberlites from the neighbouring Slave craton, Canada, indicate all of their source regions to have been extensively depleted (~ 24%) before being subjected to metasomatic enrichment (1.3–2.2%) and subsequent small-degree partial melting. These findings are similar to those previously obtained on Mesozoic kimberlites (Kaapvaal craton, southern Africa) and Mesoproterozoic kimberlites (Dharwar craton, southern India). The striking similarity in the genesis of kimberlites emplaced over broad geological time and across different supercontinents of Laurentia, Gondwanaland and Rodinia, highlights the dominant petrogenetic role of the sub-continental lithosphere. The emplacement of the FALC kimberlites can be explained both by the extensive subduction system in western North America that was established at ca. 150 Ma as well as by far-field effects of the opening of the North Atlantic ocean during the Late Cretaceous.  相似文献   

9.
The Archaean-Proterozoic Dharwar craton has many recorded occurrences of diamondiferous kimberlites. Reports of kimberlite emplacement in parts of the tectonically complex eastern Dharwar craton and a significant density contrast between kimberlites and the host peninsular gneisses motivated us to conduct gravity studies in the Narayanpet-Irladinne area of the eastern Dharwar craton. This region is contiguous with the Maddur-Narayanpet kimberlite that lies to its north, while the river Krishna lies to its south. From observed association of reported kimberlites in the Maddur-Narayanpet field with subsurface topography of the assumed three-layer earth section obtained by Bouguer gravity modelling, we developed a subsurface criterion for occurrence of kimberlites in the present study area. Using this criterion, five potential zones for kimberlite localization were identified in the Narayanpet-Irladinne region, eastern Dharwar craton.  相似文献   

10.
This study examines the major element composition of mantle-derived garnets recovered from heavy mineral concentrates of several Proterozoic kimberlites of the diamondiferous Wajrakarur Kimberlite Field (WKF) and the almost barren Narayanpet Kimberlite Field (NKF) in the Eastern Dharwar Craton of southern India. Concentrate garnets are abundant in the WKF kimberlites, and notably rare in the NKF kimberlites. Chemical characteristics of the pyropes indicate that the lithology of the sub-continental lithospheric mantle (SCLM) beneath both the kimberlite fields was mainly lherzolitic at the time of kimberlite eruption. A subset of green pyropes from the WKF is marked by high CaO and Cr2O3 contents, which imply contribution from a wehrlitic source. The lithological information on SCLM, when studied alongside geobarometry of lherzolite and harzburgite xenoliths, indicates that there are thin layers of harzburgite within a dominantly lherzolitic mantle in the depth interval of 115–190 km beneath the WKF. In addition, wehrlite and olivine clinopyroxenite occur locally in the depth range of 120–130 km. Mantle geotherm derived from xenoliths constrains the depth of graphite–diamond transition to 155 km beneath the kimberlite fields. Diamond in the WKF thus could have been derived from both lherzolitic and harzburgitic lithologies below this depth. The rarity of diamond and garnet xenocrysts in the NKF strongly suggest sampling of shallower (<155 km depth) mantle, and possibly a shallower source of kimberlite magma than at the WKF.  相似文献   

11.
The Siddanpalli kimberlites constitute a newly discovered cluster (SKC) of Mesoproterozoic (1090 Ma) dykes occurring in the granite-greenstone terrain of the Gadwal area in the Eastern Dharwar Craton (EDC), Southern India. They belong to coherent facies and contain serpentinized olivines (two generations), phlogopite, spinel, perovskite, ilmenite, apatite, carbonate and garnet xenocrysts. A peculiar feature of these kimberlites is the abundance of carbonate and limestone xenoliths of the eroded platformal Proterozoic (Purana) sedimentary cover of Kurnool/Bhima age. Chemically, the Siddanpalli dykes are the most magnesium-rich (up to 35 wt.% MgO) and silica-undersaturated (SiO2?<?35 wt.%) of all kimberlites described so far from the Eastern Dharwar Craton. The La/Yb ratio in the Siddanpalli kimberlites (64–105) is considerably lower than that in the other EDC kimberlites (108–145), primarily owing to their much higher HREE abundances. Since there is no evidence of any crustal contamination by granitic rocks we infer this to be a specific character of the magmatic source. A comparison of the REE geochemistry of the Siddanpalli kimberlites with petrogenetic models for southern African kimberlites suggests that they display involvement of a wide range in the degree of melting in their genesis. The different geochemical signatures of the SKC compared to the other known kimberlites in the EDC can be explained by a combination of factors involving: (i) higher degrees of partial melting; (ii) relatively shallower depths of derivation; (iii) possible involvement of subducted component in their mantle source region; and (iv) previous extraction of boninitic magmas from their geological domain.  相似文献   

12.
《地学前缘(英文版)》2020,11(3):793-805
Detailed mineralogy,bulk rock major,trace and Sr-Nd isotope compositions,and ~(40)Ar/~(39)Ar dating of the Pipe-8 diamondiferous ultramafic intrusion in the Wajrakarur cluster of southern India,is reported.Based on the presence of Ti-rich phlogopite,high Na/K content in amphibole,Al-and Ti-rich diopside,a titanomagnetite trend in spinel and the presence of Ti-rich schorlomite garnet and carbonates in the groundmass,the Pipe-8 intrusion is here more precisely classified as an ultramafic lamprophyre(i.e.,aillikite).An aillikite affinity of the Pipe-8 intrusion is further supported by the bulk rock major and trace element and Sr-Nd isotope geochemistry.Sr-Nd isotope data are consistent with a common,moderately depleted upper mantle source region for both the Pipe-8 aillikite as well as the Wajrakarur kimberlites of southern India.A phlogopite-rich groundmass ~(40)Ar/~(39)Ar plateau age of 1115.8±7.9 Ma(2σ) for the Pipe-8 intrusion falls within a restricted 100 Ma time bracket as defined by the 1053-1155 Ma emplacement ages of kimberlites and related rocks in India.The presence of ultramafic lamprophyres,carbonatites,kimberlites,and olivine lamproites in the Wajrakarur kimberlite field requires low degrees of partial melting of contrasting metasomatic assemblages in a heterogeneous sub-continental lithospheric mantle.The widespread association of kimberlite and other mantle-derived magmatism during the Mesoproterozoic(ca.1.1 Ga) have been interpreted as being part of a single large igneous province comprising of the Kalahari,Australian,West Laurentian and Indian blocks of the Rodinia supercontinent that were in existence during its assembly.In India only kimberlite/lamproite/ultramafic lamprophyre magmatism occurred at this time without the associated large igneous provinces as seen in other parts of Rodinia.This may be because of the separated paleo-latitudinal position of India from Australia during the assembly of Rodinia.It is speculated that the presence of a large plume at or close to 1.1 Ga within the Rodinian supercontinent,with the Indian block located on its periphery,could be the reason for incipient melting of lithospheric mantle and the consequent emplacement of only kimberlites and other ultramafic,volatile rich rocks in India due to comparatively low thermal effects from the distant plume.  相似文献   

13.
The sediments from three stratigraphic levels in the Bababudan schist belt of Dharwar craton exhibit great diversity in major, trace and rare earth element (REE) geochemistry and thus interpreted to represent significant compositional variation in the source rocks. Detailed geological and geochemical studies have been carried out on clastic rocks constituting the Archaean Sargur supracrustals and the Bababudan belt of Dharwar craton (DC), southern India for understanding the geochemical characteristics and to define the Archaean-Proterozoic Boundary (APB/QPC) in southern India. There is significant contrast in the geochemical signatures for the sediments from these stratigraphic levles. The Sargur enclave population is characterised by slight LREE enrichment with (La/Sm)N ranging from 1.45 to 3.58, almost flat HREE with (Gd/Yb)N ranging from 0.65 to 1.29 with Eu/Eu* ranging from 0.49 to 0.91 suggesting mafic-ultramafic source rocks in the provenance. On the other hand, the Post QPC (PQPC) rocks are characterised by LREE enrichment with (La/Sm)N ranging from 2.66 to 7.07, nearly flat HREE with (Gd/Yb)N ranging from 0.58 to 0.95 and significant depletion of Eu with Eu/Eu* ranging from 0.34 to 0.85, indicating felsic province in the source area. The conglomerates and quartzites representing the QPC are showing mixed nature of these, reflecting the transitional character in depositional environment. Increase in abundance of REE, K2O/Na2O, Th/Sc, La/Sc, Th/U, Hf/Ta and Zr/Y ratios are characteristic of the QPC. The PQPC sediments are enriched in Th, U and HFSE like Hf, Nb, Zr and Y, and depleted in Co and Eu than their older counterparts. These geochemical signatures signify the dominance of mafic-ultramafic rocks in the source area for Sargur rocks and the existence of granite-granodiorite for PQPC clastics. Thus, the unconformity related oligomictic quartz pebble conglomerates (QPC) and quartzites at the base of Bababudan Group resembling the QPC of Witswaterand, South Africa signifies that a stable continental crust had already developed in southern India prior to ∼3.0Ga.  相似文献   

14.
Discovery of diamondiferous kimberlites in the Mainpur Kimberlite Field, Raipur District, Chhattisgarh in central India, encouraged investigation of similar bodies in other parts of the Bastar craton. The earlier known Tokapal ultramafic intrusive body, located beyond the 19-km milestone in Tokapal village along the Jagdalpur–Geedam road, was reinterpreted as crater-facies kimberlite. Its stratigraphic position in the Meso-Neoproterozoic intracratonic sedimentary Indravati basin makes it one of the oldest preserved crater-facies kimberlite systems. Ground and limited subsurface data (dug-, tube-wells and exploratory boreholes) have outlined an extensive surface area (>550 ha) of the kimberlite. The morphological and surface color features of this body on enhanced satellite images suggest that there is a central feeder surrounded by a collar and wide pyroclastic apron. Exploration drilling indicates that the central zone probably corresponds to a vent overlain by resedimented volcaniclastic (epiclastic) rocks that are surrounded by a 2-km-wide spread of pyroclastic rocks (lapilli tuff, tuff/ash beds and volcaniclastic breccia). Drill-holes also reveal that kimberlitic lapilli tuffs and tuffs are sandwiched between the Kanger and Jagdalpur Formations and also form sills within the sedimentary sequence of the Indravati basin. The lapilli tuffs are commonly well stratified and display slumping. Base surges and lava flows occur in the southern part of the Tokapal system. The geochemistry and petrology of the rock correspond to average Group I kimberlite with a moderate degree of contamination. However, the exposed rock is intensely weathered and altered with strong leaching of mobile elements (Ba, Rb, Sr). Layers of vesicular fine-grained glassy material represent kimberlitic lava flows. Tuffs containing juvenile lapilli with pseudomorphed olivine macrocrysts are set in a talc–serpentine–carbonate matrix with locally abundant spinel and sphene. Garnet has not been observed, and phlogopite is very rare. Very limited microdiamond testing (two 18-kg samples) proved negative; however, the composition of chromite grains indicate crystallization in the diamond stability field.  相似文献   

15.

Five compositional-textural types of ilmenite can be distinguished in nine kimberlites from the Eastern Dharwar craton of southern India. These ilmenite generations record different processes in kimberlite history, from mantle to surface. A first generation of Mg-rich ilmenite (type 1) was produced by metasomatic processes in the mantle before the emplacement of the kimberlite. It is found as xenolithic polycrystalline ilmenite aggregates as well as megacrysts and macrocrysts. All of these ilmenite forms may disaggregate within the kimberlite. Due to the interaction with low-viscosity kimberlitic magma replacement of pre-existing type 1 ilmenite by a succeeding generation of geikielite (type 2) along grain boundaries and cracks occurs. Another generation of Mg-rich ilmenite maybe produced by exsolution processes (type 3 ilmenite). Although the identity of the host mineral is unclear due to extensive alteration and possibility includes enstatite. Type 4 Mn-rich ilmenite is produced before the crystallization of groundmass perovskite and ulvöspinel. It usually mantles ilmenite and other Ti-rich minerals. Type 5 Mn-rich ilmenite is produced after the crystallization of the groundmass minerals and replaces them. The contents of Cr and Nb in type 2, 4 and 5 ilmenites are highly dependent on the composition of the replaced minerals, they may not be a good argument in exploration. The highest Mg contents are recorded in metasomatic ilmenite that is produced during kimberlite emplacement, and cannot be associated with diamond formation. The higher Mn contents are linked to magmatic processes and also late processes clearly produced after the crystallization of the kimberlite groundmass, and therefore ilmenite with high Mn contents cannot be considered as a reliable diamond indicator mineral (DIM) and kimberlite indicator mineral (KIM).

  相似文献   

16.
We report a rare accessory groundmass mineral of K-rich titanate, having a composition close to that of potassium triskaidecatitanate (K2Ti13O27), from an underground drill-core sample of ultrapotassic rock from southwestern part of the Jharia coal field in the Damodar valley, at the northern margin of the Singhbhum craton, Eastern India. Potassium triskaidecatitanate is regarded as a typomorphic mineral of orangeites (Group II kimberlites) of Kaapvaal craton, southern Africa, and its occurrence in the Jharia ultrapotassic rock is significant since ultrapotassic suite of rocks elsewhere from the Damodar valley have been recently suggested to be peralkaline lamproites based on mineral-genetic classification. The important role played by a unique geodynamic setting (involving a thinned metasomatised lithospheric mantle and inheritance of an Archaean subduction component) at the northern margin of the Singhbhum craton in deciding the petrological diversity of the early Cretaceous ultrapotassic intrusives from the Damodar valley is highlighted in this study.  相似文献   

17.
Early Proterozoic kimberlites of Karelia are among the most ancient diamond-bearing primary source rocks in the world. They compose the large (2.0 × 0.8 km) Kimozero body localized in the predicted Zaonezhskoe kimberlite field. The established and assumed occurrences of kimberlite magmatism are located within the Karelian craton, which was stabilized during the Early Archean. They are confined to the central part of a large geophysical anomaly detected by gravity, magnetic, seismic, and heat-flow studies and mark a deep-seated magma chamber. Kimberlite bodies occur within structural blocks bounded by zones of plicative-rupture dislocations.The Kimozero kimberlites form an extensive but thin saucer-like body cut by narrow quasi-cylindrical feeders and dikes. It consists of metamorphosed kimberlites, their breccias and tuffs with widely varying amounts of mica. The body includes fragmentary fine-layered crater formations. The rocks contain olivine and phlogopite phenocrysts in an extremely altered groundmass of serpentine, chlorite, calcite, mica, and ore minerals as well as indicator minerals of kimberlites, such as Cr-spinel, manganiferous ilmenite, Cr-diopside, and rare pyrope. About 100 diamonds were extracted from 12 samples (total weight 815 kg). The crystals are colorless resorbed octahedra and, more seldom, combined octahedra-dodecahedra and spinel twins with abundant green spots caused by natural irradiation, which often make the whole crystal surface green. The diamonds contain inclusions of Mg-rich orthopyroxene and pentlandite suggestive of peridotitic lithospheric mantle derivation and dating of the sulfide inclusion implies a late Archean mantle source. By petrochemistry, the rocks are classified as kimberlites.The Kimozero kimberlites differ from classical Phanerozoic ones in having higher Fe contents, low contents of alkalies and P2O5, and intense superimposed carbonate, magnetite, and amphibole mineralization. The saucer-like bodies with narrow feeders without developed diatremes have no analogs in Russia but are similar to the saucer-like kimberlite bodies in Canada (Fort a la Corne), India (Tokapal), and Central Africa (Bakwanga) and the West Kimberley lamproites in Australia. By analogy with these bodies and on the basis of some common petrographic features (presence of pyroclastics and specific amoeba-like autoliths, scarcity of fragments of the enclosing rocks, local reworking of the deposited matter), the Kimozero kimberlites are considered to be the products of subaerial volcanic central-type eruptions.  相似文献   

18.
Mafic xenoliths of garnet pyroxenite and eclogite from the Wajrakarur, Narayanpet and Raichur kimberlite fields in the Archaean Eastern Dharwar Craton (EDC) of southern India have been studied. The composition of clinopyroxene shows transition from omphacite (3–6 wt% Na2O) in eclogites to Ca pyroxene (<3 wt% Na2O) in garnet pyroxenites. Some of the xenoliths have additional phases such as kyanite, enstatite, chromian spinel or rutile as discrete grains. Clinopyroxene in a rutile eclogite has an XMg value of 0.70, which is unusually low compared to the XMg range of 0.91–0.97 for all other samples. Garnet in the rutile eclogite is also highly iron-rich with an end member composition of Prp26.5Alm52.5Grs14.7Adr5.1TiAdr0.3Sps1.0Uv0.1. Garnets in several xenoliths are Cr-rich with up to 8 mol% knorringite component. Geothermobarometric calculations in Cr-rich xenoliths yield different PT ranges for eclogites and garnet pyroxenites with average PT conditions of 36 kbar and 1080 °C, and 27 kbar and 830 °C, respectively. The calculated PT ranges approximate to a 45 mW m?2 model geotherm, which is on the higher side of the typical range of xenolith/xenocryst geotherms (35–45 mW m?2) for several Archaean cratons in the world. This indicates that the EDC was hotter than many other shield regions of the world in the mid-Proterozoic period when kimberlites intruded the craton. Textural and mineral chemical characteristics of the mafic xenoliths favour a magmatic cumulate process for their origin as opposed to subducted and metamorphosed oceanic crust.  相似文献   

19.
Summary The Mesoproterozoic diamondiferous Majhgawan pipe of central India is re-examined in the light of new and recently published petrological, geochemical and isotope data. This investigation reveals that its tectonic setting is similar to that of lamproites and orangeites (Group II kimberlite of southern Africa) and not that of a typical kimberlite. The petrography and mineralogy are comparable to lamproite and to some extent to orangeite, whereas the major element geochemistry is more akin to that of kimberlite. Trace element geochemistry is closer to that of lamproite but Nd isotope systematics are atypical of lamproite or orangeite. The inferred petrogenesis of the Majhgawan pipe is also similar to that of other such potassic metasomatised mantle magmas without any strong affinity to a particular clan/group.It is demonstrated in this study that the Majhgawan pipe shares the petrological, geochemical and isotope characteristics of all three rock types. It is therefore suggested to constitute a transitional kimberlite–orangeite (Group II kimberlite)–lamproite rock. The existence of such transitional magmas in space and time in other cratons, outside India, is also highlighted. The name majhgawanite is proposed for this rock – keeping in mind the antiquity of the Majhgawan pipe, its intriguing petrological and geochemical characteristics and also on the basis of Indias legacy for introducing diamond to the world – to designate such mafic potassic-ultrapotassic transitional rock types so as to distinguish them from the classical kimberlite, lamproite or orangeite.It is concluded that the correlations between kimberlite petrography, geochemistry and isotopic types (viz., Group I and II), as established for kimberlites in southern Africa, need not be necessarily valid elsewhere. Hence, the recommendations of I.U.G.S. on classification of kimberlite, orangeite and lamproite are clearly inadequate when dealing with the transitional mafic potassic ultrapotassic rocks. It is further stressed that mineralogical, geochemical and isotopic aspects of mafic potassic-ultrapotassic rocks need to be considered in unison before assigning any name as the nomenclature of such exotic and rare alkaline rock types invariably implies economic and tectono-magmatic (regional) significance.  相似文献   

20.
《地学前缘(英文版)》2020,11(6):2127-2139
The Dharwar Craton in Peninsular India was intruded by a series of mafic dykes during the Paleoproterozoic and these mafic magmatic events have important implications on continental rifting and LIPs. Here we report ten precise Pb–Pb TE-TIMS age determinations on baddeleyite grains separated from seven mafic dykes and three sills, intruding into Archean basement rocks and Proterozoic sedimentary formations of the Eastern Dharwar Craton respectively. The crystallization age of the baddeleyite shows 2366.3 ​± ​1.1 ​Ma, and 2369.2 ​± ​0.8 ​Ma for the NE–SW trending dykes, 2368.1 ​± ​0.6 ​Ma, 2366.4 ​± ​0.8 ​Ma, 2207.2 ​± ​0.7 ​Ma and 1887.3 ​± ​1.0 ​Ma for the ENE–WNW to E–W striking dykes, 1880.6 ​± ​1.0 ​Ma, 1864.3 ​± ​0.6 ​Ma and 1863.6 ​± ​0.9 ​Ma for Cuddapah sills, and 1861.8 ​± ​1.4 ​Ma for the N–S trending dyke. Our results in conjunction with those from previous studies identify eight distinct stages of widespread Paleoproterozoic magmatism in the Dharwar craton. The mantle plume centres of the four radiating dyke swarms with ages of ~2367 ​Ma, ~2210 ​Ma, ~2082 ​Ma, and ~1886 ​Ma were traced to establish their proximity to the EDC kimberlite province. Though the ~2367 ​Ma and ~1886 ​Ma plume centres are inferred to be located to the west and east of the present day Dharwar craton respectively away from the kimberlite province, location of plume heads of the other two swarms with ages of ~2207 ​Ma and ~2082 ​Ma are in close proximity. In spite of the ubiquitous occurrence of dyke intrusions of all the seven generations in the kimberlite province, only few of these kimberlites are diamondiferous. Kimberlite occurrences elsewhere in the vicinity of older Large Igneous Provinces (LIPs) like the Mackenzie, Karoo, Parana-Etendeka and Yakutsk-Vilui are also non-diamondiferous. This has been attributed to the destruction of the lithospheric mantle keel (that hosts the diamonds) by the respective mantle plumes. The diamondiferous nature of the EDC kimberlites therefore suggests that plume activity does not always result in the destruction of the mantle keel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号