首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sixteen kimberlite boulders were collected from three sites on the Munro and Misema River Eskers in the Kirkland Lake kimberlite field and one site on the Sharp Lake esker in the Lake Timiskaming kimberlite field. The boulders were processed for heavy-mineral concentrates from which grains of Mg-ilmenite, chromite, garnet, clinopyroxene and olivine were picked, counted and analyzed by electron microprobe. Based on relative abundances and composition of these mineral phases, the boulders could be assigned to six mineralogically different groups, five for the Kirkland Lake area and one for the Lake Timiskaming area. Their indicator mineral composition and abundances are compared to existing data for known kimberlites in both the Kirkland Lake and Lake Timiskaming areas. Six boulders from the Munro Esker form a compositionally homogeneous group (I) in which the Mg-ilmenite population is very similar to that of the A1 kimberlite, located 7–12 km N (up-ice), directly adjacent to the Munro esker in the Kirkland Lake kimberlite field. U–Pb perovskite ages of three of the group I boulders overlap with that of the A1 kimberlite. Three other boulders recovered from the same localities in the Munro Esker also show some broad similarities in Mg-ilmenite composition and age to the A1 kimberlite. However, they are sufficiently different in mineral abundances and composition from each other and from the A1 kimberlite to assign them to different groups (II–IV). Their sources could be different phases of the same kimberlite or—more likely—three different, hitherto unknown kimberlites up-ice of the sample localities along the Munro Esker in the Kirkland Lake kimberlite field. A single boulder from the Misema River esker, Kirkland Lake, has mineral compositions that do not match any of the known kimberlites from the Kirkland Lake field. This suggests another unknown kimberlite exists in the area up-ice of the Larder Lake pit along the Misema River esker. Six boulders from the Sharp Lake esker, within the Lake Timiskaming field, form a homogeneous group with distinct mineral compositions unmatched by any of the known kimberlites in the Lake Timiskaming field. U–Pb perovskite age determinations on two of these boulders support this notion. These boulders are likely derived from an unknown kimberlite source up-ice from the Seed kimberlite, 4 km NW of the Sharp Lake pit, since indicator minerals with identical compositions to those of the Sharp Lake boulders have been found in till samples collected down-ice from Seed. Based on abundance and composition of indicator minerals, most importantly Mg-ilmenite, and supported by U–Pb age dating of perovskite, we conclude that the sources of 10 of the 16 boulders must be several hitherto unknown kimberlite bodies in the Kirkland Lake and Lake Timiskaming kimberlite fields.  相似文献   

2.
During the Middle Pleistocene late Saalian glaciation of northern central Europe numerous pro‐glacial lakes formed along the southwestern margin of the Scandinavian Ice Sheet. Little is known about the drainage history of these lakes, the pathways of glacial lake outburst floods and their impacts on erosion, sedimentation and landscape evolution. This study investigated the impact of the late Saalian Weser and Münsterland Lake (Germany) outburst floods. In particular, we reconstructed the routing and flow dynamics of the lake outburst flood and analysed the flood related sediments. We employed one‐dimensional hydraulic modelling to calculate glacial lake outburst flood hydrographs. We modelled the flow pathway and local flow conditions along the pathway based on the boundary conditions of two different hydrographs and two different ice‐margin positions. The modelling results were compared with geomorphological and sedimentological field data in order to estimate the magnitude and impact of the flood on erosion and sedimentation. Two major lake drainage events are reconstructed for the study area, during which approximately 90–50 km3 of water was released. Modelling results indicate that the lake outburst floods created a high‐energy flood wave with a height of 35–50 m in confined valley areas that rapidly spread out into the Lower Rhine Embayment eventually flowing into the North Sea basin. The sedimentary record of the outburst floods comprises poorly sorted coarse‐grained gravel bars, long‐wavelength bedforms and sandy bedforms deposited by supercritical and subcritical flows. Some parts of the sandy flood deposits are rich in reworked mammoth bones or mammoth and horse teeth, pointing to reworking of older fluvial sediments, hydraulic concentration and subsequent re‐sedimentation of vertebrate remains. These deposits are preserved in sheltered areas or at high elevations, well above the influence of postglacial fluvial erosion. The flood‐related erosional features include up to 80‐m‐deep scour pools, alluvial channels and streamlined hills.  相似文献   

3.
The sedimentary records of Nulhegan Pond and Beecher Pond in the Nulhegan Basin of north‐eastern Vermont were analyzed to yield a history of environmental change since the latest Pleistocene. Shoreline landforms indicate that part of the Nulhegan Basin was inundated by Glacial Lake Nulhegan (GLN), which was impounded behind a dam of glacial sediment. Outwash derived from stagnant ice forms the bottom 176 cm of the Nulhegan Pond core. Fine‐grained inorganic sediment deposited between 13.4 and 12.2k cal a BP is interpreted as a deep‐water facies representing GLN, while coarser sediment from 12.2 to 11.8k cal a BP records draining of the glacial lake. Rapid, simultaneous increases in organic matter and biogenic silica signal the onset of productivity following the Younger Dryas. Beecher Pond formed c. 11.3k cal a BP through surface collapse over a buried ice block; buried stagnant ice may have persisted in the vicinity of the pond into the early Holocene. From 8.9 to 5.5k cal a BP, sediment in both lakes became coarser and richer in aquatic organic matter, suggesting a low‐water phase in which previously deposited lacustrine sediments were reworked and the littoral zone shifted basinward. Low water levels at this time are consistent with other records from Maine and southern Quebec, but contrary to records from ~325 km to the south. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This study is an attempt to contribute to the data set of granulometric studies of sediments by measuring the sedimentary structure and texture, along with statistical parameters, of cold and arid lake systems. The palaeolake sequence along the River Indus on the western fringe of the Tibetan Plateau in Ladakh sector was selected in order to shed light on depositional environmental changes within the lake from post‐last glacial maximum to 5 ka. The River Indus was blocked by Lamayuru dam burst during the deglaciation, after the Last Glacial Maximum (LGM) and the subsequent increase in water level led to the formation of the Saspol–Khalsi palaeolake. This lake was ca 55 km in length, extending from Nimo to Khalsi, had a surface area of 370 km2 and was in existence until 5 ka. Two sections (Saspol and Khalsi) separated by an aerial distance of 35 km show a similar trend in sediment character due to their deposition in the same lake system. Grain‐size studies show a polymodal nature of sediments for both of the sections. However, sediments of the lower/downstream section (Khalsi) show a poorer degree of sorting, and coarser grain size and high energy depositional condition as compared with the sediments of Saspol section (positioned upstream) due to the location of the sections within the lake system. It was noted that, in high‐altitude arid regions, the sedimentological characteristics of large‐sized valley lakes may vary greatly, horizontally as well as vertically, owing to local stream input, inflow intensity from the catchment, outflow velocity of water channels, lithology and valley widths at the different sites.  相似文献   

5.
Questions persist concerning the earthquake potential of the populous and industrial Lake Ontario (Canada–USA) area. Pertinent to those questions is whether the major fault zone that extends along the St. Lawrence River valley, herein named the St. Lawrence fault zone, continues upstream along the St. Lawrence River valley at least as far as Lake Ontario or terminates near Cornwall (Ontario, Canada)–Massena (NY, USA). New geological studies uncovered paleotectonic bedrock faults that are parallel to, and lie within, the projection of that northeast-oriented fault zone between Cornwall and northeastern Lake Ontario, suggesting that the fault zone continues into Lake Ontario. The aforementioned bedrock faults range from meters to tens of kilometers in length and display kinematically incompatible displacements, implying that the fault zone was periodically reactivated in the study area. Beneath Lake Ontario the Hamilton–Presqu'ile fault lines up with the St. Lawrence fault zone and projects to the southwest where it coincides with the Dundas Valley (Ontario, Canada). The Dundas Valley extends landward from beneath the western end of the lake and is marked by a vertical stratigraphic displacement across its width. The alignment of the Hamilton–Presqu'ile fault with the St. Lawrence fault zone strongly suggests that the latter crosses the entire length of Lake Ontario and continues along the Dundas Valley.The Rochester Basin, an east–northeast-trending linear trough in the southeastern corner of Lake Ontario, lies along the southern part of the St. Lawrence fault zone. Submarine dives in May 1997 revealed inclined layers of glaciolacustrine clay along two different scarps within the basin. The inclined layers strike parallel to the long dimension of the basin, and dip about 20° to the north–northwest suggesting that they are the result of rigid-body rotation consequent upon post-glacial faulting. Those post-glacial faults are growth faults as demonstrated by the consistently greater thickness, unit-by-unit, of unconsolidated sediments on the downthrown (northwest) side of the faults relative to their counterparts on the upthrown (southeast) side. Underneath the western part of Lake Ontario is a monoclinal warp that displaces the glacial and post-glacial sediments, and the underlying bedrock–sediment interface. Because of the post-glacial growth faults and the monoclinal warp the St. Lawrence fault zone is inferred to be tectonically active beneath Lake Ontario. Furthermore, within the lake it crosses at least five major faults and fault zones and coexists with other neotectonic structures. Those attributes, combined with the large earthquakes associated with the St. Lawrence fault zone well to the northeast of Lake Ontario, suggest that the seismic risk in the area surrounding and including Lake Ontario is likely much greater than previously believed.  相似文献   

6.
We present evidence of a large lake (Glacial Lake Victoria) that existed in Victoria Valley in the dry valleys region of Antarctica between at least 20 000 and 8600 14C yr BP. At its highstands, Glacial Lake Victoria covered 100 km2 and was ca. 200 m deep. The chronology for lake‐level changes comes from 87 AMS radiocarbon dates of lacustrine algae preserved in deltas and glaciolacustrine deposits that extend up to 185 m above present‐day lakes on the valley floor. The existence of Glacial Lake Victoria, as well as other large lakes in the dry valleys, indicates a climate regime significantly different from that of today at the last glacial maximum and in the early Holocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The stratigraphy of the last deglaciation sequence is investigated in Lake Saint‐Jean (Québec Province, Canada) based on 300 km of echo‐sounder two dimensional seismic profiles. The sedimentary archive of this basin is documented from the Late Pleistocene Laurentidian ice‐front recession to the present‐day situation. Ten seismic units have been identified that reflect spatio‐temporal variations in depositional processes characterizing different periods of the Saint‐Jean basin evolution. During the postglacial marine flooding, a high deposition rate of mud settling, from proglacial glacimarine and then prodeltaic plumes in the Laflamme Gulf, produced an extensive, up to 50 m thick mud sheet draping the isostatically depressed marine basin floor. Subsequently, a closing of the water body due to glacio‐isostatic rebound occurred at 8.5 cal. ka BP, drastically modifying the hydrodynamics. Hyperpycnal flows appeared because fresh lake water replaced dense marine water. River sediments were transferred towards the deeper part of the lake into river‐related sediment drifts and confined lobes. The closing of the water body is also marked by the onset of a wind‐driven internal circulation associating coastal hydrodynamics and bottom currents with sedimentary features including shoreface deposits, sediment drifts and a prograding shelf‐type body. The fingerprints of a forced regression are well expressed by mouth‐bar systems and by the shoreface–shelf system, the latter unexpected in such a lacustrine setting. In both cases, a regressive surface of lacustrine erosion (RSLE) has been identified, separating sandy mouth‐bar from glaciomarine to prodeltaic muds, and sandy shoreface wedges from the heterolithic shelf‐type body, respectively. The Lake Saint‐Jean record is an example of a regressive succession driven by a glacio‐isostatic rebound and showing the transition from late‐glacial to post‐glacial depositional systems.  相似文献   

8.
Our knowledge about the glaciation history in the Russian Arctic has to a large extent been based on geomorphological mapping supplemented by studies of short stratigraphical sequences found in exposed sections. Here we present new geochronological data from the Polar Ural Mountains along with a high‐resolution sediment record from Bolshoye Shchuchye, the largest and deepest lake in the mountain range. Seismic profiles show that the lake contains a 160‐m‐thick sequence of unconsolidated lacustrine sediments. A well‐dated 24‐m‐long core from the southern end of the lake spans the last 24 cal. ka. From downward extrapolation of sedimentation rates we estimate that sedimentation started about 50–60 ka ago, most likely just after a large glacier had eroded older sediments from the basin. Terrestrial cosmogenic nuclide (TCN) exposure dating (10Be) of boulders and Optically Stimulated Luminescence (OSL) dating of sediments indicate that this part of the Ural Mountains was last covered by a coherent ice‐field complex during Marine Isotope Stage (MIS) 4. A regrowth of the glaciers took place during a late stage of MIS 3, but the central valleys remained ice free until the present. The presence of small‐ and medium‐sized glaciers during MIS 2 is reflected by a sequence of glacial varves and a high sedimentation rate in the lake basin and likewise from 10Be dating of glacial boulders. The maximum extent of the mountain glaciers during MIS 2 was attained prior to 24 cal. ka BP. Some small present‐day glaciers, which are now disappearing completely due to climate warming, were only slightly larger during the Last Glacial Maximum (LGM) as compared to AD 1953. A marked decrease in sedimentation rate around 18–17 cal. ka BP indicates that the glaciers then became smaller and probably disappeared altogether around 15–14 cal. ka BP.  相似文献   

9.
10.
The Late Pleistocene to Middle Holocene African Humid Period (AHP) was characterized by dramatic hydrologic fluctuations in the tropics. A better knowledge of the timing, spatial extent, and magnitude of these hydrological fluctuations is essential to decipher the climate-forcing mechanisms that controlled them. The Suguta Valley (2°N, northern Kenya Rift) has recorded extreme environmental changes during the AHP. Extensive outcrops of lacustrine sediments, ubiquitous wave-cut notches, shorelines, and broad terrace treads along the valley margins are the vestiges of Lake Suguta, which once filled an 80 km long and 20 km wide volcano–tectonic depression. Lake Suguta was deep between 16.5 and 8.5 cal ka BP. During its maximum highstand, it attained a water depth of ca 300 m, a surface area of ca 2150 km2, and a volume of ca 390 km3. The spatial distribution of lake sediments, the elevation of palaeo-shorelines, and other geomorphic evidences suggest that palaeo-Lake Suguta had an overflow towards the Turkana basin to the north. After 8.5 cal ka BP, Lake Suguta abruptly disappeared. A comparison of the Lake Suguta water-level curve with other reconstructed water levels from the northern part of the East African Rift System shows that local insolation, which is dominated by precessional cycles, may have controlled the timing of lake highstands in this region. Our data show that changes of lake levels close to the Equator seem to be driven by fluctuations of spring insolation, while fluctuations north of the Equator are apparently related to variations in summer insolation. However, since these inferred timings of lake-level changes are mostly based on the radiocarbon dating of carbonate shells, which may have been affected by a local age reservoir, alternative dating methods are needed to support this regional synthesis. Between 12.7 and 11.8 cal ka BP, approximately during the Northern Hemisphere high-latitude Younger Dryas, the water level of Lake Suguta fell by ca 50 m, suggesting that remote influences also affected local hydrology.  相似文献   

11.
A combination of a dense reflection seismic grid and up to 50‐m‐long records from sediment cores and cone penetration tests was used to study the geometry and infill lithology of an E–W‐trending buried tunnel valley in the south‐eastern North Sea. In relation to previously known primarily N–S‐trending tunnel valleys in this area, the geometry and infill of this 38‐km‐long and up to 3‐km‐wide valley is comparable, but its E–W orientation is exceptional. The vertical cross‐section geometry may result from subglacial sediment erosion of advancing ice streams and secondary incision by large episodic meltwater discharges with high flow rates. The infill is composed of meltwater sands and reworked till remnants on the valley flanks that are overlain by late Elsterian rhythmic, laminated, lacustrine fine‐grained sediments towards the centre of the valley. A depression in the valley centre is filled with sediments most likely from the Holsteinian transgression and a subsequent post‐Holsteinian lacustrine quiet‐water setting. The exceptional axis orientation of this tunnel valley points to a regional N–S‐oriented ice front during the late Elsterian. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Turbid meltwater plumes and ice‐proximal fans occur where subglacial streams reach the grounded marine margins of modern and ancient tidewater glaciers. However, the spacing and temporal stability of these subglacial channels is poorly understood. This has significant implications for understanding the geometry and distribution of Quaternary and ancient ice‐proximal fans that can form important aquifers and hydrocarbon reservoirs. Remote‐sensing and numerical‐modelling techniques are applied to the 200 km long marine margin of a Svalbard ice cap, Austfonna, to quantify turbid meltwater‐plume distribution and predict its temporal stability. Results are combined with observations from geophysical data close to the modern ice front to refine existing depositional models for ice‐proximal fans. Plumes are spaced ca 3 km apart and their distribution along the ice front is stable over decades. Numerical modelling also predicts the drainage pattern and meltwater discharge beneath the ice cap; modelled water‐routing patterns are in reasonable agreement with satellite‐mapped plume locations. However, glacial retreat of several kilometres over the past 40 years has limited build‐up of significant ice‐proximal fans. A single fan and moraine ridge is noted from marine‐geophysical surveys. Closer to the ice front there are smaller recessional moraines and polygonal sediment lobes but no identifiable fans. Schematic models of ice‐proximal deposits represent varying glacier‐terminus stability: (i) stable terminus where meltwater sedimentation produces an ice‐proximal fan; (ii) quasi‐stable terminus, where glacier readvance pushes or thrusts up ice‐proximal deposits into a morainal bank; and (iii) retreating terminus, with short still‐stands, allowing only small sediment lobes to build up at melt‐stream portals. These modern investigations are complemented with outcrop and subsurface observations and numerical modelling of an ancient, Ordovician glacial system. Thick turbidite successions and large fans in the Late Ordovician suggest either high‐magnitude events or sustained high discharge, consistent with a relatively mild palaeo‐glacial setting for the former North African ice sheet.  相似文献   

13.
A 10.5 m core from Changeable Lake in the Severnaya Zemlya Archipelago just north of the Taymyr Peninsula intersects ca. 30 cm of diamicton at its base, interpreted as a basal till. Because the upper 10.13 m of this core consists of non‐glacial sediments, a maximum numeric age for these non‐glacial sediments would provide a clear lower limit to the timing of the last glaciation in the area of Changeable Lake. Radiocarbon (14C) dating of several materials from this core yielded widely scattered results. Consequently we applied photonic dating to sediments above the diamicton. The experimental single‐aliquot‐regenerative (SAR) dose fine‐grain method was applied to two samples, using the ‘double SAR’ approach. With one exception, these fine‐grain SAR results and the results of application of the SAR method to sand‐sized quartz grains from two samples, at ca. 9.95 m and ca. 10.05 m depth, are discrepant with age estimates from the multi‐aliquot infrared‐photon‐stimulated luminescence (IR‐PSL) method applied to fine grains. Multi‐aliquot IR‐PSL dating of 10 samples produces ages increasing monotonically from ca. 4 ka at 2 m to 53 ± 4 ka at 9.97 m. These self‐consistent multi‐aliquot IR‐PSL ages, along with limiting 14C ages of >47 ka at ca. 10 m, provide direct evidence that glacial ice did not advance over this lake basin during the Last Glacial Maximum, and thus delimit the northeastern margin of the Barents–Kara Sea ice‐sheet to somewhere west of this archipelago. The last regional glaciation probably occurred during marine isotope stage (MIS) 4 or earlier. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Buried palaeo‐valley systems have been identified widely beneath lowland parts of the UK including eastern England, central England, south Wales and the North Sea. In the Midland Valley of Scotland palaeo‐valleys have been identified yet the age and genesis of these enigmatic features remain poorly understood. This study utilizes a digital data set of over 100 000 boreholes that penetrate the full thickness of deposits in the Midland Valley of Scotland. It identified 18 buried palaeo‐valleys, which range from 4 to 36 km in length and 24 to 162 m in depth. Geometric analysis has revealed four distinct valley morphologies, which were formed by different subglacial and subaerial processes. Some palaeo‐valleys cross‐cut each other with the deepest features aligning east–west. These east–west features align with the reconstructed ice‐flow direction under maximum conditions of the Main Late Devensian glaciation. The shallower features appear more aligned to ice‐flow direction during ice‐sheet retreat, and were therefore probably incised under more restricted ice‐sheet configurations. The bedrock lithology influences and enhances the position and depth of palaeo‐valleys in this lowland glacial terrain. Faults have juxtaposed Palaeozoic sedimentary and igneous rocks and the deepest palaeo‐valleys occur immediately down‐ice of knick‐points in the more resistant igneous bedrock. The features are regularly reused and the fills are dominated by glacial fluvial and glacial marine deposits. This suggests that the majority of infilling of the features happened during deglaciation and may be unrelated to the processes that cut them.  相似文献   

15.
Since 1995 SEVMORGEO has collected wide-angle reflection/refraction profiling (WARRP), multichannel seismic data (MCS) and seismoacoustic profiling, along regional lines 1-AR, 2-AR and 3-AR. These lines cross the whole Barents–Kara Region and Novozemelskiy Fold Belt. As a result, new geological data about the deep structure of the Earth's crust have become available. Four main tectono-stratigraphic units are distinguished in the section of the Earth's crust: (1) a sedimentary cover; (2) the Upper Proterozoic (mainly Riphean for the Barents Plate) and Riphean–Paleozoic (the South-Kara Syneclise) deformed and folded complexes; (3) the upper crystalline crust (granite-gneissic metamorphic Archean–Proterozoic complex); (4) the lower crust (basalt complex). The Barents–Kara Region is characterized by moderately thinned continental and subcontinental crust with an average thickness of 37–39 km. On islands and areas of uplifts with ancient massifs, the thickness of the crust (38–42 km) approaches the typical crust for a continental platform. In the Novozemelskiy Fold Belt the thickness of the crust reaches 40–42 km. Rift-related grabens are characterized by significant crustal thinning with thicknesses of 33–36 km. Several grabens are revealed: the Riphean Graben on the Kola-Kanin Monocline, the Lower Paleozoic West-Kola Graben, the Devonian Demidovskiy Aulacogen, the Upper Paleozoic Malyginskiy Graben in the Barents Region and Upper Paleozoic–Triassic Noyabr'skiy and the Chekinskiy grabens in the Kara Region. Data concerning the deep structure lead us to conclude that mainly destructive processes contributed to the dynamics of the forming of the Barents–Kara Region.  相似文献   

16.
Regional‐scale, high‐resolution terrain data permit the study of landforms across south‐central Ontario, where the bed of the former Laurentide Ice Sheet is well exposed and passes downflow from irregular topography on Precambrian Shield highlands to flat‐lying Palaeozoic carbonate bedrock, and thick (50 to >200 m) unconsolidated sediment substrates. Rock drumlins and megagrooves are eroded into bedrock and mega‐scale glacial lineations (MSGL) occur on patchy streamlined till residuals in the Algonquin Highlands. Downflow, MSGL pass into juxtaposed rock and drift drumlins on Palaeozoic bedrock and predominantly till‐cored drumlins in areas of thick drift. The Lake Simcoe Moraines, now traceable for more than 80 km across the Peterborough drumlin field (PDF), form a distinct morphological boundary: downflow of the moraine system, drumlins are larger, broader and show no indication of subsequent reworking by the ice, whereas upflow of the moraines, a higher degree of complexity in bedform pattern and morphology is distinguished. Discrete radial and/or cross‐cutting flowset terminate at subtle till‐cored moraine ridges downflow of local topographic lows, indicating multiple phases of late‐stage ice flow with strong local topographic steering. More regional‐scale flow switching is evident as NW‐orientated bedforms modify drumlins south of the Oak Ridges Moraine, and radial flowset emanate from areas within the St. Lawrence and Ottawa River valleys. Most of the drumlins in the PDF formed during an early, regional drumlinization phase of NE–SW flow that followed the deposition of a thick regional till sheet. These were subsequently modified by local‐scale, topographically controlled flows that terminate at till‐cored moraines, providing evidence that the superimposed bedforms record dynamic ice (re)advances throughout the deglaciation of south‐central Ontario. The patterns and relationships of glacial landform distribution and characteristics in south‐central Ontario hold significance for many modern and palaeo‐ice sheets, where similar downflow changes in bed topography and substrate lithology are observed.  相似文献   

17.
A multi‐channel, high‐resolution seismic reflection survey using a Micro‐GI airgun was carried out in the framework of the Russian‐German project PLOT (Paleolimnological Transect) on Lake Levinson‐Lessing, Taymyr Peninsula, in 2016. In total, ~70 km of seismic reflection profiles revealed in unprecedented detail the glacial and postglacial sedimentary infill of the lake basin. Five main seismic units have been recognized and interpreted as glacial (Unit V), subglacial and proglacial (Unit IV), marine (Unit III), fluvial‐lacustrine (Unit II) and lacustrine (Unit I) sediments. Of particular significance are imbricated, south‐orientated structures present in the southernmost part of the lake basin within Unit V and a large topographic ridge recognized in front of those structures. We interpret these structures as push moraines and an end moraine, respectively, left by the glacier after its retreat. The depositional pattern of the units above the moraines documents past lake‐level fluctuations. We interpret Unit IV, Unit III and Unit I as highstand deposits, and Unit II as lowstand deposits. Gas‐charged sediments dominate the northern part of the lake basin, whilst they occur only sporadically and in limited spatial extent in the central and southern parts of the lake. In the latter areas, the seismic and echo‐sounder data suggest recent tectonic activity. Our study contributes to the reconstruction of environmental conditions in the Taymyr Peninsula directly following the Early Weichselian deglaciation and shows that deep tectonic lake basins affected by several glaciations can preserve important palaeoenvironmental records, which contributes significantly to our understanding of palaeoenvironmental changes in the Taymyr Peninsula and the central Russian Arctic.  相似文献   

18.
《Sedimentology》2018,65(5):1777-1799
Sequences of lake sediments often form long and continuous records that may be sensitive recorders of seismic shaking. A multi‐proxy analysis of Lake Bohinj sediments associated with a well‐constrained chronology was conducted to reconstruct Holocene seismic activity in the Julian Alps (Slovenia). A seismic reflection survey and sedimentological analyses identified 29 homogenite‐type deposits related to mass‐wasting deposits. The most recent homogenites can be linked to historical regional earthquakes (i.e. 1348 ad , 1511 ad and 1690 ad ) with strong epicentral intensity [greater than ‘damaging’ (VIII ) on the Medvedev–Sponheuer–Karnik scale]. The correlation between the historical earthquake data set and the homogenites identified in a core isolated from local stream inputs, allows interpretation of all similar deposits as earthquake related. This work extends the earthquake chronicle of the last 6600 years in this area with a total of 29 events recorded. The early Holocene sedimentary record is disturbed by a seismic event (6617 ± 94 cal yr bp ) that reworked previously deposited sediment and led to a thick sediment deposit identified in the seismic survey. The period between 3500 cal yr bp and 2000 cal yr bp is characterized by a major destabilization in the watershed by human activities that led to increases in erosion and sedimentation rates. This change increased the lake's sensitivity to recording an earthquake (earthquake‐sensitivity threshold index) with the occurrence of 72 turbidite‐type deposits over this period. The high turbidite frequency identified could be the consequence of this change in lake earthquake sensitivity and thus these turbidites could be triggered by earthquake shaking, as other origins are discarded. This study illustrates why it is not acceptable to propose a return period for seismic activity recorded in lake sediment if the sedimentation rate varies significantly.  相似文献   

19.
Accurate reconstruction of the paleo-Mojave River and pluvial lake (Harper, Manix, Cronese, and Mojave) system of southern California is critical to understanding paleoclimate and the North American polar jet stream position over the last 500 ka. Previous studies inferred a polar jet stream south of 35°N at 18 ka and at ~ 40°N at 17–14 ka. Highstand sediments of Harper Lake, the upstream-most pluvial lake along the Mojave River, have yielded uncalibrated radiocarbon ages ranging from 24,000 to > 30,000 14C yr BP. Based on geologic mapping, radiocarbon and optically stimulated luminescence dating, we infer a ~ 45–40 ka age for the Harper Lake highstand sediments. Combining the Harper Lake highstand with other Great Basin pluvial lake/spring and marine climate records, we infer that the North American polar jet stream was south of 35°N about 45–40 ka, but shifted to 40°N by ~ 35 ka. Ostracodes (Limnocythere ceriotuberosa) from Harper Lake highstand sediments are consistent with an alkaline lake environment that received seasonal inflow from the Mojave River, thus confirming the lake was fed by the Mojave River. The ~ 45–40 ka highstand at Harper Lake coincides with a shallowing interval at downstream Lake Manix.  相似文献   

20.
The deposits of Glacial Lake Quincy overlie a diamicton associated with the classically defined Illinoian limit in central Indiana. This lake covered at least 180 km2 with a depth of > 20 m and developed when the Illinoian ice sheet retreated 15 km from the maximum limit, causing lake impoundment against Devore Ridge. Overflow from Glacial Lake Quincy eroded across the ridge forming a number of steeped-walled outlets. A section along Mill Creek exposes a sedimentologic sequence associated with Glacial Lake Quincy from a subglacial diamicton to ice-proximal to ice-distal glacial lacustrine sediments. We report new optical ages by multiple aliquot regenerative dose procedure for the fine-grained rhythmically bedded sediments presumed to represent the lowest energy depositional facies, dominated by suspension settling, which maximized sunlight exposure. In turn, optical ages were determined on the fine-grained (4-11 μm) polymineral and quartz fractions under infrared and blue excitation, which yielded statistically similar ages. Optical ages span from ca. 170 to 108 ka, with the average of 16 optical ages indicating deglaciation at ca. 135 ka, generally coincident with Marine Oxygen Isotope Stage 6-to-5 transition and rise in global sea level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号